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Abstract 
 

This investigation has emphasized on transport of particles and nutrients during 

different hydrological events in a water course in Southern Norway, primarily 

draining agricultural areas. Two streams, Borjaevju and Prestevju, enter artificial 

made retention dam system (Dam A, B and C) before leaving the dam through the 

Evjudalen stream. Thus, a major goal was to investigate the retention potential of 

nutrients, primarily phosphorous (P), in the artificial made dam system. The 

chemistry in the two streams was very different, with much higher electrolytic 

conductivity (concentrations of ions) and nutrients in the Prestevju stream compared 

with the Borjaevju stream.  

 

Anthropogenic influence like agriculture, settlement and sewage discharge may have 

large impacts on stream water chemistry including turbidity or TSS (Total suspended 

particles) and subsequent particle associated compounds as TP, heavy metals and 

organic micropollutants. TSS and turbidity were also strongly and positively 

correlated with TP in our study. Turbidity and TSS were also strongly positively 

correlated to water discharge, i.e. at highest during spring and autumn floods, but 

with significant chemical differences between the two seasonal flood episodes.  

Highest concentration of nutrients especially, nitrogen and phosphorus, were 

observed during spring flood, likely as a result of fertilizing of agricultural land at that 

time of the year. Despite significant higher turbidity/TSS peak values during the 

autumn flood, the Total-P was lower than during the spring flood, indicating lower P-

particle load during autumn.  

 

Our calculations for retention of particles and particle associated nutrients in the 

artificial dams, showed retention of turbidity with subsequent retention of TN, TP, 

Tot-Fe at low to medium flow rates, i.e. up to ≈ 1000 L sec -1measured in the Evjudalen 

stream located about 200 m downstream from dam area outlet.  
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1 Introduction  

Water is fundamental needs of human being; so, it is utmost necessity to maintain water 

quality. Water influences its neighbouring environment as well as catchment 

characteristics (Bowden, Konovalske, Allen, Curran, & Touslee, 2015). Hynes (1975) 

initially introduced terrestrial-aquatic relationship perception, in which stream acts as 

open system that is closely connected with its nearby landscapes. Geology, hydrology, 

flora, and climate of landscape near stream hinders aquatic ecosystem (J. Allan, 1995; J. 

D. Allan & Johnson, 1997; Johnson, Richards, Host, & Arthur, 1997; MI Stutter, Deeks, 

Low, & Billett, 2006).  Chemistry of stream is associated to geology of watershed during 

low rainfall (Faure, 1997). River drains wastewater from factory, housing and physical 

structures, and agricultural fertilizers (Elliot & Ward, 1995). Runoff is major cause of non-

point source pollution in stream; which transport variety of contaminant depending on 

catchment characteristics. For instance; nutrients and sediments are carried from 

agricultural areas and heavy metals, sodium, sulphate and rubber fragments from urban 

areas (Tong & Chen, 2002). 

 

Water quality tends to be hindered from natural and artificial means, which is stimulated 

with temporal and spatial scale (Meybeck, Chapman, & Helmer, 1990); where, geological 

features and characteristics, temporal changes in water flow, depth of water and 

landscapes characteristics may be natural factors (Bartram & Ballance, 1996). 

Furthermore, land use  as an anthropogenic factor causes non-point source and point 

source water pollution (Lenart-Boroń, Wolanin, Jelonkiewicz, Chmielewska-Błotnicka, & 

Żelazny, 2016). Thus, land use is a principal cause of variation of solid particles and 

transport of nutrient on water source (R. Bartley, Speirs, Ellis, & Waters, 2012).  

 

Nutrient transportation is a natural phenomenon. Nutrients on soil are transported to 

water source either in dissolved or particulate form. Nutrients transportation get easily 

access to aquatic species which simultaneously improves the aquatic ecosystem.   

Artificial means such as cultivation, industrialization, farming, urbanization and 

recreation may be supplement cause for promoting nutrients transportation in water 

source (Jensen, Tiessen, Salvano, Kalischuk, & Flaten, 2011). The study conducted in 

Alberta by Lorenz, Depoe, & Phelan (2008), suggested that water quality is inversely 
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proportional to agricultural intensity, and amount of N & P rises on flowing water. Water 

sources like streams, lakes and swamps can be eutrophicated due to additional N & P 

that promotes algal blooms and aquatic plants growth. The life cycle of algal blooms is 

responsible for anoxia in water sources, which directly hamper other aquatic species 

(Jensen et al., 2011). Eutrophication problems have driven people’s interest on pollution 

of lakes, rivers and Baltic sea due to non-point source of Nitrogen and Phosphorus (Enell 

& Fejes, 1995; Larsson, 1985; Stålnacke, 1996). Phosphorus has shown main limiting 

nutrient in most water bodies(Foy, 2005). Many researchers have recommended that 20-

80% of particulate phosphorus (PP) can be easily available to algae if it is organic 

(especially combined with clay particles) (Golterman, Bakels, & Jakobs-Mögelin, 1969; 

Hegemann, Johnson, & Keenan, 1983; Williams, Shear, & Thomas, 1980; Young & 

DePinto, 1982). Migration factors (runoff, erosion, and channeling) and other sources 

(soil, crop, and management) determines the amount of N loss in agricultural catchments 

(Blankenberg, Haarstad, & Søvik, 2008). Nitrogen application proportionally influence N- 

leaching (Simmelsgaard, 1998). Moreover, watershed characteristics have tremendous 

influence on average N loss (Vagstad et al., 2004). Large scale research found that 

agricultural land was responsible for  45% of total nitrogen loads on southern half of 

Sweden (Arheimer & Brandt, 1998).  Measures to control heavy flow of nutrient from 

arable land have only 15% of net effect (Arheimer & Brandt, 2000).  

 

Erosion process is accelerated on catchment with high proportion of agricultural 

coverage (Kondracki, 2000). It is also a prime source to conveyance organic and inorganic 

nutrients to water source (Krogstad & Løvstad, 1989). Biogeochemical process of 

nutrients on earth surface such as land, water, air and species influence nutrient 

concentration on water flow. The effect of rainfall, snowfall and sediment can be quickly 

noticed on small streams than bigger rivers (Duvert, Gratiot, Némery, Burgos, & Navratil, 

2010; Jones, Horsburgh, Mesner, Ryel, & Stevens, 2012). In frozen regions, runoff is 

accelerated during snowmelt period and winter season when the land is freezing; which 

prohibit water to be absorbed (Nina Syversen, Øygarden, & Salbu, 2001). 
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Figure 1-1 Structural functioning of dams to control nutrient transport (B. Braskerud, 

2002) 

Constructed ponds in different places have shown their capability to reserve huge 

quantity of headwater streams (Fairchild & Velinsky, 2006). Small ponds can spatially and 

temporally impact the stream system by changing the fish mobility in water system, 

enhancing aquatic environment for which prefers for habitat for diversity of flora and 

fauna, improving groundwater recharge and rising evaporation (Smith, Renwick, Bartley, 

& Buddemeier, 2002). Additionally, sedimentation of particle due to small ponds has 

been rising consideration (Verstraeten & Poesen, 2000). These ponds have ability to 

change the downstream water chemistry (Stanley & Doyle, 2003; Vörösmarty & Sahagian, 

2000). Water flowing through small ponds tends to modify water chemistry by changing 

rate of central biogeochemical process like dissolved-particulate adsorption (e.g. PO₄³ˉ), 

biological uptake of liquefy  nutrients (e.g. SiO2 or NH₄⁺) and transformations (e.g. NO₃ˉ 

to N2(g)); which can be apparent on downstream (Humborg, Ittekkot, Cociasu, & 

Bodungen, 1997; Martin, Mulholland, Webster, & Valett, 2001; Newbold, 1987). A multi-

pond system constructed to restraint farmland runoff was able to retain 87% of total 

phosphorus flowing through the pond network (Yin & Shan, 2001). 

 

In Norway, stream has significant impact on dissecting larger agricultural land into smaller 

area (around 5 – 20 ha.) (B. Braskerud, 2001). Tremendous destruction of stream started 

since 1950s, to enlarge agricultural productivity. So, streams were blocked and gullies in 

fertile clayey soil were flattened. Moreover; other water sources like shallow pond and 

peat land were dried to create farmland(B. Braskerud, 2001). A study conducted in south-

eastern Norway showed that streams and wetlands visible in 1790 were extinct from 

Rakkestad catchment by 1980 (Røsten, 1987). However, such trends of ruining water 

source were prohibited from 1989. Simultaneously, construction of sedimentation pond 

was emphasized to preserve the migrations of soil particles from catchment (B. 



___ 

10   
 

Braskerud, 2001). Larger area of pond creates favourable space for settling of clay 

particles (C.-N. Chen, 1975; Novotny & Chesters, 1981) and it was difficult to create big 

spacious pond on Norway due to small scale farmland(B. Braskerud, 2001).  So, such 

ponds must be deeper to sediment particles in order to result similar effect of larger pond 

(C.-N. Chen, 1975). B. Braskerud (2001) mentioned planted aquatic species in such pond 

was able to control resuspension and storm erosion; which was named as constructed 

wetlands (CWs). Additionally, same research suggested that plant functioning in CWs 

help to promote sedimentation and diminish resuspension of particles. Best 

management practices (BMP) in agricultural land tends to reduce nutrients amount in 

downstream; due to its modification with CWs in first and second order enhances 

mechanism, like sedimentation, plant uptake and microbial N recycling. Nitrogen 

retention is proportionate with CW coverage (B. C. Braskerud, 2003). CWs in Norway are 

generally small (<0.1% of the catchment) because of rough landscape and small-scale 

agriculture. It is utmost significant to enhance N-retention  where area of CWs cannot be 

enlarged (Blankenberg et al., 2008). Nutrient retention in wetland is consequence of 

specific factors such as hydraulic load (Arheimer & Wittgren, 2002; Koskiaho, 2006), as 

well as seasonality and nutrient load (Richardson, 1985). Constructed wetlands are 

initiated usually to interrupt the eroded soil particle and associated P from arable land. 

Sedimentation is major factor for upholding of particles and associated P in wetlands (R. 

H. Kadlec, and R.Knight, 1996). Lower amount of water flow and more retention time rise 

the sedimentation rate (Johnston, 1991). Minimum ratio of wetland area to catchment 

area in small wetland may increase hydraulic load which simultaneously decline the 

particle retention (Stephan, Hengl, & Schmid, 2005). In contrast, high amount of particle 

load in small stream may increase area-specific retention (B. C. Braskerud, 2003) . There 

is lack of proper idea on effectiveness of wetlands and buffer zones for P retention in area 

rich with clayey soil which transports excessive P to water bodies (Barbro Ulén & Snäll, 

2007). P is mainly retained by sedimentation, but chemical sorption and floral uptake can 

also retain P (Reddy, Kadlec, Flaig, & Gale, 1999). A study conducted by B. Braskerud 

(2002) in Norwegian small wetlands with deep sedimentation ponds incorporated with 

shallow floral filters demonstrated efficient sedimentation of particles and TP (21-44% of 

TP load). 
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Watershed runoff is responsible for transport of particles and its associated nutrients. 

