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1 Introduction

1 Introduction

To date one of the most important topics of discussion in Norwegian oil and gas industry is
digitalization. A large effort is currently put towards using digital technology, proper
contextualization and unification of industrial data in to one common data repository. This will
enable automation and more comprehensive data analysis, in order to enhance the business
models established in the industry. Aker BP ASA [1] has joined in the establishment with Aker
ASA [2] in the creation of the software company Cognite AS [3] to facilitate such a data
repository, through the Cognite Data Fusion. Within the data storage repository, large amounts
of historical sensor and aggregated values from sensors, monitoring and control systems is
stored. This data is mainly used to look up previous states, but not prone to data science or any
post calculation, This thesis develops on top of the data received from Cognite, which has
simplified the development and access to the data streaming in from Aker BP’s oil and gas
producing asset.

Aker BP operates a floating oil and gas factory named Alvheim [4] in the North Sea. Alvheim
initially produced from structures belonging to the field. Later in the operational development
of the Alvheim asset, third party fields where tied back to Alvheim, utilizing the existing
processing capacity and infrastructure. But the licensees and ownership fractions of the
Alvheim field is not the same as on the third-party fields, where each field has a unique
ownership split between the companies involved with development and operations. These
fields are simultaneously producing oil and gas back to Alvheim, and the ability to accurately
and correctly allocate the ownership of the produced oil and gas on Alvheim is of interest. This
interest is not just for the involved companies but also with regards to calculating taxes to the
Norwegian people. The third-party allocation measurements are performed on streams of oil
and gas in the same pipe, in so-called multiphase streams with the use of multiphase flow
meters (MPFMs), and these flow meters need to be calibrated regularly to ensure that the
accuracy and representativity of the measurements are acceptable. And when it comes to the
calibration method in use today, a significant deferral of production occurs during the
calibration. This thesis will look into a more efficient method of calibrating these meters.

The main motivation is to be able to have no downtime for calibration runs of multiphase flow
meters and better control of the health and performance of these meters, used in allocation of
third-party fields. This is an emerging focus of both the Norwegian governments resource
utilization of oil and gas deposits, as well as some of the oil and gas exploration and production
(E&P) companies. To be able to effectively and elegantly allocate the ownership of oil and gas
streams from multiple fields in order to utilize the existing infrastructure when the main oil
fields are approaching their tail production® and capacity on the existing infrastructure opens.
both in extracting resources from smaller oil and gas deposits normally not prioritized due to
development cost together and providing mature oil and gas fields with additional oil and gas
to process as well as production and transportation tariff opportunities [5].

The operations on the Alvheim ship have multiple times executed sequences of rerouting fluid
streams over several days, to facilitate real data solely for testing the method investigated in

! Tale production refers to the decline curve in the later stages of the estimated production profile of an oilfield.
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1 Introduction

this thesis. The data is facilitated through Aker BPs infrastructure and contextualized and made
available for this thesis through the Cognite Data Fusion (CDF) repository. Programing
language Python [6] is used to create digital representations / digital twins of equipment in the
fields as well as implementing this in an elegant codebase for execution of an algorithm. This
solution made in this master thesis has the potential to solve an issue that is a highly relevant
focus point of the Norwegian petroleum industry with regards to utilizing mature fields as
mention earlier.

This thesis is organized in the following way:

Chapter 1: goes into the of the petroleum production industry in Norway, covering some
historic moments, and about allocation and the hydrocarbon value chain, and expand some of
the details with regards to governmental focus on third party fields already mentioned in the
introduction.

Chapter 2: gives a brief introduction on fluids and essential concepts related to this thesis,
regards to what goes on inside the closed containment of the fluid streams.

Chapter 3: gives a theoretical background of the sensors, instruments and measurements
systems involved with creating the data used in allocation of oil and gas and is used within an
algorithm created in this thesis.

Chapter 4. goes into creation of digital representations of streams, and how a traditional
calibration is executed. Then the details of a parallel calibration method is developed, and ends
with how this method is implemented into an algorithm that also utilizes the digital stream
representations.

Chapter 5: gives results of calibrations executed on synthetic and real data

Chapter 6: discusses the results and the implementation of the algorithm, and the future
development of the algorithm.

Finally, a conclusion will summarize what is achieved in this thesis.

Further technical details, complete results are covered in the attached appendices. There is one
appendix which has the supplier documentation of the measurement system and data and results
from offshore calibrations which will not be publicly available which provide a technical
background and reports in the measurement systems used in this thesis, and not nessasery
created by this thesis, but as a reference to non-public documents?.

2 Although the appendix is named appendix B, it will be found last in the appendices due to the nature of the
document as a reference and not a product of this thesis.
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2 Petroleum industry in Norway

2 Petroleum industry in Norway

This chapter goes into the history and some aspects of the governances, concepts concerning
allocation of ownership of oil and gas and possibly essential aspects for the future of oil and
gas in Norway.

2.1 History

In the 1950 few believed that there where oil and gas deposition on the Norwegian
Continental Shelf (NCS), even The Geological Survey of Norway had even written this to the
Norwegian Ministry of Foreign Affairs in 1958 that oil, gas or Sulphur deposits on the NSC
was not very likely. But this would all change when a gas field discovery of the Groningen
outside the coast of Netherlands in 1959, gains interest of the American oil companies, and
gauges the question if there is more oil in the sea further north in the North Sea. And it was
the American oil company Phillips Petroleum in 1962 whom sent an application to the
Norwegian government to gain permission for exploration of oil and gas on the NCS. Which
prompted the Norwegian government to develop the rules of governance for the potential
resources on the NCS, underlining that the resources belong to the Norwegian people, and to
be managed by the Norwegian government. [7] The 13th Of April 1965 the Norwegian
government under the Ministry of Petroleum and Energy (MPE / OED) gave concession to
Petroleum Exploration and Production (E&P) companies to explore the NCS for petroleum
deposits. [8]

2.2 Licenses and Blocks

The concessions / licenses given to companies where limited to geographical areas called
blocks. The administration of these concession blocks where first done by the MPE but in
1972 the Norwegian Petroleum Directorate (NPD / OD) was established to function as a
specialist directorate and administrative body of the oil and gas activities, together with the
creation of the governmental oil company Statoil, now known as Equinor. Later in 2004 the
NPD where split in to two, where the safety and work environment of Norway’s petroleum
activities where to be administrated by Petroleum Safety Authority Norway (PSA / Ptil) and
the NPD would continue with the resource management of the petroleum activities in
Norway as well as serve as advisers to the MPE. [9].

Back to these licenses, they are given during licensing rounds and give the E&P companies
the opportunity to explore the block area for resources. Each geographical block contain
multiple licenses where there are several E&P companies splitting the risk, ownership and
development cost of exploration and production between the licensees of the block. And if
found the potential development of a field can start. And within development phases the
choice for infrastructure and measurement and allocation solutions is initially decided, which
is a topic relevant for this thesis.
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2 Petroleum industry in Norway

2.3 Ownership, production metering, allocation and
hydrocarbon management

In simple terms an upstream petroleum producing asset such as Alvheim, has Oil and gas
streaming up from a well in a petroleum reservoir. The well fluid is processed by removing
unwanted fluids such as water and prepared for transport through pipelines or shuttle tankers
to further refining and the market. Figure 1 shows an example of a value chain for a E&P
company?®.

Upstream Midstream Downstream

Licencel [—
Shuttle tanker > The market
Loading
o L

Licence 2

A

Production hub

I

Sales gas
» The market
Gas ’ Liquid Natural Gas
Ethane
ﬂ@—» Refinery Tankers to market
Licence 3 —{—F

Il

Figure 1 Hydrocarbon Value Chain

2.3.1 Allocation

Consider an oil field constantly producing oil and gas, the quantity of petroleum produced
has to be continuously measured and counted, and this is where the fiscal metering and
allocation systems comes into play. Metering systems constantly measure and count the
production, and aggregated data into daily and monthly production. And theses daily amounts
are then further allocated into the different licenses where the hydrocarbons are extracted.

2.3.2 Measurement and measurands for allocation of oil and gas.

Looking at the streams of hydrocarbons produced, in petroleum engineering literature [10]
the stream can be quantized in many different units such as mol compositions and rates,
volumetric units such as m® or barrels of oil, and standardized volumetric units, such as Sm*/
stock tank oil, or even energy in units such as barrel of oil equivalent (BOE) or pure energy
content in Joule. But in metering and allocation and this thesis the mass flow rates and
composition given in mass fractions will be used. Mass is a general standard to allocate
production into transport systems, as well as it is a common unit for interdisciplinary

3 Qil pipelines with non-stabilized oil where the condensates are separated at a refinery / terminal are also a
common midstream infrastructure for hydrocarbon transport.
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engineering fields, and simplifies calculation by removing concepts such as pressure- and
temperature-effects as well as compressibility of the different fluids and fluid phases. It is
simpler and more elegant to work with mass rates and mass fractional compositions to
explain the concepts. But allocation can be performed on any extensive property concerning
the physical quantity such as volume, energy, mass or substance amounts in moles. It all
depends on the measurement executed to achieve the calculated amount as well as the extent
of the instrumentation of the allocation measurement. Uncertainties are specified for both the
entire measurement system as well as uncertainties for individual measurements as specified
by the NPD in Section 8 of Regulations relating to measurement of petroleum for fiscal
purposes and for calculation of co2-tax (the measurement regulations). [11] If the
measurement system is to deviate from practices in the NPD’s regulations this needs to be
clarified by the NPD. Figure 2 depicts the concepts of a production asset covered in this
chapter, as well as some mathematical notations and calculations which will be covered later
in this thesis and its appendices.

2.3.3 Field Blend

The characteristic blend of hydrocarbons from the reservoirs from a specific petroleum
producing unit. Each well in each field has its own characteristic composition and by
combining each of the fluid streams in a production hub, a generic field blend is created.
Each individual component in the blend have a specific market value constantly changing due
to the dynamics in the economics of the petroleum market.
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Figure 2 - Petroleum Field Allocation by mass example associated with different license
agreements

2.4 Future prospects and focus on the Norwegian
Continental Shelf (NCS)

In order to have a sustainable oil and gas industry, in the developed part of the North- and the
Norwegian-sea the focus of some the E&P companies is to utilize the existing infrastructure
to develop and tie-in of oil fields to existing production hub, so called third-party fields. in
order to extract oil and gas from these. And all these smaller licenses / fields usually have
unique ownerships allocated to the fields. So, production allocation from each of the smaller
fields has to be measured somehow. [5] this focus is so important for resource extraction the
MPE have made a regulation relating to the use of facilities by others called the Third-party
Access (TPA) Regulation in 2006 [12]
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3 Separation and flow of fluids - Brief
theoretical background

This chapter goes into the theoretical background to familiarize the reader with the main
concepts that are essential to this thesis. Concepts such as petrochemistry, phases,
compositions and the balance laws which govern the dynamics of the system in question.

3.1 Hydrocarbon fluid and separation

The fluid flow from a well consist mainly of hydrocarbons, nitrogen, carbon dioxide and base
sediments and water and hydrogen sulfide [10]. In the gas phase, hydrocarbons dominate the
composition. But the liquid phase is primarily separated by oil and water, hence polar and
non-polar liquid.

The hydrocarbons are non-polar and the water is polar, this due to the water molecule is a
dipole, the water has also hydrogen bonds with other water molecules and thereby giving it a
higher density than liquid hydrocarbons and a higher boiling point than the majority
molecules of similar nucleic weight such as the lighter alkanes / paraffins of the
hydrocarbons, but this boiling point and density difference is important later when it comes to
the processing and refining of a hydrocarbon fluid stream.

Consider a closed container with a mix of a well sample fluid; the gas floats to the top, the oil
separates in the middle and the water collects at the bottom of the container vessel. In reality
on the other hand, the gravimetric phase settling is done in big vessels called separators.
These separator vessels have a continuously changing stream of fluid in and out of the
separator. Within the fluid mix in the separator, there is a layer of emulsion of both oil and
water, and this emulsion require time to separate into either oil or water, And the speed at
which this emulsion separation can occur is dependent on temperature and chemicals aids
that helps breaking the emulsion in to two separate phases.

3.2 Fluid flow

Different streams can be measured and allocated in different units as covered in 2.3.2.
Expanding upon fluid flow; flow as stated earlier can be quantified in many units, but most
commonly fluid flow is in a volumetric unit, which is the mean velocity of a fluid multiplied
by the cross-sectional area of the conduit the fluid is flowing in, as depicted in Figure 3.

When it comes to the application in this thesis the conduits in question can have multiple
phases at the same time. Because fluid streams of hydrocarbon in a pipe conduit, vessel /
containment of the hydrocarbons in upstream oil and gas producing facilities are mainly in
two aggregate phases, which is in liquid and gas. and in the case of this thesis there are both
conduits of a single phase and also conduits where there are multiple of phases at the same
time, where there are both liquid and gas flowing through the same conduit at the same time.
and the fraction of each phase are in constant motion. But for hydrocarbon streams a rule of
thumb is that; the closer the fluid stream is to the well in the reservoir the higher is the
chance, of it being a multiphase stream.
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Figure 3 - Concept of volumetric flow and discrete accumulation, where is u velocity and u
average velocity [13]

3.2.1 Phase separation

The initial separation of the phases of the multiphase well stream is most offend done in an
inlet separator shown in Figure 7. This is done primarily done through gravimetric separation
of the different phases, where the mass density of the different phases separates the different
fluid fraction where the heaviest phase is collected at the bottom and the least heavy at the

top.

3.2.2 Single-Phase flow stream

The separators effluent streams are all mainly single-phase flow streams, and in this thesis
means that the gas outlet has only gas, the oil outlet only have oil flow and the water outlet
stream only have water. In reality gas bobbles can occur in liquid phases, and liquid droplets
in the gas phase, and residual water in the oil stream and residual oil in the water stream, due
to not enough settling / retention time inside the separator vessel.