Higher amount of water flow results the rise of sediments in stream which tremendously 

changes water quality. So, these particles associated nutrient could be problem of 

eutrophication in downstream. The proper management practice for controlling nutrient 

is important concern on these days. Most of researcher have focused on constructed 

wetlands as effect measure for interrupting particles on Norwegian stream water. So, this 

study has emphasized to comprehend the nutrient concentration especially total 

nitrogen and total phosphorus during flooding events.  Additionally, this investigation will 

demonstrate role of retention ponds, one of the conservative measures, for retaining 

particles. 

 

Objectives 

The main goal of this thesis is to study water chemical variations during flood episodes, 

from low flow to high flow, and the retention effects of particles and particle associated 

compounds in the artificial made retention dams in Evjudalen, Midt-Telemark 

municipality, Norway.  The objectives of this study are mentioned below: 

i) Determine water quality changes on Borjaevju, Prestevju and Evjudalen 

stream during hydrological events 

ii) Demonstrate influence of catchment on stream water chemistry  

iii) Comprehend the effects of dams to retain the nutrient  
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2 Literature Review  

2.1 Land Use  

Intimate association has been found between catchment characteristics and water 

quality and quantity (Gburek & Folmar, 1999). Agricultural catchment is responsible for 

high flow of nutrient concentration in stream (Lenat & Crawford, 1994). Additionally, a 

study conducted by Fisher et al. (2000) in Upper Oconee Watershed suggested that 

poultry production catchments can produce huge concentration of nitrogen, phosphorus 

and Fecal coliform bacteria. Due to the land use pattern; there is variation on water 

quality parameters which is demonstrated on a study in western North Carolina (Bolstad 

& Swank, 1997). Thus, catchment characteristics and land use changes are significant 

factor for determining water circulation and water flow velocity (Mander, Kull, Tamm, 

Kuusemets, & Karjus, 1998). Additionally, land use pattern and its changes can have 

proportional impact on changes on water quality (Changnon & Demissie, 1996).  

 

Land use can alter the transportation of particulates and nutrient concentration to water 

sources (R. S. Bartley, W., 2010). Many studies demonstrated that variation on water 

quality parameters due to natural cause or by land use can be clearly revealed from 

information gathered from water quality constituents and land situation (R. S. Bartley, 

W., 2010). The study of fine particles transportation like clay is utmost because turbidity  

and phosphorus (Sharpley, 1980), heavy metals (Kabata-Pendias, 2004) and pesticides 

(Leonard, 1990)are closely interlinked with them. Human influence and natural cause 

both accelerate non-point source pollution; for instance, contaminants from catchments 

are transported in water bodies due to precipitation and snow melting (Lenart-Boroń, 

Wolanin, Jelonkiewicz, Chmielewska-Błotnicka, et al., 2016). However; outflow from 

infrastructural waste water treatments are major components for point source pollution 

(Nnane, Ebdon, & Taylor, 2011).  

 



 

  

___ 

13 
 

2.2 Phosphorus 

Major limiting nutrient for algal growth in water bodies is phosphorus (Berge, Fjeld, 

Hindar, & Kaste, 1997).It has been identified that particulate phosphorous is major 

constituents that is carried by runoff from arable land (Koskiaho, Ekholm, Räty, Riihimäki, 

& Puustinen, 2003; Barbro Ulén, 2004; Uusitalo, Turtola, Puustinen, Paasonen‐Kivekäs, 

& Uusi‐Kämppä, 2003; Uusitalo, Yli-Halla, & Turtola, 2000). A research in Finland showed 

that 73-94% of particulates were phosphorus in water flow from agricultural catchment 

(Uusitalo et al., 2003).   A sediment study suggested that bioavailable phosphorus and 

clay content are strongly correlated (Maynard, O'Geen, & Dahlgren, 2009). Additionally, 

Kronvang (1992) suggested that clayey soil can hold phosphorus easily. Generally, 

particulate phosphorus contains agricultural soil constituents and organic matter, eroded 

due to surface runoff or drainage system during irrigation, rainfall, and snow-melting. 

Phosphorus found in clay particles is 12 times higher than sand particles associated P 

(Pacini & Gächter, 1999). 

 

Total phosphorus loading in runoff is fractionated with 15, 20,17 and 41% agricultural 

phosphorus in Denmark, Norway, Sweden and Finland respectively (Kronvang & 

Svendsen, 1991). In agricultural land of Norway, high concentration of phosphorus (90%) 

flow is estimated on winter (N Syversen, 2002). Particulate Phosphorus percentage is high 

on total phosphorus transported by surface runoff because water flow carries eroded 

particles. On other hand; snow melting is less erosive, so Dissolved Phosphorus 

concentration is higher than Particulate Phosphorus in total Phosphorus (Jensen et al., 

2011). Karlsson (2005) suggested that maximum percentage of concentration of 

dissolved P (88%) was found in wastewater discharge. Most of the studies enlightens 

strong correlation between phosphorus concentration on snow melted runoff and 

phosphorus amount on surface soil (Little, Nolan, Casson, & Olson, 2007; Salvano, Flaten, 

Rousseau, & Quilbe, 2009). Area with higher concentration of phosphorus represents 

strong relationship between phosphorus and turbidity (Villa, Fölster, & Kyllmar, 2019). 

Phosphorus is main responsible nutrient for eutrophication in Northern Great Plains 

which is diagnosed by algal blooms. Northern Great Plains have productive land and 

aquatic ecosystem along with high Phosphorus amount (Barica & Allan, 1988).  
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2.3 Nitrogen 

Nitrogen as a vital element; is easily available on earth surface on various chemical forms. 

Anthropogenic factors are responsible to accelerate the concentration of naturally 

occurring nitrogen parameters like Nitrate and others (Dubrovsky et al., 2010). Nitrogen 

parameters available in soil and water are influenced  by temperature, oxygen levels and 

bio-chemical status (Wall, 2013). Nitrate and organic nitrogen are main form of Nitrogen 

that is readily available on surface water. Nitrate concentration elevates organic nitrogen 

when stream relates to agricultural catchment and organic nitrogen is noticed higher 

than nitrate on natural conditions like forest and grasslands (Wall, 2013). Nitrogen loss 

from agricultural watershed is consequence of excessive utilization of fertilizer in 

farmland, and leads to aquatic ecosystem imbalance (Povilaitis, Šileika, Deelstra, Gaigalis, 

& Baigys, 2014; Povilaitis, Stålnacke, & Vassiljev, 2012; Stoate et al., 2009). Additionally, 

Nitrogen pollution in stream is the result of livestock dung disposal and excessive 

Nitrogen in arable land (Woli, Nagumo, & Hatano, 2002). 

 

Nitrogen concentration is highly dependent on agricultural practice and its area. For 

instance; a study conducted by X. Chen & Bechmann (2019) in Skuterud and Naurstad 

catchment had shown that nitrogen concentration in Skuterud catchment was five times 

higher than Naurstad catchment because Skuterud catchment (61%, 273.9 hm²) have five 

times bigger agricultural area than Naurstad catchment (35%, 51.1 hm²). Additionally, 

Area with soil tillage and cereal production demonstrated high nitrogen loss than 

grassland (García-Díaz et al., 2017; Hansen & Djurhuus, 1997).  

2.4 Turbidity and Total Suspended Solids 

Turbidity is a measure of light that is affected by solid particles in water (Villa et al., 2019). 

Most of the research have been using turbidity as substituent estimator of suspended 

solid amount (Villa et al., 2019). Solid particles size and composition along with colour are 

confounding factor for turbidity and suspended sediment relationship (Bright, Mager, & 

Horton, 2018; Muff, Signer, & Fieberg, 2020). In most of the stream, turbidity can act as 

decent predictor for developing simple association with total phosphorus and suspended 

sediments (Villa et al., 2019). Turbidity can be used as substituent of TP relying, on fact 
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that higher proportion of particulate phosphorus is present in transported TP (Rügner, 

Schwientek, Beckingham, Kuch, & Grathwohl, 2013; Settle, Goonetilleke, & Ayoko, 2007; 

Stubblefield, Reuter, Dahlgren, & Goldman, 2007). The concentration total suspended 

solid is less in summer in comparison to spring and summer (B. Braskerud, Lundekvam, & 

Krogstad, 2000; B. C. Braskerud, 2003).  

2.5 Heavy Metals 

One of the biggest problem of world is heavy metal pollution (Sekabira, Origa, Basamba, 

Mutumba, & Kakudidi, 2010). Weathering of rocks as a terrigenous source enhances 

geochemical recycling of heavy metal which compels at least low presence of heavy 

metals on water source(Muwanga, 1997; Zvinowanda, Okonkwo, Shabalala, & Agyei, 

2009). These trace element may take part in absorption, co-precipitation and complex 

formation due to being stagnant within sediments (Mohiuddin, Zakir, Otomo, Sharmin, & 

Shikazono, 2010; Okafor & Opuene, 2007). In some circumstances they may be available 

as oxides or hydroxides of Fe and Mn due to co-adsorption with other elements or may 

be in particulate form in stream (Awofolu, Mbolekwa, Mtshemla, & Fatoki, 2005; 

Mwiganga & Kansiime, 2005). Heavy metals may be due to natural and anthropogenic 

source. Industrial wastewater flow, sewage wastewater,  fuel combustion and 

atmospheric deposition may be counted as major artificial sources to drain heavy metals 

in water sources (Campbell, 2003; El Diwani & El Rafie, 2008; Idrees, 2009; Linnik & 

Zubenko, 2000; Lwanga, Kansiime, Denny, & Scullion, 2003). 

2.6 Hydrological Events and Retention in Dams 

Flooding is one of the most destructive natural phenomena that hampers socio-economic 

aspects of human. Flooding is responsible for destroying the animal’s habitat, loss of 

agricultural productivity, depletion of water quality and spread of disease. Increasing 

amount of water on water bodies leads flooding which ultimately result water pollution 

and life hazard (Ching, Lee, Toriman, Abdullah, & Yatim, 2015). Climate change can 

responsible for rise on flow velocity and hydrological events which simultaneously 

accelerates transport of nitrogen and phosphorus (McCullough et al., 2012). Moreover, 

lot of studies explains that increment of agricultural outflow channels and low 
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conservative structure; like surface depression and wetland, can also accelerate the flow 

velocity and volume of water. A study conducted in southeast Norway mention the strong 

relationship between water flow and erosion and farming practice ploughing and tillage 

also accelerate soil erosion (B. Braskerud et al., 2000). 