3.2.3 Multiphase flows stream

Physically there are mainly to aggregate phase differences which is liquid and gas , when it
comes to multiphase flows such as the multiphase streams in the topside Third party MPFMs
on Alvheim, it is important to split the liquid in to two phases as well, since there is a
significant amount of water in the stream. Therefor the liquid phase is differentiated into oil
and water. When characterizing a multiphase flow one of the main variables within
multiphase flow is the gas volume fraction (GVVF) which is the gas volume flowrate relative
to multiphase volume flowrates at the pressure and temperature conditions in the conduit
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3 Separation and flow of fluids - Brief theoretical background
section in question [14]. And when it comes to multiphase flow meters their uncertainties are
categorized according to the GVF the meter is measuring.

Increasing GVF
0% " - — 100%

Figure 4 — Multiphase flow with increasing GVF, where the blue part is liquid and the yellow
represents gas and gas bubbles [15]

In addition, when looking at a two-phase stream, with liquid and gas in a stream there are
more than the GVF to look into, such as variables for understanding the flow regime of the
stream. These are the superficial velocities, which are the volumetric flowrate of the specific
phase, divided by the cross sectional area of the pipe / conduit, Figure 5 from the MPFM
handbook [14] shows the different flow regime occurring in a vertical pipe such as the
multiphase meters are on Alvheim. Each flow regime gives rise to its own challenges when it
comes to precisely measure the multiphase stream during different conditions, and each
regime has a to a degree a unique uncertainty dependent on the velocity of the media.
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Figure 5 - Two-phase flow map of a vertical pipe [14]

In the intermittent flow regime there can occur elongated baubles causing occasionally a
multiphase stream to have liquid and gas plugs in the axial direction of the pipe, and over a
time period the multiphase stream can go from being fully displaced by liquid to being fully
displaced by gas, this phenomena is called slugging, and cause challenges for measuring and
controlling processes involved with multiphase flows*.

3.2.4 Accumulation of flow

The task of estimating how much has flown through a conduit from measured flowrates from
a flow meter is very important. The measurement needs to be accumulated to go from a rate
to a quantity. This accumulation is done by integrating the flowrate measured by a flow meter
with respect to time. Equation (3.1) shows this for a volumetric flow to a volume and a mass
flow to accumulated mass in two separate differential notation where the first term is the
Leibnitz notation and the second is Newtons notation. And is displayed in the volumetric case
as the displaced volumes in Figure 3.

fay “ - Lo 3
—dt =f Vdt=V,  giving the units: |—- sec| = [m®]
;, dt . sec
t 3.1)
L iving th 't'[kg | = kol
| ar s tom =m,  giving the units: | =+ sec| = [kg

4 Slugs also cause water hammers that stress and cause vibrations on the system, this due to the sudden change
in the inertia of the mass flow, especially in bends where the inertia of the mass flow exert force towards the
pipe bend wall in order to change the mass flow direction
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3.3 Balance laws

The main balance law governing the main physical properties in the calibration of the
MPFMs is the mass balance of fluid in the system. For a given period of time the mass flow
in to the system must be equal to the mass flow out of the system, if they are not equal this
states that there is some collection or accumulation of mass some place in the system, which
can be gauged through changes in state changes in levels in a tank, or mass-density changes
due to temperature and pressure changes within the system. Over time the accumulated mass
flow in to the system must equate to the accumulated mass flow out of the system.

3.4 Modeling of the dynamic phenomena

The systems in question are subjected to flashing of hydrocarbon components from a liquid
state to a gaseous state in the separator, mostly driven by a reduction in pressure or an
increase in temperature

3.4.1 Separator modeling; balance laws and phase mass exchange
dynamics

Modeling the states inside a phase separator vessel can be very complex, but for the sake of
the purpose of this thesis the mass balance will be of focus in this thesis. But if only the liquid
level was to be modelled the liquid volume balance could do this to an often-satisfying
degree. The mass balance law states the sum of all mass flow influent to the system must be
equal to the amount of mass leaving the system, if they are not the same there is a change of
the total mass in the system, as stated in equation 3.2.

dm ) )
dat = Minfluent — Z Mef fluent (3.2)

By accumulating the mass flowrates in (influent) and out (effluent) of the system, over a long
enough time, the sum of both of these accumulated values should approach zero. But due to
dynamics and uncertainties in measurements of the rates influent and effluent of the system,
in addition to the total mass stored in the system can be potentially changing. But in order to
ensure that the mass rate in to the system equals the mass rate out of the system. The stored
mass inside the system needs to be gauged somehow. The separator has sensors measuring
the liquid oil level, and the liquid interface between oil and water, as well as the pressure.
And if the levels and pressure inside the separator are stable during the time window in
question, an assumption that there is no loss or accumulation of mass inside. Thus, the
statement that the mass rate into the system, equals the mass rate leaving the system, and
hence give grounds for a comparison between a multiphase stream toward single phase
streams. there are constant feedback controller controlling the oil water interface, oil level as
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well as the static pressure in the vessel. This mass rate comparison is also depicted block
schematically in Figure 6.

Influent streams Effluent Streams
Moir » Mgas, Myater— - —» Mgas
System
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dt
Given enough time
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Figure 6 - Block schematic abstraction of mass balance

Figure 7 depicts the mass balance and dynamics occurring in the calibration system. Where
there are three multiphase streams upstream the separator with oil, gas and water mass rates
from each multiphase stream, and there are single phase streams effluent of the separator. As
well as a simplified mass-based flashing dynamic, which occur due to change in pressure and
temperature from the multiphase meter and the separator. In this thesis the applied flashing
dynamic is simplified to a mass fraction of the oil flashes to gas mass phase. Which is based
on values from a process simulator, this result is shown in Appendix B.
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Figure 7 - Mass balance of multiphase streams and separator
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3.5 Flashing, PVT and Phase equilibrium

Every stream has a unique composition changing over time but most essentially for the
hydrocarbon components in the stream, when there is a reduction in pressure or an increase in
temperature a fraction of the lighter components turns from a liquid state to a gaseous state.
Inside the separator, the fluid also has a chance to settle for a short time. The flashing of
liquid oil is due to a higher pressure and temperature than the bobble point of the specific
components, turning a fraction of the liquid component into a gaseous state. The liquid will
continue to flash until the containment of the liquid has equalized the pressure in the
containment to the specific vapor pressure for the given pressure and temperature. There is
also an effect which goes the other direction (from gas to liquid), which is condensation of
gas to liquid droplets, where a fraction of the gas is approaching the components dewpoint.
These phase changes are approaching the phase equilibrium of the fluid, where the phase
fractions of the fluid change with pressure and temperature for a given composition. Hence
every valve, heat-exchanger, pipe bend, and length of pipe causing a pressure or a
temperature to change and changes the phase equilibrium point of the fluid and thus the phase
fractions. This is important due to the multiphase meter and a single phase stream are
separated by pipe and other processing equipment and have different pressures and
temperature and thusly different phase fractions.
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4 Technical background of
hydrocarbon flow metering

In the real physical world, a requirement to be able to quantify the extensive and intensive
variables of both a multiphase stream and separated single phase streams. This chapter will
dive conceptually into instrumentation and calculations used to gauge these variables, which
are subsequentially used to perform ownership allocation and calibration. This chapter will
try to provide information on the technical aspects of both the physical and computer systems
used in the creation of the data used in this thesis. The chapter will also go in to aspects of the
calibration and traceability of the measurements to international standards. In essence this
chapter’s purpose is to get an understanding and appreciation of how continuous
measurements from instruments are combined into a elegant and purposeful symphony.

4.1 Instrumentation

From the definition in section 2 of the measurement regulations from the NPD an Instrument
is defined as:

“An assembly consisting of a transducer and one or more sensing elements. The signal
from an instrument represents a physical condition. A technical device used to measure a
physical parameter.” [11]

In essence a instrument is a piece of equipment which measure one or more physical
parameters. And when this measured physical parameter is used to a fiscal purpose which is
that there is some form of ownership or monetary transactions based on the measurement
then the measurement is consider a fiscal measurement. When the measurement effects the
owners, operators and government the involved parties will naturally require a quality
assurance, that the measured parameter is relatable to known physical quantities with a given
uncertainty, this operation to compare a measurement to a known reference is called a
calibration, where the characteristic uncertainty of the measurement over the measurement
range of the instrument is established. Sometimes confusion arises when it comes to the
difference between calibration and adjustment, but calibration is establishing the uncertainty
and adjustment is when a physical action is made to change the output of the instrument.

Instruments such as pressure and temperature will not be covered, but their importance in the
measurement is not to be neglected. Pressure and temperature have a important function
when it comes to standardizing / normalizing the volume rates to common conditions, and in
the section 10 of the measurement regulations from the NPD this standard conditions are set
to be 101,325 kPa and 15 °C [11], and this calculation is performed at each fiscal flow and
density measurement in order to gain standardized and thus comparable figures.

4.2 Liquid flow measurement

Most typical liquid flow meters in general try to their best to measure the mean fluid velocity
inside the meter body. And by having a known cross-sectional area in the meter body, the
volumetric flow becomes the product of the area and the mean fluid velocity, this applies to
almost all of the flow meters used except for the Coriolis meter witch directly calculates the

24



4 Technical background of hydrocarbon flow metering

mass flow rate. But inside the systems in question inside this thesis the Coriolis meter is not
used, but it is in regular use as both a process control and measurement applications. The
main single liquid meters used in this thesis is ultrasonic flow meters (USFM), and Turbine
meters for the oil stream, and electromagnetic flow meters for the water stream.

4.2.1 Oil flow measurement

Some flow meters are more suitable for measuring oil flows more than others, but in general
the most used single-phase oil flow meters for continues flow measurements are Turbine-,
ultrasonic- or Coriolis-meters. And due to that hydrocarbon oil is nonpolar some meters are
not used for this liquid.

4.2.1.1 Turbine flow meters

Turbine flow meters uses the kinematics of the fluid particles to rotate a turbine inside the
pipe, and on fixed locations on the meter body there are place magnetic pickups which
produce a pulse when a turbine blade rotates past the pickup. Over time this generates a pulse
train, where the frequency of the pulse train is proportional to the volumetric flow rate. And
this proportionality is mostly implemented as a fixed calibration factor called the K-factor or

sometimes the meter factor, with the units [Z—lj] The k-factor is not necessarily fixed for the
entire flow range the meter is operating on and sometimes there is a calibration curve where

the k-factor is a function of the frequency of the pulse train or the measured flowrate.
Diagnostics

On the turbine meters used for custody transfer it is normal to have two pickups place with a
fixed angle between each other in order to generate two pulse trains with a fixed phase
between the pulse trains. And if a turbine blade is damaged or some other issue occur there is
a diagnostic alarm raised if the phase between the pulse trains is not as it should be, and an
indication of the direction of flow is also inherent in what pulse train is leading.

4.2.1.2 Ultrasonic flow meters

Ultrasonic liquid flow meters use sets of ultrasonic transducers inside the meter body to probe
the velocity of the media, by measuring the time of flight of the ultrasonic pulse propagating
through the media in the meter, where the fluid flow inside the pipe increases the time of
flight if the pulse is traveling downstream or decrease the time of flight if the pulse is
traveling upstream. And by having multiple sets of these ultrasonic transducers placed in the
meter body at strategic location a flow velocity profile (flow profile) can be established. And
by calculating the mean fluid velocity from the flow profile and multiply the velocity with the
know cross-sectional meter body area, the volumetric flow measurement is established.

Diagnostics

The most significant diagnostic or beneficial measurement is that from the time of flight data
the speed of sound in the media can be calculated. This is especially helpful for gas flow
applications through ultrasonic flow meters where this speed of sound can be compared with
the sound speed calculated from the measured or expected composition and conditions
through the AGA-10 report. The measurement can also potentially be used to infer density
from an expected composition and the speed of sound measurement provide additional
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correcting data. Additionally, the diagnostics from the physical and the signal processing of
the raw transducer data such as the gain of the transducers to probe the health of the
transducers, and the signal to noise ratio, giving a lot of information about the internal health
of the meter.

4.2.1.3 Produced water flow measurement

Measuring the produced water outflow from the separator gives rise to utilize the ions from
the salts and impurities which gives water its electrical conductance. Electromagnetic flow
meters are frequently used for measuring produced water. The electromagnetic flow meters
work through electromagnetic induction, by having magnetic coils around the meter body, to
create an electromagnetic field around the pipe, electrodes in contact with the fluid on
opposite sides of the meter body. When the media in the pipe is conductive and moving
through a magnetic field a voltage is induced in the liquid, through faradays law, which is
then measured by the voltage difference over the electrodes in the media.

4.2.2 Calibration and traceability of liquid volume flow meters

The liquid flow meters discussed in this chapter are all volumetric flow meters, and when
calibrating and establishing the uncertainty and linearity / characteristic of the flow meter,
this is historically done in a prover-loop with the ability to displace a fixed volume through
the meter and comparing the displaced volume with the measured volume. the liquid volume
flow rate is for oil-metering application is electrically sent as a pulse train, where the
frequency of the pulse train is proportional to the volume flowrate. And when calibrating a
meter the calibration factor can be established through counting the pulses on the pulse train
during the displacement of the fixed or known volume® the example of using a compact
prover unit as the displacement reference volume shown in Figure 8. By repeating the fixed
volume displacement through the meter, the calibration factors is then established if the
measurements point achieve a sufficient confidence degree calculated through the student-t
probability density distribution, specified in API-MPMS-4 Proving System. This exercise of
establishing calibration factors can then be executed at varying conditions, mostly significant
with varying flowrates, and from this the linearity or non-linearity of the meter is established
and if a single calibration factor is sufficient for the liquid flow meter or if it requires a
calibration characteristic, where the calibration factor dependent on flowrate or any other
measured varying condition.

The prover loop for most applications is placed inside a flow laboratory, but on fiscal
metering stations are often fitted with an in-situ prover loop, where the NPD requires the
calibration / proving to be done every 4" day or if the fluid properties change from last prove.
[11]. But the meters used on the liquid streams on the Alvheim third party separator are all
meters and calibrated in a non-bias 3" party flow laboratory at regular intervals.

5 This fixed or know volume is also known as volume-normal
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Figure 8 — Liquid turbine meter flow calibration with compact prover

Establishing the calibration of the fixed displaceable volume (prove volume) also needs to be
able to be checked against a higher order reference, this is done by displacing the volume
normally with water into a calibrated can (seraphin can), which is purposely built to gauge
the volume inside the prover. This seraphin can is then calibrated by mass, by filling the can
with water with a known density. And measuring the mass of water inside the seraphin can,
the measurement has then changed from a volumetric measurement to a mass measurement,
and by weighting the mass with a measurement device traceable to the kilogram standard in
France, a traceable standard for the calibration of volumetric liquid flow meters is complete.
This traceability chain is depicted in Figure 14.

4.2.2.1 Auxiliary measurements of intensive variables

Densitometers

To get a volumetric flowrate to a mass flowrate the mass density has to be measured, and this
is done through a density transducer or densitometer which in most traditional cases for
precise measurement is done through a oscillating tube, which is agitated by electromagnetic
coils, giving the measurement tube a vibration. The frequency at which this tube is oscillating
correlates to the mass within the tube system, and the heavier the mass within the tube is the
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lower the frequency at which the tube is oscillating, and thus a density reference is measured
through a characteristic of time period of oscillations.

Water cut meter

Water cut meter is another word for instrument which measures amount of water in oil in
water / the water in oil fraction if you prefer, and the standard measurement principle used
here is a microwave based measurement principle, where the characteristic damping of a
microwave signal propagating through a oil water mix at different microwave frequencies, a
relative characteristic attenuation over a frequency span, is then effected by the water content
in the liquid mix®. And for increasing the accuracy the density from a densitometer is also
used as an input to this measurement. More details of water fraction metering can be found in
a handbook on the topic from the NFOGM [16]

4.3 Gas flow measurements

When it comes to gas flow measurement in recent years, the standard flow meter primarily
used in new applications today is the ultrasonic flow meter. The ultrasonic flow meter in
liquid flow measurement chapter is analogous to the one used in gas flow measurement.
There is one essential difference between liquid and gas applications, which is that the piezo
electric transducers are installed with direct contact to the gas and not in a separate
pocket/well which is isolated from the media.

Other measurement principles where also used such as differential pressure gas flow
measurement; gas flow measurement through differential pressure over an orifice plate or any
other reduction of cross-sectional area of the conduit. This reduction in area intern cause a
change in differential pressure due to an alteration of the kinetics inside the conduit. All this
is based on the age-old Bernoulli energy balance equation in iso-metric form, which is further
enhanced and the development into ISO-5167 series for gas flow measurements with a higher
precision and higher statistical confidence.

Gas flow meters are calibrated in a similar manner as the liquid meter calibration, a gas flow
meter can measure the displaced gas, but instead of a volumetric displacement the
displacement has to be converted to a mass / standard volume displacement. In order to
calibrate the gas flow meter since gas is compressible, a mass flow comparison has to be
performed, and instead of having a volumetric displacement standard volume or a mass
displacement reference is needed for the gas flow calibration, but the methodology is the
same’.

8 in the same manner that a microwave oven heats up / agitates the water molecules / moisture within the oven.

7 Calibration of gas flow meters are not frequently done, mainly prior to install or on specific occasions, meters
are sent to special laboratory’s such as FORCE’s calibration facility in Denmark or EuroLoop in The
Netherlands, but there is a limited number of facilities providing this service, liquid flow laboratories are more
frequent.
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4 Technical background of hydrocarbon flow metering
4.4 The computer part® — Flow computer

On each of the measurement streams its own embedded flow computer is installed. The flow
computers task is to collect and distribute measurements from instrument, execute sensor
calculation and accumulating and storing the increments calculated by the flow computer.
these accumulators in P&ID notation are usually denoted Flow Quantity Indicator (FQI), and
also in other process context referred to as totalizers. The calculation for each increment is
done every second, for the single-phase streams and every 10 seconds for the multiphase
stream computers before the increment is stored inside the flow computers database. Figure 9
shows a representation of the liquid oil stream, with instruments and a fast loop, and the
abstract calculation performed by the stream flow computer. The flow computer also works
as a controller for the supervisory metering system, and can usually control the connected
line valves through the flow computers 1/0. The system specific details of the flow meters
and their exact internal calculation are in appendix B.

Flow Computer :
[m?] [Sm?] [kg] :
© " Common fastloop
Accumulators FQl FQ calulationsin :

[ kg ] ; Flow Computer

— @ I.JLJ@
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lhom'J Caracteristic DT
B K1,K2,K3,K18,K 19,
. PO, TO

Typical 1" pipe / tube

[Rarg]
PT 1 PT) @>@ Sample point FaStloop

%} _ pi;:rbmem ete@ W) % Av

Figure 9 - Overview of typical and simplified single-phase fluid measurement stream with the
abstract tasks and calculations of the flow computer

8 The computer part refers to the definitions in the NPD’s measurement regulations [11], but is the control and
computational processing part of the measurement system.
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4 Technical background of hydrocarbon flow metering
4.5 Multiphase flow meters

When it comes to streams where there are multiple phases and the meter used is an inline
multiphase meter, which has instruments working closely together to establish the flow of
each of the phases, and these inline meters are used on the Alvheim installation.

. kg kg kg .
[.’mur} [.’mur [imur}
) _ QOil Water Gas’
« Gamma density @ @ @ .
. Tomography R
: -GVF
Temperatur -WLR
P -Volume rates

-Mass rates )

. Pressure ¢

stream

Figure 10 - Conceptual overview of instruments involved in a multiphase meter

On the Alvheim platform the multiphase flow meters from MPM, now owned by
TechnipFMC will be the focus here. But there are many other multiphase meters and
solutions on the market, more information on multiphase flow meter selection, solutions and
uncertainty see the handbook from NFOGM on the topic [14] But for this thesis the focus
when explaining the multiphase meters will be on the MPM meter from Technip FMC.

But multiphase meters are a lot more complex than a normal single-phase meter. This due to
within fraction of a second the fluid stream can turn from a pure liquid stream to a gas stream
due to slugging slugs of liquid can be followed by gas bobbles covering the entire pipe for
longer periods of time, and the meter has to constantly interpret the fraction of what is
flowing through the meter, and use the best suited method for calculating the flowrates of
each phase. And the MPM meter installed on Alvheim have two mode which it can jump
between in a fraction of a second, if the fluid stream suddenly becomes a gas stream and can
operate in both a wet-gas mode and a multiphase mode. Where the MPM meter detects only
gas and switches to a wet gas measurement mode, or if it detects liquid operates in
multiphase mode. The MPM flow meters can automatically detect and switch between
operation modes
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Figure 11 MPM Meter components [15]

4.5.1 Density measurement

In order to measure the mass density of media in the pipe the MPM multiphase flow meter
uses a nuclear measurement principle, a source of ionizing radiation on one side of the stream
and a Geiger muller tube on the other side, with a beam of photons / ionizing radiation going
through the multiphase stream. The more photons counted by the Geiger muller tube the less
mass the beam of photons has to permeate with a higher degree of being absorbed or
deflected, and if the photon count on the Geiger muller tube decrees the mass density of the
flow stream then has a higher mass density.

4.5.2 Velocity measurement of fluids

Most multiphase flow meters utilize a venturi flow meter to gauge the kinematic aspect of the
multiphase meter, and measure a velocity component of the multiphase stream, and together
with density measurement this can give good data of the velocities of the media in the
conduit.
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4 Technical background of hydrocarbon flow metering

The established standards for using venturi flow meter, are mainly for single phase meters, so
a special measurement model which has to take all this into account and still get a velocity
estimate for the gas and liquid phases.
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Figure 12 - Venturi cone element in a MPM meter [15]

4.5.3 Tomographic measurement

Through multi-modal parametric tomographic measure, a volumetric rendering of the cross-
sectional area of the meter body can be measured, which intern can determine the ratio of gas
and liquid within the meter body. This is done through what MPM called 3D Broadband™.
This is gauged by multifrequency dielectric measurements in a similar manner as the water
cut meter in the single phase oil stream the water content is inferred through a characteristic
attenuation of electromagnetic waves, the MPM meter does this in a multi-modal approach by
having multiple electrodes to measure the signal attenuation through the media in the pipe,
and covers a frequency range of 20-3700Mhz. [17], as shown in Figure 13.
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4 Technical background of hydrocarbon flow metering

Figure 13 — Technip FMC- MPM 3D Broadband™ technology [15]

4.6 Operations / Maintenance of measurement
equipment and systems

Under normal operations buildup of material inside the meter body can occur due to scaling,
sulphates or asphaltenes this can effect can be take into account when a new calibration is
performed, which is the biggest issue for the liquid and the multiphase meter, due to the
abrasive nature of liquids and that the liquid is the dirtier of the two phases and that the liquid
carry potential contaminants to a higher degree than gas, but in gas streams there are
potentials for ice and hydrate formation.

4.7 Uncertainty

By carrying out a series of measurement points statistical analysis can be done on these
measurements and as written in the calibration and traceability chapter under liquid flow
meter some information about the use of small sample statistics through the student-t
distribution is mentioned. And this is often a good place to get information about the
repeatability, precision and uncertainty of the measurements and given a required confidence
degree / coverage factor the stability of the same measurement can be achieved.

But when looking at expanded uncertainty of the combined measurement for single and
multiphase metering the NFOGM have created uncertainty handbooks and programs to
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4 Technical background of hydrocarbon flow metering

calculate the uncertainties for both single phase gas and oil as well as a handbook for
multiphase flow metering covering the topic to a great extent [18], but all uncertainties follow
the Guide to the expression of uncertainty in measurement (GUM)?®

4.7.1 Traceability

Traceability is the relationship a measurement has to an established international standard,
and that each part of the chain from the instrument in duty to the standard has a documented
relationship to internationally recognized standards.
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Figure 14 - Traceability map of a turbine flow meter

Figure 14 shows a traceability map example of a turbine flow meter and how it relates to the
standards in France, from the 20" May 2019 the references are no longer physical objects but
natural constants, such as lightspeed in a vacuum for a length, through interferometry. And
the mass is based on Planck’s constant through watt balance instrument [19] [20]

4.8 Supervisory metering system

The metering system has a Supervisory Control and Data Acquisition (SCADA) system
running as a part of the measurement system which monitors, controls and creates reports of
the measurement system. This also entails performing calibrations operating the metering
stations and is done centrally on a main machine or with a redundant pair of machines. Each
flow computer / embedded device is connected together, and central computer/s and these
central machines run the programs and services, this central machine also performs as an
interface to other SCADA systems or as data gateway for collecting or storing real-time or
historical values on an ERP-level normally through OPC interfaces.

When looking at the data flow for the data used in this thesis as well as the interconnectivity
of data across a typical metering system is shown in Figure 15, this shows some crucial
aspects of data flow from the instrument through infrastructure until it is available for request
for the processing done by this master thesis.

°The GUM is created by the Joint Committee for Guides in Metrology (JGCM) which Bureau International des
Poids et Mesures (BIPM) shares. And that the international standard organizations such as 1SO and IEC follow.
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4 Technical background of hydrocarbon flow metering
4.8.1 Data connectivity and interfaces.

Previously known as Object Link Embedding (OLE) for process control, but now it is just
Open Process Control, and is a standard client/server networking protocol to transport data
between components in process control and monitoring applications. And it is split in to two
generations, the first generation which have the Data Access (DA), Historical Data Access
(HAD) and Alarm and Events (AE) and some others which are based on Microsoft
proprietary Distributed Component Object Model (DCOM), which require a network tunnel
system for adding encryption. In recent years a newer generation of the OPC standard with
more open standard based on open binary standard that don’t require proprietary parts such as
DCOM, which has benefits when it comes to encryption and security and implementation on
multiple operating systems?? this is called OPC Unified Architecture (UA). But for this thesis
the old OPC DA is only used, which are in used between the Metering SCADA system and
the Process control system and the historical value repository Pl by OSlsoft. The Cognite
Data Fusion repository collects the time series sensor data from this PI system. Figure 15
shows the data flow from both a single-phase stream measurement and a multiphase meter
through the metering SCADA and the Operational Technology (OT) layer to the Cognite data
fusion repository.

10 For more details regards to these standards see https://opcfoundation.org/
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5 Alvheim third party field installation

5 Alvheim third party field installation

The chapter goes into detail of a third-party tie-in installation on the Alvheim FPSO, and the
involved equipment and systems, and the documentation of the measurements system from
the supplier is in appendix B

5.1 Alvheim field in general

Alvheim is a floating production storage and offloading (FPSO) vessel rebuilt from a shuttle
tanker Odin to the Alvheim FPSO in Haugesund Norway.

Alvheim was initially developed for the Boa, Kneler and the Kameleon field, but further
exploration in the area reveled more fields in the area, and that is where the third-party fields
Bayla, Vilje and Volund come in to the picture, third party tie-ins to the Alvheim FPSO
require ownership allocation and separation, and this is where the topside multiphase meters
on each stream and the third party separator comes into play. Figure 16 shows an overview of
the metering system with regards to the Alvheim third party MPFM streams and separator,
for executing single meter calibration.

Alvheim Third Party Production™PM's

Separator PVT calc. ||

T

Sid. mass 214.891 78.035 536.751
Sid. volume 251.630 92152 516.107

Std. mass 118.202 21.004 229.999
Std. volume 140.224 23009 221.152

Sid. mass -48.2
Std. volume -47.

Select MPM 1o Sep. 3rd Party
Separator
50.553

19.765
Data from MPM 05 Met. ail 222.875

il
Gas
Water
Temp. ater incl. w.i.o 536,751
Press.

Meas. status
PVT calc

MPM in use
MPM Modbus

overview | CuleRt | Prodeeo |_caibration | P patabases | st Sarmg L
Figure 16 - Alvheim third party production and MPM's on Metering SCADA

5.2 Topside MPFM Manifold

The Topside MPFM Manifold on Alvheim has slots available for 6 MPFM’s and today there
is installed 3 MPFM meters. Each multiphase meter has its own virtual stream flow
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5 Alvheim third party field installation

computer, and communicates between them initially from the meter over Modbus RTU on a

differential signaling bus (RS485) which is then converted to ethernet and made available for
the virtual flow computer running on the central metering machine (CM) as shown in Figure

15.