 

 

Figure 2-1 Overview of waterflow in stream through constructed dams 

Major impact of large dams can be analysed from water flow variation, alteration of water 

quality, and modified sedimentation process, which hampers aquatic species (Hirji, 

Johnson, & Chauta, 2002; Mantel, Hughes, & Muller, 2010; Petts, 1984; Pringle, Freeman, 

& Freeman, 2000). Worldwide, larger dams’ effects 59% of world biggest river by 

dissection of river and flow control (Nilsson, Reidy, Dynesius, & Revenga, 2005). Check 

dams are soil conservation measure that controls velocity of flowing water, minimizes 

soil loss and preserve nutrient rich sediments (Li et al., 2017). Likewise, small dams 

enhance sedimentation process that change habitat structure (Stanley, Luebke, Doyle, & 

Marshall, 2002). Regional and Global survey have suggested that river system may be 

distinctly influenced by small dams due to their numerous presence and surface occupied  

(Mantel et al., 2010; Rosenberg, McCully, & Pringle, 2000). Small dams are useful 

structure that serves human civilization; such as animal husbandry, agricultural 

production, fishery, silt trapping, and aesthetic value (Cecchi, 1998; Keller, Sakthivadivel, 
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& Seckler, 2000; A Senzanje & Chimbari, 2002; Sugunan, 1997). Aquatic as well as 

terrestrial ecosystem is improved by dammed water in reservoirs which ultimately 

support well-being of flora and fauna (Aidan Senzanje, Boelee, & Rusere, 2008). Water 

flow and particulates collides on small dams and modifies the nutrient migration through 

whole system (Oeurng, Sauvage, & Sánchez‐Pérez, 2010). Sedimentation of nutrients on 

dam reservoirs blocks the nutrients aggregated with particulates from watershed. Due to 

such process nutrient concentration reduces along the water sources which proportional 

minimizes eutrophic condition on downstream (Liu, McLean, Long, Steinman, & 

Stevenson, 2018). Factors that hinders minor dams are variation on flow of its tributary 

stream and considerable use of water for different purpose. There is less retention time 

on small dams, so; they have probability to affect sediment features and its relations with 

water strata. The contact time among sediments and water regulates retention of 

nutrient. So, interaction of sediment and water is influenced by various factors such as; 

discharge, water height, transient storage, and physiography (Alexander, Smith, & 

Schwarz, 2000; Valett, Morrice, Dahm, & Campana, 1996). Additionally, channel structure 

can modify residence time which instantly impact on nutrient sedimentation (Gücker & 

Boëchat, 2004). 
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3 Methods 

3.1 Study Sites 

This research study was conducted in 3 small streams located in Bø,Telemark named as 

1) Borjaevju, 2) Prestevju and 3) evjudalen. Bø is a circular valley with cold climatic region. 

Lake Seljord lies on NW and Lake Norsjø lies in SE of Bø. Borjaevju and Prestevju are 

upstreams and Evjudalen stream as downstream. Additionally, dam A, dam B and dam C 

on streams were studied to identify the role of constructed ponds in retention of particles 

and nutrients.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1 Study Area where st.1,2,3 represents Borjaevju,Prestevju & Evjudalen 

repectively and A,B, & C are constructed dams 

 The catchment characteristics varies on study area, which can be elaborated in table 

below: 

 

2 

3 

A 

C 

B 
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Table 1-1 Catchment characteristics of Borjaevju, Prestevju and Evjudalen  

Parameter Unit Borjaveju Prestevju Evjudalen 

Area km2 10.92 5.29 18.6 

Discharge mm yr-1 275.48 274.98 273.68 

min hight m a.s.l 73 65 58 

max high m a.s.l 373 398 398 

Agriculture % 21.31 32.68 24.96 

Bog/Marsh % 0.21 0 0.12 

Urban % 1.76 2.78 6.53 

Summer temp1 °C 12.06 12.22 12.16 

Winter temp2 °C -1.37 -1.27 -1.31 

Summer precipitation mm 425.21 443.85 429.32 

1May-September 
2October-April 

 

3.2 Data Collection 

3.2.1 Sampling 

Water samples were collected from May to October focusing on hydrological events. 

Simple random sample was used to identify the sample sites. Two upstream Station 1 & 

Station 2 and downstream Station 3 along with its dam A, B and C respectively were 

identified depending on nature of water catchment and stream flow. Before collecting 

sample, wooden ruler was marked to analyze the water height. Then, they were fixed 

before conducting data collection. Temperature and water height were recorded before 

sample collection. Salt dilution method was applied to estimate the discharge of stream. 

Salt dilution method is applicable on stream with undefined geometric cross section of 

stream, in highland waterflow where current meter cannot determine flow rate (Pitty, 

1966; Sappa, Ferranti, & Pecchia, 2015). The function of time with injected solution 

conductivity help to determine water flow (Sappa et al., 2015). Two bottles of 0.5L water 

samples were collected from downstream i.e. station 3 then dam C, B and A following 

station 1 and 2. In salt method, saltwater (i.e. adding 1 kg of salt in 5 L of water) was 

poured on three stations. Conductivity was recorded at downstream around 10 meters 

distance depending on water velocity. In this research, injected conductivity was 
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measured at each 5 seconds and their product (time*injected conductivity) gives electric 

conductivity of point. Total conductivity was calculated by formula: 

𝐶𝑡 = ∑[(
𝐶𝑖 + 𝐶𝑠

2
− 𝐶𝑖) ∗ (𝑇𝑠 − 𝑇𝑖)] 

Where, 

𝐶𝑡= total Conductivity 

𝐶𝑖= initial conductivity of solution 

𝐶𝑠= second conductivity of solution 

𝑇𝑠= second measurement of time 

𝑇𝑖= intial measurement of time 

 

After calculating total conductivity, discharge can be measured by following formula: 

𝑄 =
𝑀 ∗ 0.219

𝑡 ∗ 𝐶𝑡
 

Where, 

𝑄 = discharge of stream 

𝑀 = weight of salt used for solution 

𝑡 = temperature  

𝐶𝑡= total Conductivity 

 

Salt dilution method was adopted five times on each stream during sampling period and 

help to find out relationship between water flow and water level. 
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Figure 3-2 Relationship of water level and water flow in Borjaevju 

 

 

Figure 3-3 Relationship of water level and water flow in Prestevju 
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Figure 3-4 Relationship of water level and water flow in Evjudalen 

 

According to above given figure, all streams demonstrate close association between 

water level and water flow. R-squared value (R²=0.98) is higher in Prestevju stream which 

clearly illustrates that exponential trendline fit for best prediction of dependent variable. 

So, this regression equation (y = 0,000088x3,922605) is best equation for calculating water 

flow in Prestevju.  
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Figure 3-5 Water temperature on three streams  

         

The highest temperature (19°C) was recorded during last of July in Evjudalen 

stream (Figure No.3-5). During autumn, temperature of water on all streams show 

tremendous decline of water temperature which continues till the end of the 

year. Temperature of Borjaevju, Prestevju and Evjudalen ranges similar during 

October and November than other months. 
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analyzed. Samples were kept on room temperature before conducting lab 

analysis. Laboratory analysis was conducted on two phases. There were 60 

bottles of samples stored in cooler before analysis. Metabolism of organism 

gets minimized due to samples stored in freezer below 4°C (Shuhaimi-

Othman, Lim, & Mushrifah, 2007). Samples of each heavy metals and Nitrogen 

& Phosphorous were analyzed on separate bottles. Initially, 100 ml of bottles 

were marked distinctly as red colour for heavy metals and blue one for 

Phosphorous & Nitrogen. Additionally, these bottles were differentiated to 

mark each total and filtrate samples of heavy metals and N & P which were 

further differentiated into a & b sub-samples (i.e. T(a), T(b), F(a) & F(b)). Thus, 

there were 60 samples of each N, P & HMs which were analyzed for total and 

filtrate (i.e. 30 total and 30 filtrate).100 ml of total samples were collected 

directly from 0.5 l bottles. Then, filtration method adopted to receive 100ml 

of filtrate samples. The weight of 60 filter papers were measured before 

filtrating samples. Thus, total (T) and filtrate (F) samples of 100 ml were 

assembled for HM and N & P. Filters were handled carefully and dried on oven 

for 24 hours.  

 

1 ml of concentrated HNO₃ was added to each heavy metal samples, while 1 

ml 4M H₂SO₄ was added to each sample before analyzed on total nitrogen 

(TN) and total phosphorus (TP). Each nitrogen samples were, both total (T) 

and filtered (f) were divided in 2 sub-samples named as Ta and Tb, Fa and Fb. 

Each sample were 10ml. Likewise, TP was evaluated after addition of  

potassium peroxodisulfate (B. Braskerud, 2002). These all plastic bottles were 

kept on machine for heating for one day. Then, nitrogen sub-samples were 

analyzed. Nitrogen parameters were on standard NS 4743 with Certoclav-

Tisch-Autoclav, FIAlyzer 1000 and AIM3200 Autosampler. Phosphorous 

analysis was conducted as similar process of Nitrogen. Average of these 

subsamples give the actual amount of nitrogen and phosphorous present in 

samples. Heavy metals like Manganese, Iron, Zinc and Copper were analysed 

by atomic absorption spectrometry on a Perkin Elmer HGA 900 instrument 

(Graphite furnace) according to NS-4773 (1994). Major cations (Ca⁺², Mg⁺², 
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Na⁺, K⁺) and anions (SO₄ˉ², Clˉ,NO₃ˉ) were analyzed by ionic chromatography 

instrument type Dionex ICS-1000, RFIC according to standard methods (Table 

No.1). Also, turbidity, pH and conductivity were measured according to 

analytical standard methods. Total suspended solids were calculated by 

subtracting weight of filter paper before filtration from weight of filter paper 

after heating. Physical and chemical analysis of water sample were carried out 

with following given instrument and standard: 

Table 2-1 Analytical equipment and standard for physical and chemical parameters 

Parameter Equipment/Machine Standard 

pH Mettler Toledo SevenCompact S210 NS 4720 

Conductivity WTW Cond 3110 TetraCon 325 NS-ISO 7888 

Alkalinity Mettler Toledo G20 Compact Titrator and 

Mettler Toledo DG 115-SC electrode 

NS 4754 

Turbidity Turbiquant 1100 IR NS-EN ISO 7027-1 

Ca2+, Mg2+, Na+, K+, 

NH4
+ 

Dionex ICS-1100 Ion Chromatography System NS-EN ISO 14911 

SO4
2-, Cl-, NO3

- Dionex ICS-1100 Ion Chromatography System NS-EN ISO 10304-1 

TN Certoclav-Tisch-Autoclav, 

FIAlyzer 1000 and 

AIM3200 Autosampler 

NS 4743 

TP Certoclav-Tisch-Autoclav and 

Perkin Elmer Lambda 25 UV/VIS 

Spectrophotometer 

NS 1189 

True colour  Perkin Elmer Lambda 25 UV/VIS Spectrofotometer NS-EN ISO 7887:2011C 

Heavy Metals Perkin Elmer HGA 900 NS-4773 (1994) 
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3.2.3 Statistical Analysis 

Statistical software Minitab18 performed One-Way ANOVA for statistical analysis of 

water parameters. Turkey- Kramer multiple comparison was also conducted in order to 

identify statistically significant difference on study sites.  Residual analysis supported to 

demonstrate normality and homogeneity of variance. Association of physical and 

chemical parameters were demonstrated by regression analysis. In addition, retention 

on dams were calculated by following formulas: 

Firstly, Mass transport (mg s⁻¹) from the two catchments Borjaevju and Prestevju were 
calculated as follows: 

𝐶1+2 =
(𝐶1 ∗ 𝑄1) + (𝐶1 ∗ 𝑄1)

(𝑄1 +𝑄2)
 

 
Where, 
MT= Mass Transportation 
C1 = Concentration on station 1 
C2 = Concentration on station 2 
Q1 = Discharge on station 1 

Q2 = Discharge on station 2 

 

Then, potential retention (R) of particles and nutrients in the dams were calculated as; 

𝑅 = (𝐶1+2 − 𝐶3) 

Where, 

C1+2 = Volume weighted concentration average 

MT₃ = Mass transport at Station 3, i.e. C₃/Q₃ 
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4 Results 

Bø is a hilly area dominated by agricultural field and urban area. Winter is too cold so 

cultivation is done from spring to autumn. Prestevju is highly influenced by both 

agricultural production and urban area. The soil type of the study sites is marine deposits 

basically clayey. Borjaevju and Prestevju are perennial stream in Bø which flows down to 

Evjudalen that drains into River Bøelva with outlet in Lake Norsjø.  

 

                                

 

 

  

Prestevju                                                            Borjaevju 

 

Figure 4-1 Overview of Catchment area of Evjudalen along with tributaries Borjaevju 

and Prestevju (Source: https://nevina.nve.no/)  

 

https://nevina.nve.no/
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4.1 Water Chemistry During Hydrological Events 

There was a variation in stream water quality on different flooding events. 

Comparatively, Evjudalen represented higher discharge concentration during 

sampling period. Regarding seasonal variation, there was greater amount of water 

flow during autumn flood (Table 3-1). The concentration of conductivity was highest 

from Prestevju stream during autumn flood. Likewise; Prestevju represented highest 

flow of ions concentration.  

Table 3-1 Monthly mean concentration of parameters on sampling sites 

 

Parameters Month/Station May Jun Sep Oct Grand Total

Borjaevju 325 111 60 963 513

Prestevju 89 45 34 205 122

Evjudalen 577 271 127 1471 833

Borjaevju 57.4 61.9 71.0 49.7 56.1

Prestevju 133.5 155.1 187.8 104.3 128.9

Evjudalen 99.5 103.5 126.8 67.5 89.8

Borjaevju 7 7 7 7 7

Prestevju 7 8 7 7 7

Evjudalen 7 7 7 7 7

Borjaevju 19 7 7 60 33

Prestevju 54 10 5 56 46

Evjudalen 56 8 6 36 38

Borjaevju 6 1 4 48 22

Prestevju 13 7 7 41 23

Evjudalen 10 3 4 24 14

Borjaevju 101 116 88 124 110

Prestevju 68 60 40 87 72

Evjudalen 81 91 64 111 92

Borjaevju 78 28 24 60 61

Prestevju 92 35 18 75 72

Evjudalen 71 44 17 50 55

Borjaevju 26 26 13 39 30

Prestevju 35 58 12 65 47

Evjudalen 38 43 11 43 38

Borjaevju 52 2 11 21 30

Prestevju 58 -23 6 10 26

Evjudalen 33 1 6 7 17

Borjaevju 3774 2504 1234 1755 2585

Prestevju 6134 6076 3046 3227 4657

Evjudalen 4744 4006 1800 2250 3378

Borjaevju 1130 684 77 560 752

Prestevju 2213 2697 686 577 1454

Evjudalen 1546 1363 210 666 1042

Borjaevju 2644 1820 1157 1195 1833

Prestevju 3921 3379 2359 2651 3203

Evjudalen 3198 2643 1590 1584 2336

Borjaevju 2953 1745 1223 1488 2073

Prestevju 3918 3163 2692 2893 3310

Evjudalen 3196 2503 1750 1927 2474

Borjaevju 52 2 11 21 30

Prestevju 58 -23 6 10 26

Evjudalen 33 1 6 7 17

Borjaevju 215 227 678 841 513

Prestevju 231 223 381 700 433

Evjudalen 215 245 545 649 425

Borjaevju 21 20 22 16 19

Prestevju 37 39 50 29 35

Evjudalen 29 30 36 22 27

Borjaevju 6 7 8 5 6

Prestevju 28 27 28 12 21

Evjudalen 15 14 16 7 12

Borjaevju 9 9 10 7 8

Prestevju 17 17 23 14 16

Evjudalen 13 14 17 10 12

Borjaevju 2 2 7 6 4

Prestevju 5 4 11 8 7

Evjudalen 3 3 9 6 5

Borjaevju 6 7 6 5 6

Prestevju 8 10 10 7 8

Evjudalen 8 9 8 6 7

Borjaevju 8 8 10 7 8

Prestevju 39 37 34 15 29

Evjudalen 19 17 20 10 15

 Discharge(L/sec)

 pH

 Turbidity(NTU)

 TSS(mg/L)

Colour(mgPt/L)

Conductivity (mS/cm)

 Clˉ(μS/cm)

 Dissolved N(μg/L)

Part. N (μg/L)

 Fe(μg/L)

 Tot-P(μg/L)

Dissolved P(μg/L)

Part. P(μg/L)

 Tot-N(μg/L)

Org-N(μg/L)

NO₃⁻(μg/L)

 Ca⁺² (μS/cm)

 Na⁺(μS/cm)

 Mg⁺²(μS/cm)

 K⁺(μS/cm)

 SO₄ˉ²(μS/cm)
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The concentration of particles in stream was affected by surface runoff in this 

investigation. As; the discharge concentration rised, the amount of particles 

increased simultaneously. 

 

 

Figure 4-2 Distribution of TSS and discharge throughout the sampling periods in 

Borjaevju, Prestevju and Evjudalen streams. 

Figure 4-2 shows distribution of water flow and discharge during sampling periods. In 

Borjaevju, higher amount of water flow was observed in October (above 2000 L/sec). 

Following this, the amount of TSS in Borjaevju increased upto 120 mgL⁻¹. There was 

low concentration of TSS during low amount of water flow and vice versa. Moreover, 

outlier was observed in October due to high flux of water. Like Borjaevju; the 

discharge concentration in Prestevju increased drastically after August which 

transported high amount of TSS above 100 mgL⁻¹ in Prestevju. Outlier observed in 

Prestevju during autumn flood represents the function of excessive water flow that 
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cause tremendous wash out of soil particles from catchment. In Evjudalen stream, 

there was maximum amount water flow but TSS concentration does not exceed 50 

mgL⁻¹. However, the amount of TSS was greater than base flow. Thus, two 

hydrological events (spring and autumn flood) were responsible to accelerate TSS 

concentration on stream.  

 

 

 

Figure 4-3 Distribution of turbidity and discharge throughout the sampling periods in 

Borjaevju, Prestevju and Evjudalen streams. 
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Figure 4-3 shows distribution of turbidity and discharge during inventory periods. In 

Borjaevju, the amount of turbidity in October increased upto 175 NTU and highest 

amount of discharge was measured above 2000 Lsec⁻¹. Concentration of turbidity 

was low in Borjaevju during low amount of water flow and vice versa. Additionally, 

excessive waterflow increase transportation of particles which can be observed as 

outlier in October. Like Borjaevju; the discharge concentration in Prestevju increased 

after August which transported high amount of turbidity (130 NTU) in Prestevju. 

Outlier observed in Prestevju during autumn flood also represents the function of 

excessive water for particle transportation. In Evjudalen stream, there was maximum 

amount water flow but TSS concentration does not exceed 60 NTU. However, the 

amount of TSS was higher than low flow. Thus, two flooding events (spring and 

autumn flood) were responsible for accelerating turbidity concentration on stream.  
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4.1.1 Turbidity and TSS 

High mean concentration of turbidity and TSS in streams were analysed during autumn 

flood (Table 3-1). Turbidity and TSS measured in this investigation showed close 

relationship.  

 

 

Figure 4-4 Relationship between TSS and turbidity on Borjaevju, Prestevju and 

Evjudalen stream 

Figure 4-4 elaborates the relationship of TSS with turbidity during varying hydrological 

events in different streams. In Borjaevju, turbidity and TSS showed strong relationship in 

both flooding event; spring flood (R²=1) and autumn flood (R²= 0.98). Similary; in 

Prestevju, relationship of turbidity and TSS represented R² =0.98 during both flood which 

symbolize turbidity and TSS were correlated. Like Borjaevju and Prestevju; turbidity and 

TSS concentration in Evjudalen demonstrated strong relationship (R²>0.80). Thus, 
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turbidity and TSS symbolized strong relationship and turbidity and be used as good 

predictor of TSS in this investigation.   

4.1.2 Colour 

Maximum monthly mean concentration of colour on all study sites was analysed 

in autumn flood (Table3-1).  Among study sites, highest amount of colour was 

found in Borjaevju stream. 

 

Figure 4-5 Relationship between water flow and colour on Borjaevju, Prestevju and 

Evjudalen stream during flooding events 

Figure 4-5 shows the relationship of water flow and colour during spring and 

autumn flood. In Borjaevju, water flow and colour indicated strong relationship 
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according to amount of water flow. Discharge and colour amount in Prestevju 

demonstrated strong relationship (R²>0.90). Likewise, in Evjudalen, colour and 

water flow showed strong relation and supported the information conceived from 

rest of two stream. Overall, waterflow and colour concentration demonstrated 

strong relationship in all streams during both flooding events. 

4.1.3 Total Phosphorus 

The maximum monthly mean concentration of total phosphorus on all sampling sites 

was analysed in May followed by October. Among sampling sites, Prestevju (92.4 μg 

L-1) followed by Borjaevju (77.8 μg L-1) had highest mean concentration of total 

phosphorus (Table 3-1). The percentage of P-fractions played vital role on 

transportation and retention in dams. The amount of dissolved P (66.4%) in this 

investigation was almost doubled than Part-P. 

 

 

             Figure 4-6 Percentage of P fractions in TP 
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Figure 4-7 Relationship between TP and turbidity on Borjaevju, Prestevju and 

Evjudalen stream during flooding events 

Figure 4-7 explains the relationship of TP with turbidity in sampling sites during two 

flooding events. In Borjaevju, turbidity and TP represented strong relationship in spring 

flood (R²=0.96) and autumn flood (R²=0.99). There was drastic rise in concentration of TP 

during spring flood however, autumn flood demonstrated gradually increment of TP. In 

Prestevju, spring flood demonstrated highest amount of TP. Autumn flood showed 

gradual rise in TP concentration and spring flood represented extreme rise in TP amount. 