Figure 17 - Vilje and Volund MPM - MPFMs

5.3 Third Party Separator

The Third-party separator is a vessel where gravimetric liquid separation of the well streams
from the third-party manifold as well as segregating gas from the liquid phase in addition to
flashing / evaporation of a fraction of the liquid phase goes to gas. There are instruments on
the levels of the oil and water phase, as well as the pressure and temperature in the separator
is measured, monitored and controlled. The produced water stream is then measured through
a electromagnetic flow meter, The oil and gas streams have additional instrumentation and
will be covered more in sub-chapters. An image of the separator is shown in Figure 18.
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Figure 18 - Alvheim 3" party separator

5.3.1 Oil stream

The oil metering on the separators oil outlet consists of two 8 streams, where one of the
streams can choose to either use a turbine meter or a ultrasonic flow meter (USFM).
Upstream the flow meter streams there is a inline water cut meter as well as a fast loop side
stream for density measurement and sampling, this is shown in the simplified P&ID in Figure
19 and a photograph of one on the oil streams with notation is show in Figure 20.
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When it comes to the point where volumetric oil flow turns into mass flow the densitometer
and the other equipment shown in Figure 21 comes into effect on the measurement. This is a
17 side stream with a representative oil flow through.

Temperature transmitter

Flow indicator

Densitometer

Pressure transmitter

Sample point

Pump Bypass- / recycle-valve

Fastloop circulation pump

Figure 21 - oil stream fast-loop

5.3.2 Gas Stream

The gas metering on the separator’s gas outlet consist of two streams in parallel, same as the
oil metering, but the gas streams have just one flow meter on each run, and both are
ultrasonic gas flow meters, together with the same standard pressure and temperature
instruments. This is shown in Figure 22.
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Figure 22 - Simplified P&ID over third-party separators gas metering streams
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6 Parallel calibration of multiphase
flow meters

This chapter goes into the essential parts of calibrating multiphase meters, and how a parallel
calibration algorithm is created, implemented and executed.

6.1 Digital representation of fluid streams

In order to perform the calibration methods, the data used for the methods needs to be put in
the correct context and calculated to fit the reality at any given instance. This is done by
implementing a digital “twin” / digital representation of each of the streams in question. Both
the multiphase streams of the MPFM’s as well as the Separators effluent single-phase
streams. And by developing a digital twin for these fluid streams which can take any arbitrary
time segment, and perform calculations and accumulate the flowrates in each of the streams,
a representable and highly adjustable data set is then created, and the calibration methods can
then elegantly be fitted on top of a collections of these dataset calculated as calculated by the
digital twin of the fluid streams. Figure 23 and Figure 24 shows the core concepts of the most
important data within the digital representations, but in reality the digital representations
stores also the related intensive variables and flowrates and performs the flashing calculations
and prepare the data for further processing. Appendix C goes into detail of the
implementation, development and calculations executed by these digital representations and
how they are set into context.
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Figure 23 - Concept of Digital twin of separator streams
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Figure 24 - Concept of Digital twin of a multiphase stream

6.2 Traditional calibration method

This chapter will cover the traditional MPFM vs separator calibration method used on the
Alvheim FPSO for calibration of Allocation MPFMs with reference to separator
measurements. And is only calibrating one meter at the time, and the meters on the outlets of
the separators are the more accurate reference meters. And this Traditional calibration
method will serve as a reference for the performance of the Parallel calibration method, but
the Parallel calibration will use the same data but synthesize this into a parallel calibration
task. The reason why the separator is used as the reference instrument is due to that single-
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6 Parallel calibration of multiphase flow meters

phase measurements have a much higher accuracy and repeatability and a lower uncertainty
than the multiphase meter in the multiphase stream.

6.2.1 Calibration factor calculation

Figure 25 depicts the concept of the traditional method for calibrating where the
effluent and influent accumulation of each phase are compared to each other.

The calibration factor k,, for each denoted phase p is calculated by the ratio between the
accumulated mass flow of a reference measurement and the accumulated mass flow subject
of the calibration subject, and over time this value as the accumulation of mass in both the
reference and the subject this ratio practice stabilize / converge to a value which can be used
as the calibration factor, as shown in equation (6.1). This accumulation is performed on all
phases at the same time, from both the effluent single-phase reference streams on the
separator and on the multiphase meter measuring all phases flowing through the meter. Then
the calculation is performed on each of the phases to establish a calibration factor for each
phase, during a calibration run'?.

J‘H dmp,ref dt
_ "t dt _ mp,ref. (6 1)
P t dm '

k =
f —psub b My sup.
to dt

1t is also worth noting that the factor is a fraction of mass divided by mass and hence a unitless number, and
not a response factor turning a measured raw value to another unit like the calibration factor on a turbine meter
which turns a number of pules into a volumetric quantity, and with the units in the factor
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Figure 26 - Not acceptable k-factor development through traditional calibration on the
metering system on Alvheim

6.2.2 Acceptance criteria for a traditional calibration

The traditional calibrations accept criteria are qualitative to an extent and by looking at the
calibration factors over the course of time of the calibration run. If the calibration factor for
each phase remains constant over a longer period of time is the acceptance criteria of a
calibration. Figure 26 shows a not acceptable calibration where the oil factor is not
converging, Figure 27 shows on the other hand an acceptable traditional calibration run. And
by being able to create / emulate these plots over time will give a good qualitative indication
of the acceptability and convergence of the calibration run and will be a goal of the parallel
calibration algorithm, to compare results to something known.
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Figure 27 — Acceptable k-factor development through traditional calibration on the metering
system on Alvheim

6.3 Parallel calibration method

This chapter will cover the theory, development and implementation of the parallel
calibration method.

The general part of a parallel calibration routine / method it requires several different
timeslots of historical data with varying flow rates in each of the streams named trials. And
by performing a post calculation on these timeslots of historical data, achieve an apparent
calibration factor. To achieve varying flow in each of the timeslots is done either by routing
one of the streams to another separator, or a multiphase stream can be choked with a valve
and they’re by reducing the flow to a stream during a time period.

Two solvers have been looked into a linear and non-linear solver, where but the linear solver
can also use all three runs at the same time, and not only have trials with only two streams on
each trial as the non-linear solver. Figure 28 shows the dataflow and calculations done for the
creation of each trial.

6.3.1 Calibration factor calculation

From the mass balance stated in 3.4.1 which stated that over enough time, the amount of
mass entered the system must also leave the system. And that the multiphase mass flow is
proportional to the single phase mass flow. In Alvheim current setup for the third-party
installation with the topside multiphase meter streams. Bgyla, Vilje and VVolund that are the
multiphase influent streams, their rate must over time equate the effluent streams on
separators single phase outlet, as shown phase generically in the equation below (6.2).
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And by manipulation of the equations a system of equation for each phase can be set up and
solved to achieve the calculated k factors for each stream and each phase in the multiphase
streams.

(6.2)
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Figure 28 - Data basis, flow, calculations, and preparation for parallel calibration method
solver

6.3.2 Non-linear solver

Initially there was a non-linear method proposed by Torbjgrn Selanger but this was linearized
and solve as a linear case, a chapter in Appendix D goes into detail of the method and the
code for a solver, but the non-linear method was not implemented in the Parallel calibration
algorithm, but it was solved.

6.3.3 Linear solver

The linear solver for the parallel calibration method, uses the same number of trials as there
are parallel multiphase streams. And can be solved for as many phases as there is in the
stream, it could also be used for single phase calibration.

6.3.3.1 Defining the specific case for the current Alvheim separator
configuration

For the Alvheim third party parallel multiphase calibration method we have from the balance
law stated (6.3) and by having three separate time window / trial post calculated for historical
data. We can integrate the flow rates and be left with the accumulated mass pr phase times
the k factor which sums up to the accumulated mass for the specific phase out form the
separator. And from these three trial / time windows a system of equations can be set up as
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show in (6.4). The system of equations have a linear relationship and the linear combination
of the streams can be set up in the matrices and vectors shown in (6.5), which gives the linear
system shown in (6.6) which can be solved by taking the inverse matrix of the stream trial
matrix M,, and dot multiply it times the mass reference vector m,, which solves the system of

equations for the unknown calibration factors k,, for each of the streams for the given phase
(6.7). This is then repeated for each fluid phase.

My, Beyla kp,B(szla + My vitje * kp,Vilje + My yvolund kp,Volund = Mprer (6.3)

My Boyla,1 " kp,Bﬂyla + My vitje1 " kp,Vilje + My volund1 kp,Volund = Mprefa
Mp,Boyla,2 kp,B(ayla + My yitje,2 " kp,Vilje + My yoiund,2 kp,Volund = My ref,2 (64)
Mp,Boyla,3 * kp,Bﬂyla + Myyitje3s* kp,Vilje + My volund,3 " kp,Volund = Mpref,3

M, my,
mp,Bﬂyla,l mp,Vilje,l mp,Volund 1 p Bgyla mp ref,1 (6 5)
My Bgyla,2 Mpyilje2 Mpyolund,2 p Vilje mp ref,2
My Beyla,3 Mpyiljes Mpyolund,3 p Volund Mp,ref,3
M,k, = m, (6.6)
— -1
k, =M~",m, (6.7)

6.3.3.2 Defining the general case

In the general case with as many multiphase streams collecting in our case into one reference
separator / meter (parallel reference separators is also an opportunity for this method, just
sum the same phase outlets)

But consider S number of multiphase streams, with T number of trials, where Sand T are
equal. and a single reference separator. And construct a matrix M,, of accumulated masses

(Mphase,stream,triar) OF Multiphase stream, phase and trial (6.8). A reference vector m,, of the

accumulated phases on the separator’s outlets for each of the trials (6.9). (6.10) shows the
vector k,, of unknown k-factors in a specific phase for each of the multiphase meters. And by

solving the linear system shown in (6.11) By taking the inverse of the M,, and dot
multiplying it with the corresponding reference vector m,, the resulting k,, vector of apparent
k-factors are found (6.12). And it is the same method for each of the phases.

Mp11 Mpz1 " Mpga
m m eee m
p,1,2 D,2,2 p,S,2
M, e RS =] " . X . (6.8)
MpiT Mpar = MpsT
mp,ref,l
m
T _ pref,2
m, ER" = . (6.9)
mp,ref,T
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k1]
k, ERS = |kp2| (6.10)
Lk, s
Mok, = m, (6.11)
k, = M,'m, ,whenS =T (6.12)

6.3.3.3 Trials and the cumulative mass matrix

In order to perform the method Trial of streams with separate time windows and flow rates
needs to be created. And each trial must contain a uniqueness to them either by rerouting a
multiphase stream to another separator or have a variation in flow, either through well test or
other effects, or physically created by choking the flowline through a choke valve, to create
information to the measurement matrix M,, . In order to solve the system of equation the
measurement matrix M,, must be a square nonsingular / invertible matrix and have an
inverse, and if all the trials building the matrix, must complete in a matrix with a rank T.

In essence the rank of the cumulative mass matrix must be equal to the number of Streams in
parallel and hence the number of trials T equation (6.13), this is done by splitting each matrix
row into different time slots called trials, and by ensuring uniqueness in each trial the matrix

becomes invertible. And that M,, does not have linearly dependent rows.

rank(M,) =S =T (6.13)

6.4 Parallel calibration algorithm

The algorithm solves the general case for S number of streams and utilizes the collections of
trials, which is a list of the object orientation of the streams covered in Appendix C. These
collections of data from each trial time window is synchronized an used to create the matrices
and vectors for the method. All these synchronized datasets are assessed as runs, and these
systems of equations are then solved for each synchronized run. And the resulting k-factors
for each run contains the development of the k-factors across the different elapsed time
within the timeslots. When these values are stabilized a subset of the stabilized values are
used for a statistical analysis to assess the stability / random uncertainty of the calibration, in
order to assess different k-factors. All this is explained in detail in appendix D on the parallel
calibration algorithm. But in essence Figure 29 shows the essentials of the method solving
inside the algorithm, but the part where datapoints are synchronized is left out of the figures,
but the synchronization algorithm uses NumPy’s core for efficient numerical computation,
which is also mention in Appendix C and shown in Appendix D.

51



6 Parallel calibration of multiphase flow meters

Trial 1 | Trial 2 Trial 3 |

MPM Stream 1 MPM Stream 2 Separator Streams MPM Stream 1 ‘ MPM Stream 3 ‘ Separator Streams MPM Stream 2 ‘ MPM Stream 3 ‘ Separator Streams

10482 | 10482
10490 | 10490

10482 | | 10482
10490 | 10490

Cumualtive values

t/'/on Algorithm
/ \ L Gas \ \ Water
For each run For each run For each run
Trial 1
Trial 2 / / Mp mp Mp mp
Trial 2 0
kp = M;_almp Solve System of Solve System of
Solve System of equations equations equations
/ /
\ * K-factog/ \
\ oil Gas Water \

112 112 112 112 112 112 112 112 112
111 111 111 111 111 111 111 111 111
N 111 111 111 111 111 111 111 111 111

Figure 29 - Inside the algorithm - filling M,, Matrix and m,, vector with a 2x2x2 Trial input

6.4.1 Result and statistical analysis of the calibration method

When a parallel calibration is performed on the entire data set to provide the result of the
calibration, the system can look into when the system has achieved a stable k-factor /
converged to a stable k-factor, a window of samples of stable k-factor values called a
statistical basis can be used for a statistical analysis of the basis of stabilized values. If there
are no stabilized / converged values for a stream and phase the calibration is probably not
successful.

The result of the k-factor for each phase and stream can be statistically defined as the mean,
standard deviation and the number of sampled k-factors in the basis, with the random
uncertainty of the data set as a numerical integration of the normal distribution over the
confidence interval, coverage factor of 2, as specified by the measurement regulations [11]

Implemented in the algorithm the initial run of statistics executes a auto detector of a result
basis for a statistical analysis, looking into the stability and random uncertainty of the
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resulting k-factor, in order to create a initial basis dataset of k-factors as mention above. The
basis is detected through peaks in squared differences of a squared sum of errors in the k-
factor basis in a given stream, this is implemented as a preliminary, but a manual oversight of
the selected statistical basis should be used and recalculated with a specified number of k-
factors. Figure 30 show the result of a detected statistical basis with the k-factor development,
with a histogram of the sample number with a fitted normal distributions density plot, in
order to assess the resulting basis and that the values are normally distributed.