Both hydrological events demonstrated strong relationship of TP and turbidity. Like 

Prestevju and Borjaevju, two flooding events demonstrated strong relationship between 

TP and turbidity in Evjudalen (R²>0.90). Therefore, TP and turbidity were closely related 

during both flooding events and turbidity can used as predictor of TP. 
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Figure 4-8 Relationship between TP and TSS on Borjaevju, Prestevju and Evjudalen 

stream during flooding events 

Figure 4-8 elaborates relationship of TP and TSS in study area during both hydrological 

events. In Borjaevju, spring flood demonstrated strong relationship (R²=0.99) between TP 

and TSS. However, autumn flood represented weak relationship (R²=0.42) and outlier 

observed during autumn flood signifies role of excessive discharge to migrate high flux of 

particles. In Prestevju, there was drastic rise of TP during spring flood and outlier on TP 

concentration signifies high flow of phosphorus concentration during extreme flooding 

period. Both spring (R²=0.80) and autumn (R²=0.85) floods demonstrated strong positive 

relationship between TP and TSS concentration. Similarly, TP and TSS amount in 

Evjudalen represented strong positive relationship in both hydrological events. Overall, 

TP and TSS concentration were closely associated in both flooding events. 

 

Water chemistry fluctuated during different seasonal variation. To understand TP 

association with soil particles during spring flood and autumn flood, ratio of P with 

turbidity and TSS was calculated.  
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Table 4-1 TP concentration ratio to TSS and turbidity in three streams during both 

hydrological events 

Ratios Flooding event Borjaevju Prestevju Evjudalen 

TP/TSS Spring flood 13.56275076 6.447075812 8.767024 

  Autumn flood 1.622132343 1.974766285 2.403676 

          

TP/Turbidity Spring flood 4.01904664 1.988697042 1.788425 

  Autumn flood 1.256028676 1.533691286 1.620517 

 

The amount of phosphorus flow along with soil particles from watershed can be 

represented in Table 4-1. Spring flood demonstrate high TP/TSS and TP/turbidity 

ratio. So, maximum P concentration was eroded from catchment during spring 

season. 

 

4.1.4 Total Nitrogen 

Monthly mean concentration of Tot- N on is highest in May (Table 3-1). Among 

sampling sites, Prestevju (N=6134 μg L-1) stream represented highest mean 

concentration of total nitrogen followed by Evjudalen stream (N= 4743.9 μg L-1). 

Similarly; Prestevju demonstrated maximum concentration of N-fractions 

(dissolved N, Part-N, Org. N and NO³⁻) during spring flood. The amount of 

dissolved N measured in this investigation was approximately triple the 

concentration of Part-N. 

 

Figure 4-9 Percentage of N-fractions in TN 
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.Figure 4-10 Relationship of TN and discharge in Borjaevju, Prestevju and Evjudalen 

during two hydrological events 

Figure 4-10 describe the relation of discharge with TN in three streams during spring and 

autumn flood. In Borjaevju, spring flood showed drastic rise of nutrient concentration 

and strong relation (R²=0.93) was analysed. However, autumn flood demonstrated 

moderate relationship (R²=0.73) of discharge and TN. In Prestevju, spring flood 

demonstrated very strong relationship (R²=0.95) of discharge and TN however, autumn 

represented very weak relationship. According to the Figure 4-10; Evjudalen 

demonstrated strong relationship (R²> 0.90) between discharge and TN on both flooding 

events. S, discharge demonstrated significant relation on three streams on both flooding 

events especially in spring flood. Thus, nitrogen concentration increased in stream as the 

amount of water flow increases. 
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4.2 Retention of particles and nutrients 

The retention of particles and nutrients on  dams  was due to function of water velocity, 

and soil particles. Amount of water flow showed significant effect for retaining nutrient 

on Dam A, B and C. 
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e) f) 

 

Figure 4-11 Relationship of discharge with retention of particles like a) TSS b) Colour 

c) TN d)Turbidity e) Fe f) TP 

Figure 4-11 explains the relationship of discharge concentration with water quality 

parameters. Retention of turbidity, TSS and colour was observed during low to medium 

flood up to 1000 Lsec⁻¹. Nutrients (TN and TP) could not be retained at high amount of 

water flow. Basically, these nutrients were retained on dams due to sedimentation of 

particles, and retention of particle was observed clearly during low and medium 

discharge. Similarly, retention of Fe was analyzed up to 1000 Lsec⁻¹. Thus, this 

investigation showed retention ponds can effectively retain particles and nutrients at low 

or medium flood.  

 As mention above there was close relation of TP with turbidity and TSS so this 

investigation attempted to comprehend relationship of retention of Part-P with soil 

particles retained in dams. 
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Figure 4-12 Relationship of retention Part-P with retention turbidity, retention TSS and 

retention colour   

 

Figure 4-12 shows relationship of Part-P retention and particles retention. Retention of 

Part-P showed strong relationship(R²=0.97) with retention of turbidity. Retention of TSS 

showed average relationship (R²=0.36) with Part-P retention. However, there was very 

weak relationship (R²=0.06) between retention of Part-P and colour retention. Overall, 

turbidity showed best relationship with Part-P. So, retention of turbidity demonstrated 

good predictor for Part-P retention.  
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4.3 Analytical Evaluation of Stream Water Parameter 

Minitab 18 computed correlation and One-Way ANOVA test which demonstrated 

relationship among parameters and significant difference on study sites respectively. 

Table 5-1 Pearson Correlation coefficient between water quality parameters on 

Borjaevju, Prestevju & Evjudalen stream. 

 

*indicates a significant relationship (P<0.05) of parameter among streams (ANOVA)   

 

Tot- P showed significant positive relation with turbidity and TSS. Discharge 

concentration in Prestevju (r= 0.908) and Evudalen (r= 0.896) during autumn 

flood showed significant positive relation with TP. Additionally, TP represented 

significant positive relation with colour in Evjudalen (r=0.884) during autumn 

Borjaevju Prestevju Evjudalen Borjaevju Prestevju Evjudalen Borjaevju Prestevju Evjudalen Borjaevju Prestevju Evjudalen Borjaevju Prestevju Evjudalen Borjaevju Prestevju Evjudalen

spring 0.165 -0.902 -0.026

autumn -0.632 -0.485 -0.780

spring -0.520 -0.794 -0.423 0.463 0.945 0.893

autumn -0.739 -0.805 -0.781 0.897 0.037 0.745

spring 0.922 0.870 0.653 0.495 -0.598 0.396 -0.230 -0.528 0.221

autumn 0.042 0.563 0.671 0.465 -0.745 -0.661 0.335 -0.484 -0.676

spring 0.768 0.770 0.410 0.675 -0.476 0.576 0.114 -0.444 0.490 0.924 0.980 0.953

autumn 0.317 0.612 0.929 0.294 -0.814 -0.743 0.146 -0.451 -0.696 0.959 0.990 0.869

spring 0.123 0.820 0.453 -0.878 -0.984 -0.747 -0.483 -0.976 -0.926 -0.136 0.484 -0.252 -0.381 0.368 -0.524

autumn 0.793 0.908 0.923 -0.728 -0.120 -0.768 -0.883 -0.945 -0.903 0.144 0.366 0.515 0.320 0.372 0.751

spring 0.817 0.832 0.614 0.625 -0.543 0.542 0.040 -0.475 0.344 0.953 0.996 0.976 0.996 0.991 0.954 -0.308 0.425 -0.299

autumn -0.047 0.917 0.896 0.536 -0.530 -0.779 0.407 -0.867 -0.940 0.996 0.784 0.846 0.931 0.788 0.895 0.065 0.858 0.884

spring 0.853 0.408 -0.401 0.323 -0.493 0.814 -0.121 -0.727 0.955 0.932 0.434 0.315 0.853 0.492 0.571 0.113 0.563 -0.852

autumn 0.375 0.938 0.862 0.227 -0.324 -0.759 0.010 -0.951 -0.959 0.929 0.616 0.836 0.980 0.617 0.857 0.443 0.958 0.874

spring 0.794 0.808 0.738 0.663 -0.482 0.418 0.066 -0.362 0.177 0.937 0.978 0.983 0.999 0.961 0.909 -0.372 0.342 -0.150

autumn -0.282 0.466 0.819 0.663 -0.898 -0.605 0.595 -0.256 -0.306 0.944 0.934 0.546 0.819 0.945 0.848 -0.155 0.205 0.557

spring 0.913 0.369 0.930 0.377 -0.712 -0.267 -0.147 -0.774 -0.630 0.968 -0.073 0.450 0.921 -0.202 0.168 -0.003 0.812 0.719

autumn 0.066 -0.127 0.405 0.137 0.921 -0.563 -0.112 -0.315 -0.882 0.773 -0.540 0.568 0.715 -0.602 0.372 0.495 0.234 0.612

spring 0.908 0.687 0.972 0.388 -0.923 -0.071 -0.120 -0.894 -0.453 0.960 0.261 0.622 0.936 0.113 0.371 -0.039 0.959 0.546

autumn -0.108 -0.154 0.099 0.489 0.911 -0.532 0.351 -0.363 -0.542 0.976 -0.492 0.616 0.885 -0.577 0.240 0.116 0.258 0.187

spring 0.887 0.085 0.740 0.320 -0.472 -0.575 -0.232 -0.596 -0.861 0.951 -0.321 0.093 0.830 -0.421 -0.208 0.117 0.610 0.933

autumn 0.316 0.047 0.540 -0.646 0.303 -0.405 -0.842 0.063 -0.889 -0.392 -0.315 0.339 -0.331 -0.257 0.366 0.680 -0.009 0.783

spring 0.934 0.210 0.811 0.342 -0.570 -0.485 -0.199 -0.686 -0.806 0.969 -0.193 0.186 0.907 -0.301 -0.115 0.024 0.696 0.887

autumn 0.330 0.259 0.501 -0.385 -0.295 -0.859 -0.718 0.264 -0.805 -0.079 -0.194 0.523 -0.028 -0.061 0.433 0.694 -0.012 0.660

spring 0.706 -0.881 -0.489 0.651 0.960 0.762 0.226 0.985 0.961 0.889 -0.661 0.271 0.983 -0.576 0.550 -0.319 -0.963 -0.963

autumn -0.765 -0.803 -0.770 0.897 0.060 0.690 0.999 0.999 0.982 0.306 -0.515 -0.535 0.111 -0.481 -0.620 -0.897 -0.936 -0.934

spring 0.755 -0.896 -0.586 0.562 0.936 0.711 0.161 0.961 0.947 0.905 -0.730 0.162 0.973 -0.667 0.454 -0.212 -0.925 -0.963

autumn -0.732 -0.835 -0.810 0.922 0.018 0.689 0.983 0.992 0.961 0.478 -0.410 -0.492 0.278 -0.389 -0.635 -0.795 -0.974 -0.964

spring -0.448 -0.610 -0.708 0.736 0.876 0.591 0.918 0.950 0.863 -0.103 -0.245 -0.067 0.225 -0.144 0.231 -0.770 -0.949 -0.945

autumn -0.755 -0.767 -0.760 0.765 0.032 0.714 0.933 0.996 0.998 -0.021 -0.519 -0.634 -0.189 -0.477 -0.659 -0.988 -0.913 -0.901

spring 0.830 -0.551 -0.167 0.578 0.842 0.813 0.030 0.931 0.894 0.942 -0.182 0.547 0.992 -0.091 0.767 -0.278 -0.925 -0.946

autumn 0.059 0.201 -0.002 0.486 -0.497 -0.103 0.336 0.074 0.188 0.998 0.514 0.591 0.964 0.570 0.357 0.139 -0.121 -0.324

spring 0.468 -0.776 -0.973 0.569 0.573 0.156 0.410 0.502 0.498 0.720 -0.787 -0.677 0.804 -0.686 -0.423 -0.154 -0.496 -0.517

autumn -0.778 -0.888 -0.797 0.390 0.083 0.999 0.737 0.972 0.763 -0.077 -0.397 -0.666 -0.272 -0.393 -0.754 -0.786 -0.994 -0.788

spring 0.257 -0.627 -0.699 0.840 0.877 0.573 0.659 0.962 0.837 0.562 -0.284 -0.087 0.814 -0.188 0.205 -0.637 -0.948 -0.938

autumn -0.678 -0.784 -0.783 0.765 0.023 0.734 0.940 0.999 1.000 0.044 -0.489 -0.677 -0.102 -0.451 -0.699 -0.963 -0.932 -0.903

spring 0.903 0.559 0.969 0.391 -0.851 -0.047 -0.125 -0.833 -0.422 0.967 0.097 0.658 0.927 -0.049 0.414 -0.015 0.908 0.513

autumn -0.250 -0.211 -0.293 0.518 0.878 0.708 0.578 -0.367 0.108 0.891 -0.365 -0.078 0.780 -0.469 -0.218 -0.150 0.197 -0.264

*SO₄⁻²

Colour

*pH
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TSS
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flood. Dissolved P was not able to demonstrate good relationship with turbidity 

and TSS. In contrast; Part-P demonstrated good relationship with turbidity and 

TSS. Unlike to TP, N-fractions did not demonstrate good relationship with water 

parameters. Some significant relationship was analyzed on spring flooding event. 

Tot- N measured during spring flood was significantly related with discharge in 

Evjudalen (r=0.972), and turbidity(r=0.908) & TSS (r=0.921) in Borjaevju. Colour 

showed significant negative relation with conductivity except in Borjaevju during 

spring. Cations (Mg⁺², Na⁺, K⁺ & Ca⁺²) and anions (SO₄⁻², NO₃⁻) demonstrated 

strong relationship with conductivity. 

 

One-Way ANOVA shows statistically significant test of water quality parameters 

on three streams (Borjaevju, Prestevju and Evjudalen). According to One-Way 

ANOVA, mean concentration of pH, conductivity, and colour represented 

statistically significance. Among N-fractions, only NO₃⁻ on streams was 

statistically significant. Additionally, mean concentration of cations and anions 

demonstrated significant difference on study area However, P-fractions like 

dissolved P and particulate P demonstrated statistical insignificance. Similarly, 

heavy metals on streams represented statistically insignificance. Basically, 

Turkey Pairwise Comparison demonstrated that parameters were statistically 

significant between Borjaevju and Prestevju 
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5. Discussion 

5.1 Water Chemistry During Hydrological Events 

Two flooding events (spring and autumn flood) were responsible for 

transportation of high amounts of particles and nutrients. Similarly, a research 

carried out in east central Sweden which demonstrated that a seasonal deposition 

in constructed wetland (Nyb) was strongly correlated with Fast Flow Index (FFI) 

and suggested that this relationship signifies fast flow variations is responsible for 

excessive erosion and transportation of particles (Geranmayeh, Johannesson, 

Ulén, & Tonderski, 2018). Large flow variation indicates more flooding events, 

that are erosive in nature, especially in small stream (Veihe, Jensen, Schiøtz, & 

Nielsen, 2011). In this investigation, flooding events (spring and autumn flood) 

transported high concentration of nutrients (N and P) from catchment to stream; 

especially spring flood carried maximum nutrient concentration. Similarly, a study 

conducted in Sweden demonstrated phosphorous was proportionally related 

with water flow velocity like high concentration of phosphorus is found in higher 

flow rate (Barbro Ulén, Carlsson, & Lidberg, 2004). Moreover,  a research 

conducted in south- eastern Norway suggested that high amount of water flow 

and total phosphorus conveyance can be analysed during snow melting period 

(April-May) and in rainy season after heavy precipitation (Krogstad & Løvstad, 

1989). Likewise; a study conducted in Northern Great Plains in Canada suggested 

that total phosphorus concentration was measured highest in snowmelt period 

than in rainy seasons, whereas; concentration of total nitrogen was low in 

snowmelt seasons than rainfall seasons. Thus, N & P ratio on all catchments were 

relatively low during autumn period (Wilson, Casson, Glenn, Badiou, & Boychuk, 

2019). A research conducted on Sweden demonstrated spring season (March-

May) responsible for highest seasonal mean concentration of phosphorus at main 

entrance (Johannesson, Andersson, & Tonderski, 2011). Thus; there is extreme 

change in water quality during hydrological events, and spring flood carries high 

amount of nutrients from catchment.  
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Present study forwards idea on hydrological events behave differently for particle 

transportation; such as autumn flood transported high concentration of TSS. This 

result can be identical with study conducted in Canada, which have similar 

climatic features as Norway. Jensen et al. (2011) conducted a research in 

Northern Great Plains in Canada, found that total suspended solids and 

particulate nutrients concentration was maximum on rainy season; whereas, 

dissolved nutrient concentration was high on spring season (snow melting 

period). The reason of excessive transport of solid particles during autumn may 

be due to maximum precipitation and some agricultural practices such as tillage 

or ploughing. In Norway, it was primitive farming practice to plough field up to 

20cm deep during September or October. Such ploughing keeps land bare in the 

occasion of highest precipitation (Bechmann & Øgaard, 2013). Thus, there is 

significant role of autumn rainfall and runoff for tillage effect on solid particles  in 

arable stream (ØYGARDEN, 2006). Overall, the land use pattern and management 

strategy can proportionally affect the soil erosion and nutrient wash out.  

 

Concentration of conductivity on Borjaevju, Prestevju and Evjudalen show strong 

correlation with cations and anions. Similarly, a case study in Chini Lake  showed 

ions like sulphate (r=0.311 & P<0.001) and nitrate (r=0.311 & P<0.001) have 

significant positive relationship with conductivity (Shuhaimi-Othman et al., 2007). 

Highest conductivity and ions concentration were measured on Prestevju which 

means higher agricultural coverage and surplus urban areas can rise the ionic 

strength in water bodies. Moreover; in this research, maximum conductivity is 

measured in autumn flood and minimum in spring flood. Similarly; a study 

conducted in Bialka River Catchment in Southern Poland found that low 

conductivity and low concentration of ions NH₄⁺, NO₃ˉ, NO₂ˉ, and PO₄ˉ were 

recorded on snowmelt season (spring) (Lenart-Boroń, Wolanin, Jelonkiewicz, & 

Żelazny, 2016). During snowmelt seasons; low conductivity and ion content is the 

result of water dilution due to melting of snow (Ahearn, Sheibley, Dahlgren, & 

Keller, 2004). So, water dilution may be cause of low conductivity observed during 

spring flood. 
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Geology of catchment, slope gradient or management system causes water 

quality variation on three streams. A study conducted in Oslo region of Norway 

suggested that geology and land use have significant impact on stream water 

quality (Reimann et al., 2009). Thus; in the present study, Borjaevju, Prestevju and 

Evjudalen show variation on water parameter especially on water flow amount, 

concentration of nutrient, and ions. Prestevju demonstrated maximum 

concentration of phosphorus and nitrogen as well as ions. Catchment 

characteristics may have significant effect on amount of nutrient flow on streams. 

The agricultural coverage is greater in Prestevju so there may be high possibility 

of transportation of nutrients and ions in streams. A study conducted in Norway 

showed that maximum hydraulic load is seen in agricultural catchments which 

may increase nutrient concentration in stream water (B. Braskerud, 2002). A 

study conducted in Slovakia suggested that there is greater chance of 

transportation of nitrate, phosphate, and ions like SO₄⁻² and Cl⁻ from agricultural 

catchment. Moreover, wastewater from urban sewage accelerates the 

phosphorus pollution in water bodies (Pekárová & Pekár, 1996). A study 

conducted by  Chilton et al. (1999) suggested that agricultural practice of applying 

artificial fertilizer on arable land releases K, P, N, Mg, Zn, SO₄⁻² and Cl⁻. Thus, high 

percentage of agricultural and urban influence have enhanced nutrients and ions 

concentration in Prestevju stream. 

 

In the present study, discharge showed significant role on rise and fall of turbidity, 

TSS and TP. A study conducted in Lake Vansjø catchment in Norway suggested 

that TSS and TP response quickly to water flow variation than Dissolve Reactive 

Phosphorus (Bechmann & Øgaard, 2013). This investigation concludes that there 

is strong relation between turbidity and concentration of total phosphorus. 

Likewise; a study conducted by Schilling, Kim, & Jones (2017) on 43 various sites 

of river demonstrated that turbidity and total phosphorus were strongly 

correlated (r= 0.78). Moreover, a study conducted by Stubblefield et al. (2007) 

suggested that turbidity have strong correlation with TP and TSS. Basically, 

turbidity is site- specifically correlated with suspended solids and TP and this could 

not be interchanged between catchment(Marc Stutter et al., 2017). This 
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emphasized that catchment characteristics have vital role for transport of 

particles and nutrients. For illustration, a study conducted in 108 monitoring sites 

in Sweden by Villa et al. (2019) showed that 87% of total sites or 94 sites (site-

specific relationship) illustrated significant relationship (P<0.05) between 

turbidity  and SS and this study also suggested that insignificant relationship was 

noticed on forest catchment sites. This investigation concludes that turbidity has 

strong relationship with TSS and TP in Evjudalen catchment. 