Volund Gas
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Figure 30 - Example of detected statistical basis (red) from k-factor development (gray),
vertical samplel histogram (green) with a normal distrobution probability densityplot (orange)

6.4.2 Calibration evaluation

After the calculation of k-factors and the statistics on the stabilized values, a lot of visual
tools for displaying the result and evaluation of both the raw and calculated values within the
algorithm. An augmented matrix plot for different states is implemented, for both the
flowrate, cumulative values and one for the essential intensive variables and the states within
the separator. This gives an oversight of all essential values and context of the data within the
algorithm. The augmented matrix plots a plot where each cell within the matrix contain a plot
specific to the data within the stream and trial. Figure 31 show one of these augmented matrix
plots created for ensuring the quality of the data, and in the separator conditions on the first
trial, states of the oil level in the separator and the water cut in the separators oil stream is not
optimal to assume constant mass in the system and stable conditions.
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Parralell calibration process conditions
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Figure 31 - Augmented matrix plot of Process conditions during trials, where the x axis is
successive raw datapoint during the trial, and therefore no numbers.

6.4.3 Synthesizing data for comparing traditional calibration towards a
parallel calibration

To be able to verify the parallel calibration method the result of a traditional calibration is
used, but in order to perform a parallel calibration on the same data used in traditional
calibration the one multiphase meter to one separator has to synthesized into a synthetic
parallel trial dataset. By synchronizing and summing the separator streams to each other
based on the elapsed time of the accumulation found in the accumulator class, then this can
elegantly be used as a single trial. Perform the same summation and create the rest of the
parallel trials and what is left is a synthetic dataset which can be used on a parallel calibration
method.

6.5 Executing parallel calibrations

The parallel calibration algorithm is created to be executed in a interactive python session,
such as IPython based environments such as Jupyter Notebook. A flowchart with a Jupyter
notebook code shows the execution of a parallel calibration in Figure 32. Where the
automatic trial window finder is used, but one trial is changed to cover a three subject streams
in one trial, also note that the separator stream is the last stream appended to the list.
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from datetime import datetime
#matplotlib inline

from cognite import CogniteClient
cdp = CogniteClient()

from ParralellCalibration import *
from TimeWindowlLocator import *

#locate time windows for Parralell calibration
start = datetime(2819, 3, 38)
end = datetime(2812, 4, 3)

VivVoWindow, BgVollindow,BgViWindow = FindTrialWindows(start,end,cdp)

TrippelWindow = [datetime(2819, 4, 3,1),datetime(2819, 4, 3,11)]
Triall = CreateTrial(["vilje","Veolund","Bgyla"],TrippelWindow,cdp)
Trial2 = CreateTrial(["Volund”,"Bgyla"],BeVolindow,cdp)

Trial3 = CreateTrial(["vilje", "Beyla"],BeViWindow,cdp)

Calibration = ParralellCalibration([Triall,Trial2,Trial3])
Calibration.Statisics()

Calibration.Stats()
Calibration.GetStats( 'Beyla’, 'Gas').ReCalc(15e8)

Calibration.Report()

6 Parallel calibration of multiphase flow meters
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7 Results

This Chapter will go into the result of the calibration methods implemented and calculated
both in the Traditional and Parallel method. When comparing the parallel calibration method
towards a known excepted reference, the method used is then to synthetically combine
traditional calibration sequences into a synthetic parallel calibration dataset. The parallel
calibration then solves both the traditional data set and the synthetic and then compares this.
During the time of this thesis there where two datasets of traditional calibration, one in late
January and one in March and are covert in Appendix E on the January results and Appendix
F on the April and some of the results will be shown below. And during the march and April
test of parallel calibration was executed, giving real values and not just synthetic values as in
the January 2019. The results from this chapter will be discussed in chapter 8.

7.1 January calibration

In January a normal calibration was performed on Alvheim and the resulting k-factor
development of the January calibration is shown in Figure 33 for Beyla, Figure 34 for Vilje
and Figure 35 for Volund, comparing both developments of the traditional and the synthetic
parallel dataset. And the numerically compared in Table 7.1 which also includes final values
from real calibration.
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Figure 33 - k-factor development of Traditional vs Synthetic Parallel calibration for Bayla in
January 2019
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Vilje Comparison Calibration
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Figure 34 - k-factor development of Traditional vs Synthetic Parallel calibration for Vilje in

January 2019
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Figure 35- k-factor development of traditional vs synthetic Parallel calibration for Volund in

January 2019
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Current Algorithm
January Phase metering Synthetic
Calibration Traditional

system parallel
Oil 0.97919 0.99874 0.99961
Boyla Gas 1.01439 1.0666 1.06667
Water 0.93353 0.93887 0.9391
Oil 0.86164 0.88346 0.88274
Vilje Gas 0.96043 0.9665 0.9665
Water 1.15805 1.20046 1.20056
Oil 0.98797 1.01642 1.01431
Volund Gas 0.90674 0.92548 0.92536
Water 1.04478 1.07209 1.07186

Table 7.2: Comparison between traditional and a synthetic 2x2x2 calibration by the calculated algorithm with differences and deviations

Table 7.1: Resulting values of traditional and synthetic parallel calibration and the result form the existing fiscal metering calibration system in January 2019

January Calibration Traditional Synthetic Parallel Differences between Synthetic and Traditional (ref)
random random deviation . -
swean | phase | mean | uncatany | SS9 | ompe | e | unconamy | S0 | o | o | owion | A1 | sty
Oil | 0.99874 0.99 1.42E-03 996 0.99961 0.54 2.59E-03 1060 8.64E-04 0.09% -0.449 0.001
Bgyla Gas | 1.06660 1.42 9.92E-04 500 1.06667 1.34 1.05E-03 500 7.00E-05 0.01% -0.079 0.000
Water | 0.93887 1.83 7.69E-04 1000 0.93910 1.15 1.22E-03 1500 2.31E-04 0.02% -0.673 0.000
Oil | 1.01642 0.33 4.31E-03 1923 1.01431 0.41 3.40E-03 1947 -2.11E-03 -0.21% 0.088 -0.001
Volund Gas | 0.92548 1.41 9.92E-04 1000 0.92536 1.42 9.92E-04 1000 -1.26E-04 -0.01% 0.001 0.000
Water | 1.07209 0.94 1.49E-03 1394 1.07186 0.83 1.70E-03 1327 -2.28E-04 -0.02% -0.117 0.000
Oil | 0.88346 0.23 6.05E-03 958 0.88274 0.20 7.04E-03 935 -7.20E-04 -0.08% -0.032 0.001
Vilje Gas | 0.96650 0.57 2.46E-03 1897 0.96650 0.49 2.86E-03 1897 1.00E-06 0.00% -0.080 0.000
Water | 1.20046 0.78 1.79E-03 1122 1.20056 0.78 1.79E-03 1124 1.04E-04 0.01% 0.000 0.000
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And compared to the real result from the existing system on Alvheim of the Volund results is
show in Figure 36. And when it comes to the calculated uncertainty between a synthetic and
a traditional calibration Table 7.2 goes int to the differences between the a traditional and a
synthetic parallel calibration execution.

Resuling comparison - Volund january results
A Current metering system @Traditional M Synthetic parallel
1,1
1,08
&
1,06
1,04 A
- 1,02
o
"5 1
JIE 0,98 A
= 0,9
0,94
0,92 *
0,9 A
0,88 -
Oil Gas Water
Phase

Figure 36 - Result comparison of VVolund from January calibration trials, where the real
value, traditional and a synthetic test was performed

7.2 April calibration results

An even better test from late March early April where performed, where first a traditional
calibration was performed and after this a parallel calibration sequence was executed giving
both a traditional test, with data for both a traditional run with a synthetic combination and in
the days after the traditional calibration the parallel calibration could be performed keeping
the traditional calibration as a benchmark for comparison. And then in late April a new
parallel calibration was performed. Figure 37, Figure 38 and Figure 39 shows the results as
point plots for each multiphase stream and is shown numerically in Table 7.3

59



Symbols

Table 7.3: Resulting values of actual, and the algorithms ,traditional, synthetic parallel and parallel calibration in
March / April and late April 2019

Calibration | Algorithm
Time: March / April 2019 27/3 to 29/3 30/3 to 3/4 30/4 to 1/5

Current Synthetic Parallel Parallel 1mnd later

Stream Phase system Traditional parallel 2X2x2 3x2x2 3x2x2
Oil 1.56405 1.59178 1.59117 1.55913 1.62318 1.51129
Boyla Gas 0.90507 0.97910 0.97763 0.98940 1.05450 1.06952
Water 1.07492 1.09826 1.09789 1.08120 1.00231 1.02029
Oil 0.82050 0.86202 0.86305 0.78272 0.83145 1.11121
Vilje Gas 0.97801 1.01513 1.01680 0.98864 1.06908 1.08579
Water 1.13873 1.19756 1.19935 1.24515 1.14677 1.01351
Oil 1.14429 1.15180 1.15164 1.07059 1.03411 1.02004
Volund Gas 0.90674 0.94987 0.95168 0.97845 0.91330 0.96824
Water 1.04478 0.98520 0.98450 0.98896 1.08478 0.99176

Resulting comparison - Bgyla march/april results
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Figure 37 - Result comparison of Bgyla during March/April calibrations
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A Current system @ Traditional M Synthetic parallel mParallel 2x2x2
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Figure 38 - Result comparison of VVolund during March/April calibrations
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Figure 39 - Result comparison of Vilje during March/April calibrations
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7.3 Financial gains of using this algorithm

The primary gains of using the parallel calibration over the traditional method is the reduction
in production deferrals which is a consequence of the use of the traditional method.

Separator capacity utilization under parallel and traditional calibration
15% of the capacity can be rerouted to other separation unit, and each line have equal capacity
utilication

100.0%

98.0%
Gain in capacity utilization of separator

pr numer O_f streams stream
96.0%

94.0%

92.0% —e—Parallel calibration

90.0% P P .
—e—Traditional calibration

Separator capacity utilizaion on monthly basis

88.0%

86.0%
0 1 2 3 4 5 6 7 8 9 10

Number of streams connected to separator

Figure 40 — Qualitative aspects of separator capacity utilization under parallel and traditional
calibration

The reduction of capacity utilization of a separator is highly individualized for every single
input stream, and there can be significant differences between the streams, but Figure 30
shows a qualitative assessment of the reduction of utilization of the separator, under the
assessment that every calibration trial takes 12hours for both traditional and parallel
calibration and that 15% of the capacity of the separator can be rerouted to another separation
unit and that every month is 30 days. But the main concept that with the use of parallel
calibration the more multiphase streams are connected to the separator the lower production
deferral will be, which is the opposite of the traditional method where the more lines are
connected the higher the production deferrals. In reality the choice of which production lines
to reroute and which to perform the calibration on can be chosen in order to not affect the
critical producers or if there are some fields with reservoirs sensitive changes to the field, in
order to operate the connected licenses in a best possible way. And during the Alvheim late
march early April 2019 test the production deferrals during traditional calibration where
9500bbl and deferrals during parallel calibration was 310bbl for the late march early April
test, and 6200bbl deferrals vs 50bb in the late April calibration which are a significant
reduction in production deferralst?, which is better than what is expected from the qualitative
graph in Figure 40.

12 Deferral calculations where based on a “Best day performance” use-case developed inside Aker BP ASA
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8 Discussion

This chapter will discuss the content of this thesis and give thoughts of what is achieved both
in the results created by the algorithm, but more importantly on the development and
implementation of the method in the algorithm created, the way forward in improving the
method.

8.1 Development

The development of the algorithm is built on layer by layer of abstract function, from the
accumulator, which is implemented in stream objects where each stream accumulates each
phase. These stream objects are then collected into collection of trials of the same time
window. A collection of these trials, which are then used as the basis for a parallel calibration
routine, that use the stored and aggregated data in each trial and subsequent stream. And
when everything is object oriented all data is readily available for any type of data analysis.

Since | am both a user, customer and developer, the software development cycle closed in on
itself and turned into a rapid evolutionary development method. With regards to the unit
testing of the data in most of the python scripts created, if the script is run by itself as main,
then a unit testing algorithm is executed in order to check both the methods and the algorithm
as a whole, to ensure all methods are working as intended, and to simplify both the
development and debugging of the software.

By object orientation of classes and algorithm the resulting system has great usability, and
transparency both for the execution of the algorithm and further data analysis and
development. Many of the methods used in the developed algorithm are solved elegantly and
efficiently, but there is always further use of the NumPy library where more efficient changes
can be written in the codebase. There is also the opportunity of multithreading when
executing larger operations encapsulated in object instances for example during the creation
of the digital representation of the streams. Where all trials can be calculated in parallel. but
the algorithm performs sufficiently for the execution for the purpose of parallel calibration,
The operation of synchronizing data of the different streams and trials is solved very
elegantly and uses the efficiency of the NumPy library to find the closest datapoints to
calculate against.

8.1.1 Non-available historical datapoints

Datapoints of densities for oil, gas and water is missing for the data repository. But pure net
oil in mass rates are available from the metering system. But the mass flow of gas and water
on the separator are calculated through a constant density. where the gas stream has a
constant standard density. But as it is, the line oil stream density can be inferred from looking
at the volumetric oil stream, water cut as well as the pure oil mass stream. But when this
codebase is further developed, densities and other rates on the multiphase meters such as
calculations of GOR and GVF can be included in the multiphase streams, which are meant to
be placed through the flow weighted average algorithm and reported with the resulting values
from the algorithm. In order to gauge the k-factor as a function of both the GOR and GVF,
but this is to be implemented later, but is of a high relevance for a achieving representative k-
factor and provide essential information on the dependencies of the phase fraction as well as
important with respect to the uncertainty of the measurement at different phase fractional
flows.
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8.1.2 Historical logging of each flow computer increments

Instead of logging values and compressing data in P, each increment calculated by the flow
computer should be losslessly stored and made available in the data fusion repository or to be
executed on the metering SCADA level, for more precise and better data continuity for
calculations. To have a constant time between each datapoint also opens other opportunities
and a basis for implementation, more elegant analysis and establishment of a lot better
calibration characteristics.