 

The mean concentration of TP in this investigation range from 17.2 (μg/L) to 92.4 

(μg/L) which is relatively low than a study conducted in Lake Vansjø in south 

eastern Norway  that demonstrated concentration of TP from 85(μg/L) to 257 

(μg/L) (Bechmann & Øgaard, 2013). This investigation also suggests that TSS and 

TP are significantly correlated. Similarly, Steegen et al. (2001) recommended that 

P concentration is strongly correlated with TSS because phosphorus discharge is 

proportional with erosion. Comparably, a study conducted in six agricultural 

streams of Lake Vansjø catchment in south eastern Norway recommended that 

most of the investigated streams represented strong relationship between TSS 

and TP (Bechmann & Øgaard, 2013).  In the present study, Part- P show 

proportional relationship with suspended solids than dissolved P. This result can 

be comparable with investigation on same climatic region (Sweden). A study 

conducted in four constructed wetlands in east-central Sweden demonstrated 

that Part-P demonstrated strong linear relationship and high coefficient of 

determination with TSS (Geranmayeh et al., 2018). In this investigation, spring 

flood have high ratio value of TP concentration in soil particles. Additionally, 

Prestevju demonstrated high amount of TP transportation in stream. So, this 

study can suggest that agricultural practices (fertilizer application) can 

accelerated TP concentration in eroded soil particles. Similar to present study, a 

study conducted in Lake Vansjø in Norway suggested that TP/TSS relationship was 

maximum on those catchment which have higher percentage of agricultural land 

(Bechmann & Øgaard, 2013). They also suggested that supplement factors such 

as application of fertilizer (especially P), sewage system drainage from human 

settlement, or animal husbandry practices in watersheds are responsible for 
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fluctuations in TP concentration (Bechmann & Øgaard, 2013). So, the variation of 

phosphorus concentration in water bodies is significantly due to eroded particles 

from catchment and anthropogenic factors.  

 

Dissolved nitrogen concentration (73.3 %) is higher than particulate nitrogen in 

this investigation. Nitrogen was one of the major nutrient loss from catchment. 

In this investigation NO₃ˉ show maximum concentration in streams. Agricultural 

land may have accelerated NO₃ˉ amount in water bodies. This can be supported 

by a study conducted in Po Valley in Italy which suggested that NO₃ˉ is major N 

fractions transported from agricultural catchments (Ventura et al., 2008). Our 

result demonstrated highest monthly mean concentration of Nitrogen on spring 

flood; which is comparable with a study conducted in Skuterud catchment that 

showed two high peaks of monthly mean concentration of Total nitrogen in May 

(8.4 mgLˉ¹ or 8400 μg L-1) and October (7.2 mgLˉ¹ or 7200 μg L-1) (X. Chen & 

Bechmann, 2019). Additionally, our study also demonstrated highest month 

mean nitrate concentration on May followed by October. Comparably, monthly 

mean concentration of Nitrate in Skuterud catchment was found highest in May 

(6.9 mgLˉ¹ or 6900 μg L-1) and October (5.8 mgLˉ¹ or 5800 μg L-1) (X. Chen & 

Bechmann, 2019). This signifies that increasing water flow amount in stream 

tends to transport excessive amount of nitrogen from adjacent watershed; and 

especially NO³⁻ transportation is greater from arable land. Prestevju show higher 

concentration of nitrogen than Borjaevju. In the present study, Prestevju has 

greater coverage of agricultural land which may accelerate the nutrient 

concentration. For illustration, agricultural catchment shows high flow of  total 

nitrogen into stream than from urban areas (Tong & Chen, 2002).  Moreover, 

surplus factors like geology, human interference and sewage may have triggered 

nitrogen loads in Prestevju stream. A study conducted in Norway also suggested 

that soil types, climate, agricultural practices and land use can contribute for 

variation in N dynamics(X. Chen & Bechmann, 2019). Moreover, suggested strong 

correlation was noticed between total nitrogen and runoff on Skuterud (r²= 0.65) 

and Naurstad (r²= 0.38) catchment. Similarly, our study demonstrates total 

nitrogen and discharge were proportionally related during both floods. Overall, 
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nutrient transportation varies according catchment characteristic, water flow 

amount and climatic condition. 

 

5.2 Retention of particles and nutrients 

This study interpreted discharge as major factor for determining retention of 

particle. Retention of particles and nutrient were observed during low and 

medium flood. Evjudalen showed lower concentration of TP than Borjaevju and 

Prestevju. Similarly, a study conducted in a stream incorporated with newly 

constructed wetlands in Sweden showed that mean concentration of TP was 

higher in inlet than outlet (Kynkäänniemi, Ulén, Torstensson, & Tonderski, 2013). 

In our result, retention of total phosphorus ranges from -25 μg L-1 to 81 μg L-1. The 

positive value of retention may be the resultant for effect of dams and negativity 

may due to source of P in watershed nearby, or excessive rise in water amount 

and proportion of P fraction. The percentage of particulate and dissolve 

phosphorus directly influence retention of P and dissolved P concentration is 

greater than Part-P in this investigation.  (Hoffmann, Kjaergaard, Uusi‐Kämppä, 

Hansen, & Kronvang, 2009) suggested that usually efficacy of P retention in 

wetland is extremely related with entrance of P fractions (retention of DP is lower 

than PP).  Additionally, a study conducted in CWs in central and southern Norway 

suggested that retention of Part-P was about 45% and dissolved P was only 5% (B. 

Braskerud, 2002). Sometimes mitigation measure of floods may result for sources 

of particles and its associated (e.g. geology, resuspension) which tends rise the 

nutrient concentration on water flow. For illustration, Buffer Zone enriched of  

phosphorus results negative phosphorus retention (B Ulén, 1988).  In present 

study, the effect of dams for N retention was good during limited discharge 

concentration up to 1000 Lsec⁻¹. As discussed above, higher amount of water flow 

transport large amount of nutrients (N & P) from catchment. So, there is greater 

possibility of N concentration in stream during hydrological events which 

simultaneously increases N retention in dams. However, at excessive water flow 

amount retention dams could not play effective role on particles settlings. R. 

Kadlec et al. (2000) suggested that nitrogen retention is inversely proportional to 
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hydraulic load. A study conducted in constructed wetland from south-eastern 

part of Norway demonstrated Nitrogen retention was found high on 2003 (17% 

N) than on 2004 (2%) because hydraulic load was maximum on 2004 (Blankenberg 

et al., 2008). Therefore, discharge is important factor for enriching nutrients on 

stream, and retention dams can actively interrupt soil particles and nutrients 

transportation at low to medium water flow. 
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6 Limitations: 

Samples were collected on monthly basis especially focusing on at least two hydrological 

events on spring and autumn. So, small sample size may have caused some alteration on 

result interpretation. Moreover, sampling sites were determined randomly.  This 

research has intended to measure colour concentration instead of TOC (Total Organic 

Carbon) due to lack of instrument for analysing TOC.  Additionally, AAS analyser used for 

measuring heavy metals was not able to produce high quality of data presented. Total 

area of catchment and geomorphological study was not taken in consideration. Nutrient 

loading from catchment was not estimated so the retention load on dams was also not 

examined. This research does not focus on application of fertilizer on agricultural land 

and wastewater from urban areas.  
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7 Conclusion: 

The nutrient concentration from catchment in stream varies spatially and temporally. 

Agricultural runoff is major cause of change in stream water chemistry. This study 

represents high amount of flow is represented during snow-melting season and rainy 

season. Similar to Krogstad & Løvstad (1989); spring flood and autumn flood carries 

higher concentration nutrient to stream. So, the surface runoff directly influences the 

stream water quality. Evjudalen represents higher discharge amount and minimum 

concentration of TP. Interestingly; smallest catchment area; Prestevju transported high 

concentration of nutrients and ions concentration.  High coverage of arable land and 

greater urban influence can be major factor for hindering higher flux of nutrients in 

Prestevju stream.  

 

Spring flood migrates higher concentration of TP and TN from catchment. The main 

reason could be fertilizing agricultural areas (especially N, P and K fertilizers) during 

spring. As like many researchers, this investigation has demonstrated strong relation 

between turbidity, TSS and TP. However, dissolved P does not demonstrate identical 

relationship with turbidity and TSS. Part-P demonstrate good association with turbidity 

and TSS. Distribution of turbidity, TSS and colour demonstrated simultaneous rise with 

discharge increment, so waterflow amount is main cause for fluctuation of particulates 

on water bodies. Present study represented autumn flood transport maximum 

concentration of TSS, turbidity and colour. So, autumn precipitation has higher erosive 

capacity to transport soil particles from catchment to stream. Additionally,  land use 

practice influence the transportation of such particles. 

 

This investigation has emphasized on retention of particles and nutrients. Clay soil has 

high influence on phosphorus adsorption (Sharpley, 1980). So, the clayey soil 

predominant in our study area suggest that phosphorus has greater possibility to be 

eroded and retained in dams. Among all parameters; turbidity, TSS, colour, TP, Fe and TN 

were retained in dams during low to medium waterflow. A study in Swedish P wetlands 

also demonstrated TP and TSS was effectively retained in wetland which suggests that 

such P wetlands were able to interrupt agricultural P loading (Kynkäänniemi et al., 2013). 

Among all N and P fractions, Part-P demonstrated effective retention. This investigation 
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shows that turbidity retention can be important parameter for prediction of Part-P 

retention. Additionally, discharge concentration can significantly affect the amount of 

particles retention. Lower the amount of water flow then there is high possibility of 

sedimentation of particles. In this investigation, retention of particles is seen during lower 

and moderate flow i.e. flow up to 1000 Lsecˉ¹.  

 

Water quality in stream is reflection of watershed characteristics and climatic condition. 

The land-use system in catchment significantly influence water quality parameters. 

Additionally, anthropogenic activities directly impact water bodies such as farming, 

livestock, sewage, and settlement. Rainfall and snow melt season are dominant factors 

for increase of runoff from catchment which proportional increases nutrients 

transportation. Phosphorus is major associated nutrients with soil particles (especially 

clayey soil) which have high possibility to be transported to downstream. Particles can be 

measured as turbidity and TSS. Turbidity can be the good predictor of TSS and TP. It is 

important to adopt strategic step to control these particles and it associated nutrients. 

The retentions ponds could be important mitigation measures to control nutrients flow 

to downstream. Higher proportion of particles is transported during flooding events so 

these dams could interrupt solid particles and its associated nutrients especially TP. Thus, 

these ponds could play vital role for minimizing eutrophication conditions in downstream 

water bodies.  
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Annex 1: Relationship of water flow and conductivity in Borjaevju, Prestevju and 

Evjudalen streams. 
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Annex 2: Relationship of water level among Borjaevju, Prestevju and Evjudalen streams. 

 

 

 

Annex 3: Relation of discharge with parameters on Borevju stream. 