8.1.3 Negligence of physical properties

There is a lot of physical properties neglected in the implementation in order to achieve a
workable implementation and to execute and test the parallel calibration methods, this is
neglecting the

e water moisture in the gas (the fraction of H20 molecules in the gas) this thesis has
not looked into the significance of this.

e Oil in water stream of the separator is not looked into.

e Injected chemicals into the streams between the topside MPFM and Test Separator,
since the amount injected during the calculation are neglected during normal
calibration.

e The waters streams in both the oil and the water outlet of the separators are in pure
volumetric line conditions, and there are no calculations done to standardize the
volumes to standard conditions.

e On the separator gas stream a constant standard gas density is implemented, and there
should be looked into a calculation of the density of the gas based on either the
predicted composition from the PVT model and or calculated through both the
velocity of sound from the ultrasonic gas flow meter and the oil density, with regards
to the expected standard gas density at the pressure and temperature conditions at
each moment.

8.2 Parallel calibration

The parallel calibration method can be used on both single-phase calibration and on
multiphase calibration. For any good calibration of flow meters stable conditions is
important. If conditions are not stable, then a good calibration is hard to achieve. And when it
comes to performing a calibration with the use of the algorithm created in this thesis, is very
simple, as shown in Figure 32. The algorithm gives also great flexibility in both choosing the
time window, and provide visual diagnostic insight into the data inside the algorithm. One of
which is the developmental k-factor. Instead of just accumulating and solving the for one
instance at the end of the dataset, the algorithms solves for the k-factors across the trial
windows, and through this can provide similar acceptance criteria as is used in the method
today. The augmented matrix plotting gives great visual insight into all the data fed into the
algorithm, where the conditions as well as the data integrity is shown clearly. And the
codebase is ready to have further more intensive properties, when the data is available in the
data repository, such as density’s and volumetric phase fractions, and with the flow weighed
averaging in the accumulator the data will be representable for the entire calibration and be
helpful in establishing how the calibration on each meter is effected by phase fractions.
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8.2.1 Trial quality, size and order.

To be able to minimize the length of the trials, but still have significant data to get a
representable result, is something to look further into and can further reduce deferred
production during a trial, where one of the higher flowing streams are deferred or rerouted.

Look into how smaller variations of flowrates in each trial can be without the matrix going
singular. An see if well tests and other normal downtime can be used in the creation and
finding potential trial windows.

When creating a trial, for the implementation now it is important to have the combination of
streams consistent, so the streams com in the correct order, but an auto-sorter method will be
implemented into the algorithm on a later stage.

8.3 Traditional vs Parallel calibration

When looking at the difference between traditional and parallel calibration, the reduction in
production deferrals are a significant benefit for the parallel calibration method, but there are
other factors as well to take into consideration; Such as that during a parallel calibration a
more nominal production is occurring, such that that the calibration is performed closer to
normal operation conditions, and less pressure and temperature difference between the
multiphase meter and the separator, the flowrates out of the separator are higher which can be
beneficial for the uncertainty of the measurement. But with the Parallel calibration there is no
longer a one to one relationship of the measurement, which can cause uncertainty and makes
the calibration less intuitive and breaks with the established calibration norms that it is based
on. But then again there are single phase system of master duty meter calibrations where the
master meter are precise meters connected in parallel which work as the reference, this is of
course the same here since both the oil and gas streams have two streams each. But on the
duty meter side having several on calibration at once is thought provoking.

8.4 The achieved result

Looking at the January result there is a static deviation which can be a product of the constant
gas and water density, flashing calculation, or the time window or due to the difference in the
raw data point resolution. But when looking at how the algorithm produced both the
traditional result and the synthetic parallel, they overlap extraordinarily well which gives
great confidence to the method and algorithm.

Looking at the March and April results there was one trial of the traditional calibration trial
which had not the best process integrity due to the variation of the oil levels in the separator
during the trial, that can be a source of uncertainty this is also shown in Figure 31, but both
the start and the end where stopped on approximately the same level. Additionally, there
where some non-continuities in the k-factor development that is not investigated to their full
extent. But for the synthetic and the traditional result they overlap well for this result as well.

And when it comes to the recalibration in late April the results are as expected, but with a
slight change to the calibration on the Vilje stream.

But for both the January and the later test there is a difference of the time windows used
between the actual system on Alvheim and the algorithm which can also be a source of the
difference, and also the effect of the flashing calculation, due to when a triple stream or dual
stream trial is online there is a smaller pressure and temperature difference between the
multiphase meter and the separator. But the algorithm performs satisfactorily.
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But looking at the results of the created traditional data set and the synthetic parallel dataset
which both are based on the same data, the results are satisfying, that the parallel calibration
method performs to the same or better than a traditional calibration does, when the trials is a
combination of 2 streams, but when even more streams are in one of the trials . And it is the
calibration method and algorithm which has been the main point of this thesis, that has the
simplified flash implemented. But when a better flashing algorithm is also implemented the
lower difference between the multiphase meter and the separator conditions should provide
less flashing and the flow meters on the separators are operating closer to their points of
higher accuracy and in general the calibration is executed closer to the normal operating
conditions, than during normal calibration where there are greater pressure and temperature
differences between the multiphase meter and separator, together with lower flowrates
through the separator.

8.5 Uncertainty

When it comes to quantifying the extended uncertainty of the method in general, this requires
a competence | do not currently have, since this is a linear combination of several
accumulated values in a matrix, but if the values accumulated on the single phase system are
according to the NPD’s regulation, and with regards to these single phase uncertainty, the
result of the random uncertainty of the k-factors are calculated as a part of the result basis set
for each phase and stream. And assuming the data is normally distributed as both shown in
the dual histogram and k-factor development plot and the violin plot the uncertainty is
established from this with respect to the measurement systems single-phase uncertainty.

8.5.1 Traditional vs Synthetic parallel calibration

Comparing the uncertainty between traditional and parallel by looking at differences in the
January 2019 calibration, the uncertainty between a traditional and parallel calibration
executed by the algorithm, shows a very small difference in random uncertainty of the result
and the k-factors produced are very similar as shown in table 7.2, this gives confidence in the
parallel calibration method. But it is important to root this result on a synthetic combination
and underlies the assumption that the systems are linear. Proof that the systems are in fact
linear comes from the April results where the traditional result is compared to the 2x2x2
parallel calibration executed, where the best result was on the Bgyla stream show in Figure
37.

8.5.2 Calibrating closer to normal operating conditions

Lower pressure and temperature differences between the multiphase meter and the separator
during parallel calibration due to higher use of the capacity of the separator, this lower
difference in the process condition lessens the effect of the flashing, and the uncertainty it
entails. But more importantly the flowrates through the separator is higher and as such the
single phase measurements can be operated with a flowrate better suited to the turndown*? of
the meter.

13 Turndown / effective range is a dimensioning figure of the operational area of a flow meter. And is the
fraction of the maximum flow divided by the minimum flow of the meter can measure within specified
uncertainty
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8.5.3 Numerical uncertainty in the parallel calibration method

From the result of the comparison of the traditional and the synthetic calibration the resulting
values, both due to the discreet numerical integration of varying time delta, as well as the
method takes in combinations of several streams at the same time.

8.5.4 In calculation of flashing

Until a good flashing algorithm is implemented into the data creation of the multiphase
streams to do a proper flash of hydrocarbon components within the stream, there will be a
systematic error of the precision and offset the k-factors calculated, but by implementing a
well working either through commercially available application or as an algorithm
implemented within the stream through a petrochemical model or a table lookup of simulated
data similar, and to also have flashing algorithm which is unique for each stream, since each
stream have its own composition based, and by having the measured or inferred density’s
from both the multiphase and the single phase measurement correcting each other can
provide additional features for this type of data analysis.

8.5.5 Accumulation quality

The raw datapoints of mass flow rates accumulated has a varying time between each
datapoint and having a sufficient density of datapoint for the is worth documenting, this can
be done by plotting a histogram of the time difference between each datapoint accumulator,
and due to data compression algorithm on the OSI soft Pl system if the values remain stable
over longer periods a new datapoint may not be available for a longer time period. But by the
use of the augmented matrix plotter a histogram of the time difference between each
datapoint can be documented and plotted with a logarithmic y scale to visualize the spread for
the time differences between the data points.

8.6 Further work and development

There is also of more work which can be used with respect to the post calculation of behavior
multiphase flow streams, but this is just the beginning of using data science and to use the
data availability which are available now through repositories such as Data Fusion by
Cognite, this thesis is simply the tip of the iceberg.

8.6.1 Automatic multi trial combination

There are T! (Factorial) number of combinations, and the parallel calibration method can be
done with all these different trial combinations. So for the 3 stream calibration unique trial
combinations can be executed and matched towards each other on order to increase the
quality.

8.6.2 Multi-dimensional multiphase meter calibration characteristic

To give each phase just a scalar factor for the calibration can be a crude method of calibrating
complex instruments there could be done a lot of work looking into creating a multi-
dimensional calibration characteristic for the multiphase meters, where there are more
dependent variables. It is also experienced that the uncertainty of the multiphase meters are
dependent on the velocities, flow scheme phase fractions in the streams, as covered in earlier
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chapters. And to take this into account and give a deeper understanding of the meters can
additionally reduce the uncertainty with regards to the meters in question.

8.6.3 Increment database in flow computer to CDP

When it comes to the database which stores the increments in each accumulation all the
increments for each second would be great if this was opened up to CDP, and with a
datapoint for each second would open up opportunities to do more in-depth calibration as
well as being able to verify and parallel calculate rates and do better data analysis with a
constant iteration time.

8.6.4 Sliding time-window approach

The result of the calibration with a sliding window approach would be interesting to see the
result, this will also give more consideration to the flow weighted average of the different
fractions at any time during the sliding time window.

8.6.5 Visualizing the k-factor over runs

To be able to create the k-factor development over the run time, there are a couple
approaches to this, the method can scan through all runs at the same time, giving the plots
such as the result of the synthetic and their by mimic the tradition calibration, or all but one
trial set can be held constant on a value acceptable accumulated value and vary one trial data.
Or there can be performed a multi-dimensional calibration creatingan T x S dimensional
matrix of k-factors which can be visualized in selected ways. But for this thesis the main
method used is the simultaneous scan over every trial at the same time to mimic the tradition
result, to have a comparable reference. But there are some further developments that can
potentially provide some deeper insight.

8.6.6 Soft-sensor of multiphase meters

The use of this algorithm and methodology can be used to create an estimator of the k-factor
through a moving trial window with respect to previous trial. And thus, have a constant
calculation of k-factors, and if this where to change a new parallel calibration rerouting
procedure could be executed and give new k-factors.

8.6.7 Calculate separator streams to multiphase conditions

In the implemented method, the multiphase meters are flashed to the separator streams. But to
look into how the single phase separator streams can be back calculated into multiphase
meter conditions should provide additional insight, the implementation now has the
comparison done at separator conditions, and it is the multiphase meters which are of interest
in the calibration.

8.6.8 Petrochemical calculations program development

There are many commercially available programs and modeling tools available, but in the
spirit of data liberation, open source libraries with regards to flow calculations and flashing
and PVT algorithms is of great interest both for applications and for educational and research
purposes, which this algorithm can benefit from.
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8.6.8.1 Flashing and PVT calculation library for python

Develop Flashing and PVT calculation library for python, to be run inside the multiphase
streams with given composition and pressure and temp deltas between stream and separator.
In order to perform a flash to separator conditions.

Or more advances a compositional calculator based on well test and expected decline curve
from GOR to be flashed to multiphase meter conditions, and further flashed to separator
condition, further corrected against the measured oil density and the calculated gas density
where the differences is taken into account to correct the flashing algorithm. The gas density
has a possible inference method based on the velocity of sound from the ultrasonic flow
meter.

8.6.8.2 Soft-sensor for gas density based on VOS, Temperature pressure and
assumed composition

Create an open source soft sensor for density estimation for gas flowrates based on velocity
of sound. Velocity of sound is easily gotten through ultrasonic flow meters, which are
frequently used on hydrocarbon gas streams in both wet- and dry-gas application. These
ultrasonic flow meters in addition to the fluid velocity and profile. Also give out the velocity
of sound through the gas media, and the velocity of sound together with temperature and
pressure and an initial guess of the composition can be used to infer the composition and
through the composition the standard density of the gas.

8.6.9 Digital twin giving further insight than planned

When development of the algorithm, the approach of creating a numerical digital
representation of the streams in the calibration system has revealed further insight and
opportunities than just the parallel calibration. When the code is structured in a physical
object-oriented way, it enabled newer insight into checking the state of the k-factors by using
the same trial vectors in another way to ensure that the mass balance of the system is intact
and their by alternative insight into. And this gives then a “free” soft sensor of the health of
the k-factors for the MPFMs in question.

Developing the software and calculations used inside the digital twin is also a very good
method of familiarizing yourself with the system and the data you are working with,
development of this kind of software for training purposes should provide benefits for
engineers and technicians working with the system to gain a more in-depth understanding as
well as opening up for more creative problem-solving and data analysis.

8.6.9.1 Calibration by difference

During the development of the parallel calibration algorithm a new multiphase meter on the
Bayla flow line was installed, it was change from a separate brand to a MPM Multi phase
meter, during the initial flows on the meter there where processes issues that prevented a
normal calibration to be performed, but the k factors for the other streams (Vilje and Volund
stream) was established and stable and with the use of the single trial calculations of the
streams the apparent k-factor for the new Bgyla MPFM was established with little to no
change in the code. By rearranging the equation from (6.2) to the equation (8.1).

(mp,ref - [mp,Vilje ) kp,Vil]'e + My volund kp,VolundD
kp poyla = (8.1)

My Bgyla
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8.7 Proposal for new structure for parallel calibration

Although this algorithm has been tested with 3 multiphase inlet streams the mathematics are
the same with more that 3 streams, this will also entail more trial combinations, but all
information indicate that it is a possible solution for the future, if a production hub is
connected to many fields. But to have a smaller separator for a one to one relationship is also
an opportunity, but to use bigger main separators for proper separation of the liquid phases
can be beneficial. But a proposal is shown in Figure 41 if the parallel calibration method is
used.
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Figure 41 - New structure for parallel calibration concept
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9 Conclusion

The use of data science on industrial data in the manner done in this thesis shows the great
opportunities which digitalization can achieve through liberation and contextualization of data.
The algorithm developed here can be of great benefit when it comes to the use of existing
processing and transport infrastructure through the third-party access focus in the maturing
parts of the Norwegian continental shelf. | feel this is just the tip of the iceberg of additional
benefits and insight through data science on historical and real-time data streaming from the
asset intensive industries.