 Regression Equation R² 

pH  
log10(pH_1) = 0.8443 - 0.000012 Discharge_1(L sec-1) 

30.81
% 

Conductivity  
log10(Cond._1) = 1,799 - 0,000100 Discharge_1(L sec-1) 

60.07
% 

Turbidity  
log10(Turbidity_1) = 0,9667 + 0,000448 Discharge_1(L sec-1) 

28.22
% 

TSS  
log10(TSS_1) = 0,4792 + 0,000710 Discharge_1(L sec-1) 

41.12
% 

Colour  
log10(Colour_1) = 1,994 + 0,000074 Discharge_1(L sec-1) 

26.53
% 

Ca  
log10(Ca2+_1(mg Lˉ¹)) = 0.8429 - 0.000083 Discharge_1(L sec-1) 

26.03
% 

Mg  
log10(Mg2+_1(mg Lˉ¹)) = 0.3198 - 0.000095 Discharge_1(L sec-

1) 
25.72

% 

Na  
log10(Na+_1(mg Lˉ¹)) = 0.4889 - 0.000128 Discharge_1(L sec-1) 

61.68
% 

K+ vs 
Disharge 

log10(K+_1(mg Lˉ¹)) = 0.04136 + 0.000057 Discharge_1(L sec-1) 
8.71% 

SO₄-²  
log10(SO42-_1(mg Lˉ¹)) = 0.5492 - 0.000065 Discharge_1(L sec-

1) 
16.46
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Cl-  
log10(Cl-_1(mg Lˉ¹)) = 0.5738 - 0.000053 Discharge_1(L sec-1) 

17.22
% 

TP  log10(TP_1(µg Lˉ¹)) = 1.564 + 0.000110 Discharge_1(L sec-1) 3.82% 

Dis. P  
log10(Dis.P(µg Lˉ¹)) = 1.298 + 0.000218 Discharge (L sec-1) 

31.99
% 

Part. P  
log10(Part. P(µg Lˉ¹)) = 1.204 - 0.000545 Discharge (L sec-1) 

17.24
% 

TN  log10(Tot N(µg Lˉ¹)) = 3.304 + 0.000038 Discharge (L sec-1) 0.71% 

Dis.N  log10(Dis. N(µg Lˉ¹)) = 3.225 + 0.000030 Discharge (L sec-1) 0.54% 

Part. N  log10(Part. N(µg Lˉ¹)) = 2.241 + 0.000266 Discharge (L sec-1) 5.69% 

Org. N  log10(Org N(µg Lˉ¹)) = 2.627 + 0.000180 Discharge (L sec-1) 7.16% 

NO3--N  
log10(NO3--N_1(µg Lˉ¹)) = 3.177 + 0.000001 Discharge_1(L sec-

1) 
0.00% 

Fe  log10(Fe(µg Lˉ¹)) = 2.503 + 0.000123 Discharge (L sec-1) 5.35% 

Mn  
log10(Mn(µg Lˉ¹)) = 0.1456 + 0.000749 Discharge (L sec-1) 

16.36
% 

Zn  
log10(Zn(µg Lˉ¹)) = 0.9575 + 0.000233 Discharge (L sec-1) 

19.89
% 

Cu  log10(Cu(µg Lˉ¹)) = - 0.8205 - 0.000044 Discharge (L sec-1) 0.30% 

 

 

 

Annex 4: Simple Linear Regression Equation and R-squared value on Prestevju stream. 

 Regression Equation R² 

pH  
log10(pH_2) = 0.8779 - 0.000105 Discharge_2 (L sec-1) 

40.59
% 

Conductivity  
log10(Cond._2) = 2,262 - 0,001038 Discharge_2 (L sec-1) 

74.08
% 

Turbidity  
log10(Turbidity_2) = 0,8147 + 0,004154 Discharge_2 (L sec-1) 

52.89
% 

TSS  
log10(TSS_2) = 0,3597 + 0,004722 Discharge_2 (L sec-1) 

56.91
% 

Colour  
log10(Colour_2) = 1,669 + 0,001254 Discharge_2 (L sec-1) 

60.17
% 

Ca  
log10(Ca2+_2(mg Lˉ¹)) = 1.174 - 0.000832 Discharge_2 (L sec-1) 

75.46
% 

Mg  
log10(Mg2+_2(mg Lˉ¹)) = 0.6773 - 0.000901 Discharge_2 (L sec-1) 

76.39
% 

Na  
log10(Na+_2(mg Lˉ¹)) = 1.165 - 0.001642 Discharge_2 (L sec-1) 

61.40
% 

K vs 
Disharge 

log10(K+_2(mg Lˉ¹)) = 0.3891 - 0.000040 Discharge_2 (L sec-1) 
0.81% 

SO₄-²  
log10(SO42-_2(mg Lˉ¹)) = 0.7702 - 0.000605 Discharge_2 (L sec-

1) 
59.55

% 

Cl-  
log10(Cl-_2(mg Lˉ¹)) = 1.296 - 0.001675 Discharge_2 (L sec-1) 

59.01
% 

TP  
log10(TP_2(µg Lˉ¹)) = 1.449 + 0.002231 Discharge_2 (L sec-1) 

49.92
% 
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Dis. P  
log10(Dis.P(µg Lˉ¹)) = 1.330 + 0.002053 Discharge (L sec-1) 

53.04
% 

Part. P  
log10(Part. P(µg Lˉ¹)) = 0.6257 + 0.002330 Discharge (L sec-1) 

10.96
% 

TN  log10(Tot N(µg Lˉ¹)) = 3.639 - 0.000174 Discharge (L sec-1) 0.64% 

Dis.N  log10(Dis. N(µg Lˉ¹)) = 3.485 + 0.000124 Discharge (L sec-1) 0.85% 

Part. N  log10(Part. N(µg Lˉ¹)) = 2.947 - 0.000839 Discharge (L sec-1) 2.60% 

Org. N  log10(Org N(µg Lˉ¹)) = 2.406 + 0.002507 Discharge (L sec-1) 5.51% 

NO3--N  log10(NO3--N_2(µg Lˉ¹)) = 3.498 - 0.000098 Discharge_2 (L sec-1) 0.53% 

Fe  
log10(Fe(µg Lˉ¹)) = 2.320 + 0.001869 Discharge (L sec-1) 

56.18
% 

Mn  
log10(Mn(µg Lˉ¹)) = - 0.1909 + 0.004217 Discharge (L sec-1) 

12.03
% 

Zn  
log10(Zn(µg Lˉ¹)) = 0.8242 + 0.001620 Discharge (L sec-1) 

23.30
% 

Cu  
log10(Cu(µg Lˉ¹)) = - 0.4953 - 0.002287 Discharge (L sec-1) 

12.98
% 
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Annex 5: Simple Linear Regression Equation and R-squared value on Evjudalen stream. 

 Regression Equation R² 

pH  
log10(pH_3) = 0.8605 - 0.000010 Discharge_3 (L sec-1) 

27.87
% 

Conductivity  
log10(Cond._3) = 2,046 - 0,000125 Discharge_3 (L sec-1) 

46.59
% 

Turbidity  
log10(Turbidity_3) = 1,148 + 0,000278 Discharge_3 (L sec-1) 

25.98
% 

TSS  
log10(TSS_3) = 0,5708 + 0,000397 Discharge_3 (L sec-1) 

35.24
% 

Colour  
log10(Colour_3) = 1,828 + 0,000129 Discharge_3 (L sec-1) 

48.71
% 

Ca2+  
log10(Ca2+_3(mg Lˉ¹)) = 1.038 - 0.000100 Discharge_3 (L sec-1) 

59.88
% 

Mg2+  
log10(Mg2+_3(mg Lˉ¹)) = 0.5494 - 0.000119 Discharge_3 (L sec-

1) 
69.12

% 

Na+  
log10(Na+_3(mg Lˉ¹)) = 0.8714 - 0.000203 Discharge_3 (L sec-1) 

63.18
% 

K+ vs 
Disharge 

log10(K+_3(mg Lˉ¹)) = 0.2455 - 0.000004 Discharge_3 (L sec-1) 
0.18% 

SO₄-²  
log10(SO42-_3(mg Lˉ¹)) = 0.7113 - 0.000109 Discharge_3 (L sec-

1) 
69.18

% 

Cl-  
log10(Cl-_3(mg Lˉ¹)) = 0.9839 - 0.000192 Discharge_3 (L sec-1) 

60.63
% 

TP  
log10(TP_3(µg Lˉ¹)) = 1.561 + 0.000129 Discharge_3 (L sec-1) 

18.27
% 

Dis. P  
log10(Dis.P(µg Lˉ¹)) = 1.435 + 0.000124 Discharge (L sec-1) 

22.84
% 

Part. P  
log10(Part. P(µg Lˉ¹)) = 0.6759 + 0.000220 Discharge (L sec-1) 

10.12
% 

TN  log10(Tot N(µg Lˉ¹)) = 3.486 - 0.000008 Discharge (L sec-1) 0.08% 

Dis.N  log10(Dis. N(µg Lˉ¹)) = 3.355 + 0.000010 Discharge (L sec-1) 0.22% 

Part. N  log10(Part. N(µg Lˉ¹)) = 2.723 + 0.000011 Discharge (L sec-1) 0.02% 

Org. N  log10(Org N(µg Lˉ¹)) = 2.591 + 0.000235 Discharge (L sec-1) 9.25% 

NO3--N  
log10(NO3--N_3(µg Lˉ¹)) = 3.370 - 0.000039 Discharge_3 (L sec-

1) 
2.91% 

Fe  
log10(Fe(µg Lˉ¹)) = 2.402 + 0.000176 Discharge (L sec-1) 

28.38
% 

Mn  
log10(Mn(µg Lˉ¹)) = - 0.5693 + 0.001015 Discharge (L sec-1) 

37.84
% 

Zn  log10(Zn(µg Lˉ¹)) = 0.7774 + 0.000089 Discharge (L sec-1) 0.98% 

Cu  
log10(Cu(µg Lˉ¹)) = - 0.5817 - 0.000262 Discharge (L sec-1) 

12.25
% 
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Annex 6: Relationship of discharge and Tot- P 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y = 17,5e0,0028x

R² = 0,74

0

50

100

150

200

250

0 1000 2000 3000

TP
 (
m

g 
L-1

)

Water flow (L sec-1)

Borjaevju
Spring flood
Autumn flood

y = -0,0042x2 + 1,14x + 8,8
R² = 0,93

y = -0,0009x2 + 0,62x - 3,14
R² = 0,95

-40

60

160

260

0 100 200 300 400

TP
 (
m

g 
L-1

)

Water flow (L sec-1)

Prestevju
Spring flood

Autumn flood

y = -0,0002x2 + 0,28x + 15,2
R² = 0,85

y = 14,47ln(x) - 53,7
R² = 0,97

0
20
40
60
80

100
120
140
160
180
200

0 500 10001500200025003000

TP
 (
m

g 
L-1

)

Watet flow (L sec-1)

Evjudalen
Spring flood

Autumn
flood



 

  

___ 

71 
 

Annex 7: Distribution of discharge and colour through the sampling period 

 

 

Annex 8: Relationship of retention of parameters with TSS and turbidity retained 
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