This thesis provides details about the purpose and technical aspects of sensors and equipment,
used in both single and multiphase allocation measurements of oil and gas. An algorithm
solving a parallel calibration of multiphase meters has been developed, with implemented
quality assurance aspects of the data used and calculated, addressing both the process
conditions, data integrity and the random uncertainty of the result. The calibration uses real
data from Aker BP-operated Alvheim and executes both actual and synthetic calibrations. The
result of several calibrations is discussed in detail. Including the methods and their compared
results and uncertainties. The assumptions of the method concerning the mass balance of the
system, and the proportionality between single and multiphase, seem to hold its ground
empirically. When it comes to statistical basis and assumption that stabilized values are
normally distributed, this seems also to hold for the calibration where a stable result is achieved.
Future work and development of the method and algorithm are also discussed in detail.

The effects of using this algorithm compared to the traditional provide a significant reduction
in production deferrals, to the point where the deferrals are almost non-noticeable from normal
production, which has a significant economic effect. And the result from the calibrations
performed in the start and end of April 2019 had a reduction of above 15000bbl of oil. With a
assumed realized oil price of 70 USD/bbI** and an exchange rate of 8.7 USD/NOK?® equates
to above 9 million Norwegian Krones over the course of one month. An additional benefit is
that the code developed during this thesis provide the opportunity to analyze the health of the
multiphase meters, and gives grounds for a more condition based monitoring of the multiphase
meters and potentially increasing the time between calibrations, or by increasing the accuracy
by addressing the need for a calibration at an earlier stage. With the future plans on Alvheim
to potentially tie back more fields, then this calibration method has an even bigger potential in
reduction in production deferrals. The algorithm is implemented with this in focus and solves
a general case, with as many streams as the user can physically have installed, meaning the
algorithm is scalable. The code is also highly portable and can run on a metering SCADA level
with a minimal amount of extra code during implementation.

A new algorithm has been created in this thesis with a new way of looking at utilization of
stored and streaming industrial data. And I’m quite proud of what has been achieved in this
thesis, in the last 4 months. And with a fulltime job at the same time as I’ve created the
algorithm and written this thesis shows the power of digitalization.

14 In April 2019 the Brent Qil Spot price was around 70 USD/bbl.
15 the exchange rate of US dollar to Norwegian kroner 12/05-2019
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Contents

The content of this appendix will go into the technical details about the software development
of this thesis and go into detail implementations of the digital twins of streams and the
calculations used to create these digital representations of the state’s important and to prepare
and prepare and have all data needed for further processing in the calibration algorithm
created in this thesis. But first the raw data from the sensors through the Cognite Data Fusion
repository needs to be processed and prepared for further use. First it will describe the
accumulation which occurs on every single-phase stream rate and the go into the details
concerning the multi-phase and separator streams, and the calculations performed inside these
instantiated objects.
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2 Software development

In general, the development of the software methodology of the software in this thesis has
been in a evolutionary method. And has started from the lowest functional abstraction which
in this case is the accumulator. The general-purpose accumulator was created, and then this
was used as a crucial building block of the stream’s classes. And then the streams
abstractions were used as a comprehensive and object-oriented data basis for the data analysis
and calculations carried out in the parallel calibration algorithm. This Appendix will go into
details.

2.1 Python framework

The entire codebase developed for this thesis in the python language, with sensor / timeseries
datapoints from the Cognite python SDK! Data manipulations and calculations where done
with Pandas?, NumPy and the non-linear solver also used Scipy?.

2.1.1 Code and calculation execution efficiency

Pure Python is a dynamically typed programming language, where the entire execution
framework is working on a high abstraction layer, which makes it easy to type compared to
the compiled language, but being a dynamically typed language comes with a cost in
execution time and the computational resource usage, where the memory allocation is
distributed over the entire working memory of the computer, this causes higher strain on the
computer when looping through data to when it comes to executing calculations. There are
frameworks used which tries to reduce the resource needed for calculations, by taking the
calculation down to a lower computational level, this is where the python library NumPy
comes in. The calculation core of the NumPy library is written in C; with efficient memory
allocation and execution reducing the calculation time of, C is a compiled language, with the
calculation execution running close to the hardware with efficient memory allocation, and the
ability to vectorize the data into NumPy vectors and or matrices, and using techniques for
linear algebra to execute code to a much higher degree of efficiency than the dynamically
typed language Python. The core of NumPy is also implemented into Pandas library used to
develop the algorithms, by simplifying data manipulations and present the resulting values
for further processing or display. But back to computational efficiency, there is though cases
where the loops and algorithms cannot be vectorizes where the efficiency of the algorithms is
crucial and a potential for the use of Numba and JIT%.

2.2 Cognite Data Fusion

Aker BP ASA uses a data repository from Cognite AS called Cognite Data Fusion, for a lot
of their digitalization projects, and the CDF is a data repository containing the real-time and

1 Source code for Cognite Python SDK at: https://github.com/cognitedata/cognite-sdk-python
2 More information about the data analysis tool pandas on https://pandas.pydata.org/
3 Information about NumPy and SciPy can be found in https://docs.scipy.org/doc/

4 Numba with the JIT compiler which can aid in reduction of execution time. And it is also great to be able to
execute the algorithm in real-time, but Numba and JIT has not been used but still mentioned due to possible
future use. http://numba.pydata.org/
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historical datapoints from the majority of the sensors and aggregate data used to develop the
both the traditional method as well as the parallel calibration method. The data form CDF is
received through their Python SDK, which is open source and available on the package
manager for Python packages PIP, and the source code for the SDK is available on a Public
GitHub.

2.2.1 Datapoints, timestamps and time series data

The application uses the Cognite Data Fusion as a single source for the timeseries data points
used for all the calculations. Data Fusion gets the timeseries datapoints form the OsiSoft
Process Information (PI) server, and Pl has compression algorithm activated on the tags used
in this thesis, which only stores new datapoints if it changes more than a certain amount,
which intern causes the time between the datapoints received to vary.

The timeseries data can be received form the Data Fusion repository in both as raw datapoints
or as an aggregated for of datapoint such as the average, min or max value during a time
granularity. But the raw datapoints can vary with the timestamps. And in AkerBP’s case it is
the P1 by OSlsoft system that work as the repository that Data Fusion collects it timeseries
data from. But if an aggregate function which are simpler to work with, where timestamps are
indexed toward each other through a granularity property for simpler operations on the data.
But the data operations in this thesis will not be working with the aggregate time series, but
on the raw datapoints from the Data Fusion where each value comes with a unique timestamp
for that specific value, and other operations has to be done to find the closest other datapoint
in order to perform a real-time calculation, but all calculations where done on “real” raw
datapoints with a varying time between each sample.

2.3 Applied calculations

When it comes to applying calculations where the timestamps are not necessarily the same,
and the operations of synchronizing timestamps of the data. Calculations on the Oil stream
and water in oil stream are calculated on the same timescale, and the water outlet is
calculated on their own term and united on the aggregate accumulated level, this is to
simplify the level of the data, because it is a more elegant solution to synchronize the
aggregated data, and not implement the calculation on the accumulators increment level.

2.3.1 Calculating towards the closes datapoint

The way it finds the closes data point to a given timestamp is by detecting slope change in the
following function where there are two datapoint series the main with n datapoints and
timestamps the other with m timestamps.

2.4 Unit testing

When it comes to testing and unit-testing of the software the main functions as a standard has
implemented a simple testing procedure at the end of the related code segment, which is
executed if the only the related code is executed as main.



Accumulator

3 Accumulator

The main function of all the different phase streams is the individual accumulation of flow
rates for each given phase, in both multi-phase streams and in separator streams. The
principle of accumulation of flow and why is described in the main thesis but in this appendix
will dive into the actual implementation and code where this is performed. The accumulator
has been structured and object oriented in order to perform the same code on each of the
phases, so if the integration method used in the algorithm has to change there is only one
place this needs to change. But this core feature of the digital representation of the streams
within a time window is also executed in python through Pandas and NumPy libraries, and all
the values for each of the timesteps between each datapoint, and each increment are all stored
an available for any purpose. But in general the accumulator takes in a pandas data frame of
timestamps and raw datapoint values form the Cognite data fusion repository and first creates
a row of time deltas between each of the timestamps, the timestamps for each the datapoints
are in a Unix timestamp format in milliseconds resolution, so to get the time deltas (dt / At,,)
in second, the time differences are multiplied by 1000, in order to get the values in seconds.
The raw values in to the accumulator needs to be in rates pr hour, and the accumulator then
creats an pr second rate (PrSecRate / 11,,) where the raw flow rate value in pr hour is divided
by a 3600. This pr second rate (ri1,,) and time delta (dt /At,, ) is coped to a normal NumPy
array and forms the data used for in the numerical integration.

T
+ +
[increment,] Z [mn 1+ My <At ] Z [w t, — tn_l}] (3.1)
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The numerical integration implemented in the accumulator class is the trapezoidal method,
shown in equation (1.1), the reason why use the trapezoidal method is that through a simple
trick removes numerical voids occurring between each datapoint which is by taking the mean
of two datapoints and using this as mean value as a trapezoid between the data points, when
there is assumed that there is an analog decline or increase between each value, as
qualitatively described in Figure 1.

m’/h {} m’/h 4} m/h 4}

Void f,

Figure 1 — Qualitative description of increments between midpoint and trapezoidal numerical
integration method

All values calculated by the numerical integration method together with increments, time
deltas, and the elapsed time of the accumulation, which is the cumulative sum of the time
deltas are then collected into a the same data frame and stored to the instantiated object,
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Figure 2 shows a portion of such a data frame . It is also worth noticing that later in the more
abstract stream classes some accumulators are added together, and this operation is
synchronized through the elapsed time of the accumulator and is also used in the creation of a
synthetic data set for comparison between traditional and parallel calibration.

In [26]:  Calibration.TrialStreams[@][@].0ilMass.data

out[26]:

timestamp value dt PrSecRate incr cumulative datetime elapsed

0 1554002930531 141420.732117 12.043 39.283537 473.091632 0.000000 2019-03-31 03:28:50.531 12.043
1 1554002939563  32649.573441  9.032 9.069326 218.361528 218.361528 2019-03-31 03:28:59.563 21.075
2 1554002948596  19412.231216 9.033 5392286 65.315872 283.677400 2019-03-31 03:29:08.596 30.108
3 1554002960639  14842.492081 12.043 4122915 57.205784 340973184 2019-03-31 03:29:20.639 42.151
4 1554002959671 G441.761456  9.032 1.789378  26.699915 367.673099 2019-03-31 03:29:29.671 51.183
5 1554002078704 2654.008129  0.033 0737249  11.411514 379.084613 2019-03-31 03:2%:38.704 60.216
6 1554002990747 1110.552638 12.043 0.308487 6.296901 385381514 2019-03-31 03:29:50.747 72.259
T 1554002999779 897.749987  9.032 0.249375 2.519304 387.900818 2019-03-31 03:29:59.779 81.291
8 1554003008812 3199.685383  9.033 0.853801 5140574 393.041392 2019-03-31 03:30:08.812 90.324
9 1554003020855 4432862206 12.043 1.231351  12.766496 405807888 2019-03-31 03:30:20.855 102.367
10 1554003029387 3030.760722  9.032 0.241878 9.362700 415170588  2019-03-31 03:30:29.887 111.399
11 1554003033920  32203.473511  9.033 5.945409 44204283 459.374871  2019-03-31 03:30:38.920 120.432
12 1554003050963  83388.069305 12.043 23.163353 193.342910 652.717781 2019-03-31 03:30:50.963 132.475

Figure 2 — The head of Pandas Data frame of an implemented Accumulator object.

3.1.1 The flow weighted average (FWA)

The accumulator class also have implemented a flow weighted average algorithm for creating
flow weighted average representations of the intensive variables for the system. This is used
when there are intensive variable or any other property that change with the process
conditions, and in order to have a representative value of such a variable for a batch within
the accumulator the value has to be weighted and averaged across the timespan of the
measurement. Which is done by the formulas described beneath, where (3.2) is the analytical
case, and (3.3) is in the discrete form and implementable. But in essence the flow weighting
is done through multiplying the variable of interest x;(t) is the index i of the value in
question such as the fraction of a component, and t is the time at which the measurement is
done and the other figures are the mass flowrates, and thus it is the mass-flow weighted
average calculated for the specific variablex; during the time window T.

Lo
FWA =&, = | { dm(t)dt} (3.2)
T dt
FWA =%i = Zn=ol i XiBtn} (33)

7Tl=0{m1’lAt7’l}
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4 Streams

When it comes to the fitting of the raw data to a data set the correct tags and calculations are
needed which can be unique for each implementation of the algorithm. But for the time being
on the Alvheim field, from the information which is available in the Cognite data fusion
repository, and with more information and better flashing algorithms the only place needed to
do any changes to the flashing algorithm or performing any other calculations are done within
these derived streams classes.

4.1 Multi-phase streams

By having an abstract understanding of the functions of the different equipment involved in
the execution of multiphase meter calibration an important abstraction is to see where
physical functions are used more than once. And a multiphase meter is something which can
occur many times in the system in question.

Digital Multi-phase Stream Twin
Oil [xa] Water [kdl Gas [kal

e
hour

MPFMPM / [kal [kg] [ka] °

Flow Computer @ @ @

kg kg kg
haur haur [hnw I

kg kg kg
hour haur [hmn'l

: Gamma density DT @OII @I\/ater@Gas.

Tomography( XE | XT

FTX

-GVF

Temperatur -WLR
-Volume rates
@ -Mass rates

Pressure .
Multi-phase

Ventri GQ—@7 meter

« Multiphase,
stream

Figure 3 - Simplified conceptualization of the data within the multi-phase stream digital twin
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When it comes to the creation of a multiphase stream object in the constructor of the class the
following operations are performed as shown in Figure 4; the first operation is to get the
datapoints form CDP, these are in the unit tons/h, which is divided by 1000 to get the rates
into kg pr hour, and from this point both the gas and water mass rates are accumulated. But
the oil has a simplified flash calculation where a mass fraction of the oil is split form the oil
mass stream, and called gas in oil (gio), this gas is then accumulated and added to the
accumulated gas, to form the gas at separator conditions. The rest of the oil mass rate after
the gas portion is removed is accumulated just as the other phases. Figure 5 shows a table
from a process simulator simulating flashing with different pressures at multi-phase meter
and separator conditions, the rest of the results are in the appendix of collection of non-public
documents.

MPFM Mass rate Gas Gas oultet stream Accumulate gas from

[Tonn/h]? Multiply times 1000 [Kg/h] gass-mass-stream [kg] \
Tonn/h to kg/h
. Accumulated
Syncronize and Add gas MPFM [kg]

Accumulated Gas and —]

GiO streams A: Sep.arator
L Accumulate Gas in oil
Gas in oil

from GiO-mass-
[kg/h) stream [kg]

0.02*OilRate

Simplified Flash 1.0.02)*0ilR Accumulated Oil
MPEM Mass rate Oil Oil oultet stream | (Gas in Oil) (1-0.02)*CilRate Acumulate ol in from MPFM [kg]
[Tonn/h]? Multiply times 1000 (Ke/h] 2wht% of oil ™| MPFM Stream [kg] at Separator
Tonn/h to kg/h becomes gas Conditions
Get MPFM stream to
separator conditions
MPFM Mass rate Water oultet stream late water in Accumulated water
Water [Tonn/h]? Multiply times 1000 [Ke/h) MPFM Stream [kg] form MPFM [kg]
Tonn/h to kg/h

Figure 4 - Multi phase stream calculation flow

Sum of MPFM - SEP Delta Gas std flow Column Labels ~

Row Labels bl 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500
1500 0.00% 0.58% 1.15% L1.71% 2.25% 2.79% 3.32% 3.84% 4.36% 4.87% 5.37%
1600 -0.58% 0.00% 0.56% 1.12% 1.66% 2.19% 2.72% 3.24% 3.75% 4.26% 4.77%
1700 -1.14% -0.56% 0.00% 0.55% 1.09% 1.62% 2.14% 2.66% 3.17% 3.68% 4.18%
1300 -1.68% -1.11% -0.55% 0.00% 0.54% 1..07% 1.59% 2.10% 2.61% 3.11% 3.61%
1500 -2.20% -1.63% -1.08% -0.53% 0.00% 0.53% 1..04% 1.55% 2.06% 2.56% 3.06%
2000 -2.72% -2.15% -1.60% -1.05% -0.52% 0.00% 0.52% 1.02% 1.53% 2.03% 2.52%
2100 -3.21% -2.65% -2.10% -1.56% -1.03% -0.51% 0.00% 0.51% 1..01% 1.50% 1.99%
2200 -3.70% -3.14% -2.59%' -2.06%1 -1.53% -1.01% -0.50% 0.00% 0.50% 0.99% 1.48%
2300 -4.18% -3.62% -3.08% -2.54% -2.02% -1.51% -1.00% -0.50% 0.00% 0.49% 0.98%
2400 -4.65% -4.09% -3.55% -3.02% -2.50% -1.99% -1.48% -0.98% -0.49% 0.00% 0.48%
2500 -5.11% -4.56% -4.02% -3.49% -2.97% -2.46% -1.96% -1.46% -0.97% -0.48% 0.00%

Figure 5 - Flashing pressure sensitivity

4.2 Separators Streams

The multiphase stream object considers the influent streams, but the single-phase effluent
streams are also a crucial part of the data required to perform a calibration.
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Oil Flow Computer Digital Separator Stream Twin Gas Flow Computer
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Figure 6 — Simplified conceptualization of the data within the Separator stream digital twin

The separator streams from the data located form the data fusion repository is the standard
volumetric flow of gas, the volumetric and mass flow of oil, the volumetric water in oil
fraction (water cut) and the volume flow of produced water, at the time of the creation of this
method only these values are available, and to be able to convert the volumetric gas flow in to
a mass flow an standard density of the gas has to be assumed based. And there is also an
addition of the water in the oil stream (wio) this is found through the volumetric flow of oil
multiplied by the measured volumetric water cut at each instance. Which forms the
volumetric water in oil stream this intern like the volumetric water stream is multiplied with a
constant density based on laboratory values. These two water streams are accumulated by
them self, and added together afterwards. But luckily the available oil mass stream of pure oil
is available, and the only conversion done is a multiplication of a thousand go change the unit
from ton/hour to kg/hour
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Figure 7 - Separator stream calculation flow

4.3 Trial creation and object orientation

A overview of the classes created is shown in the class diagram in Figure 8, and a typical
instantiation of objects form the classes is shown in the object diagram in Figure 9. And the

most essential data set in a structure of a trial is shown in Figure 10.

Stream

- OilMass
- GasMass
- WtrMass

:

MultiphaseStream

:

SeparatorStream

Accumulator

FWA
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Figure 8 - Class diagram

Streams

OilMass:Accumulator

GasMass:Accumulator

Streams:List[]

Last Indexed stream is the refreance
stream (SeparatorStream)

WtrMass:Accumulator

OilMass:Accumulator

GasMass:Accumulator

WtrMass:Accumulator

OilMass:Accumulator

GasMass:Accumulator

WtrMass:Accumulator

OilMass:Accumulator

—<>
Bayla:
MultiphaseStream:Stream <
<>
—
Vilje:
MultiphaseStream:Stream
——
Volund:
MultiphaseStream:Stream
—>
Separator: -
SeparatorStream:Stream
<
—

GasMass:Accumulator

WtrMass:Accumulator

Figure 9 — Typical use of a list of instantiated stream objects in a Object diagram
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Trial
Vilje Volund Separator Streams

oil Gas Water Oil Gas Water Oil Gas Water
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
% 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0
> 2.1 2.1 2.1 2.1 2.1 2.1 4.1 4.1 4.1
S | 34 3.4 3.4 3.4 3.4 34 | 64 6.4 6.4
5
g 5242 5242 5242 5242 5242 5242 || 10482 10482 | | 10482
O 5245 5245 5245 5245 5245 5245 || 10490 10490 10490

Figure 10 - Example of how cumulative values are set up within a list of streams

4.4 Datapoints toolbox

In the development and testing of code, some of the methods of a more static nature towards
calculations of values, indexing / synchronizing datapoints where made and set into its own
python file® called Datapoints toolbox and contain more general-purpose static methods used
by the classes, and also contain code towards the initial testing and creating own traditional
calibration method.

4.5 Trial time window locator

There is also a Trial time windows locator which has as an input a search area which is the
days where a calibration was performed, then it gets the datapoints from the limit-switches on
valves that redirects flow either to the third party separator or to the Alvheim inlet separator.
And through basic operations on the received dataframe a time windows for each of the
located streams are returned.

5> Python files have .py as their file extension.
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Source code

Following this document is source code related to content of this appendix
Source code — Accumulator

Source code — Streams

Source code — Datapoint toolbox

Streams

13
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Source code — Accumulator

5 Source code — Accumulator

# -*- coding: utf-8 -*-

Created on Sun Feb 17 18:00:07 2019

@author: Stig

import numpy as np
import pandas as pd
from DatapointsToolbox import *

class Accumulator:
This is a acumulator of datapoints gotten from the CDP, it also assumes the rate to a
ccumulate is in pr/hour rates.

The acumulator has an object inside called data which is a pandas dataframe, and it i
s not a derived class of the dataframe. though it whould be more elegant and better
to work with..

def __init_ (self,df,**IntVars):
the param df is the return object of CogniteClient.datapoints.get_datapoints('tag
').to_pandas()
spesifically - list(stable.datapoints.DatapointsResponse).to_pandas()

This Performce manly the acumulation process, and adds a 'cumulative' column whic
h acumulates the data.

ATM it converts a pr Hour rate.

#df = datapoints_pd_cdp
df['dt'] = df['timestamp'].diff()/1000 # create dt collumn and converted to sec
df.dropna(inplace=True) #Inplace = True, withuth it it copys the df, memory effi
cient and stability. Also prompting warnings
""" Trapezoidal method """
dt = df['dt'].values
df[ 'PrSecRate'] = (df['value']/60)/60 #Creates a Per secondt rate
x = df['PrSecRate’'].values

cumulative = np.zeros(len(x))

increments = np.zeros(len(x))

increments[@] = x[@]*dt[@] #This value is not used in the accumulation but it kee

ps the incremental values consistent and has not a zeros at the start

for i in range(1,len(x)):
#Trapezoidal increments - The area under the "curve" section
increments[i]=((x[i-1]+x[1])/2)*dt[1i]
#Summing the increments - Summing the areas of all the curve sections
cumulative[i] = cumulative[i-1]+((x[i-1]+x[i])/2)*dt[i]

#Trapezoidal method
End Trapezoidal method"""
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Source code — Accumulator

df['incr'] = df['value']/(60*60)*df['dt'] #Rate from pr hour to pr sec, and mult

ipise times dt

cumulative = np.zeros(len(df))

#Acumulating increments

cumulative[@] = df.loc[1, "incr']

for i in range(1,len(cumulative)):
cumulative[i] = cumulative[i-

1] + df.loc[i+1,"incr'] #DF is indexed from 1 np array from 1.

#Increas accuracy by implementing the trapeziodal method?

df_cumulative = pd.DataFrame(cumulative,columns=["'cumulative’])
df_cumulative.index = df_cumulative.index + 1 #
df = pd.concat([df,df_cumulative],axis=1)

df['incr'] = increments
df['cumulative'] = cumulative

df
df

df.reset_index()
df.drop('index',axis=1) #reset so index starts at @

df['datetime'] = pd.to_datetime(df['timestamp'], unit="'ms') # Create a datetime c

olumn of timestamp

def

def

df['elapsed'] = df['dt'].cumsum() #Elapsed seconds since start of accumulation
self.data = df
#Adding the flow weighted average values

if(len(IntVars)!=0):
for IntVarName, IntVar in IntVars.items(): #Split the following key value par

. the first in the tuple is the name of the key, the second is the value

FWA(IntVar,IntVarName)

df(self):
#A simple method returning the dataframe to simplify development.
return self.data

FWA(self, IntVar, IntVarUnitName):

This methdo adds a Extensive variable and creates a represenatble flow weighted a

verage value for the start to the elapsed value.

It acheves this by first finding the closes datapoint between the acumulated rate

variable then calculates the extensive variable towards that rate

ClosesIndex = Vfindlowestindex(self.data,IntVar)
IntVariable = IntVar['value'].values
incr = self.data['incr'].values
cumulative = self.data['cumulative'].values
FWA = np.zeros(len(incr))
FWA[@] =IntVariable[0]
for i in range(1,len(FWA)):
FWA[i] = FWA[i-

1]+(incr[i]*IntVariable[ClosesIndex[i]]) #Buildning the numerator of the FWA

FWA = np.divide(FWA,cumulative) #Deviding the numerator by the denomenator witch

is the cumulative untill a point.
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Source code — Accumulator

self.data[IntVarUnitName] = FWA

def findIndexToAdd(Main,Added):

Function used when syncronicing the elapstime between two streams to be added to

eachother

The first Acumulator added becomes the main witch the other timestamps are syncro

nized to.
returns a np.array addedIndexes to the added.

AddedIndex = np.zeros(len(Main)).astype(int)

MainElapsed = Main['elapsed'].valuest#.astype(int)
AddedElapsed = Added['elapsed'].values#.astype(int)

#Find the closest elapsed time, to add acumulated at spesific time.

for i in range(1,len(AddedIndex)):

DT = np.zeros(len(AddedElapsed))
for j in range(len(AddedElapsed)):
DT[]j] = abs(AddedElapsed[j]-MainElapsed[i])
res = np.where(DT == min(DT))
AddedIndex[i] = int(max(res[@]))

return AddedIndex

def AddStreams(Main,ToBeAdded):

Adding to accumulator streams by syncronizing elapsed times and adds one to anoth

c&r

returns a np array of the syncronzed and added cumulative streams

TBAIndecies = findIndexToAdd(Main,ToBeAdded)
MainCumulative = Main['cumulative'].values
ToBeAddedToMain = ToBeAdded['cumulative'].values

for i in range(len(TBAIndecies-1)):

MainCumulative[i] = MainCumulative[i] + ToBeAddedToMain[TBAIndecies[i]]

return MainCumulative

def AddStream(self,Accumulator):
self.data[ 'cumulative'] = AddStreams(self.data,Accumulator)

# "STATIC FUNCTIONS" ??

def findIndexToAdd(Main,Added):

Function used when syncronicing the elapstime between two streams to be added to each

other

The first Acumulator added becomes the main witch the other timestamps are syncronize

d to.
returns a np.array addedIndexes to the added.

AddedIndex = np.zeros(len(Main)).astype(int)

MainElapsed = Main['elapsed'].values#.astype(int)
AddedElapsed = Added['elapsed'].values#.astype(int)
#Find the closest elapsed time, to add acumulated at spesific time.
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for i in range(1,len(AddedIndex)):

DT = np.zeros(len(AddedElapsed))
for j in range(len(AddedElapsed)):
DT[]j] = abs(AddedElapsed[j]-MainElapsed[i])
res = np.where(DT == min(DT))
AddedIndex[i] = int(max(res[0]))

return AddedIndex

def AddStreams(Main,ToBeAdded):
Adding to accumulator streams by syncronizing elapsed times and adds one to another
returns a np array of the syncronzed and added cumulative streams
TBAIndecies = findIndexToAdd(Main, ToBeAdded)
MainCumulative = Main['cumulative'].values
ToBeAddedToMain = ToBeAdded[ 'cumulative'].values

for i in range(len(TBAIndecies-1)):
MainCumulative[i] = MainCumulative[i] + ToBeAddedToMain[TBAIndecies[i]]

return MainCumulative

if (_name__ == '__main__"):
import matplotlib.pyplot as plt

#Unit testing of Accumulator
hours = 4
t = np.linspace(0,1000,1001)*1000
tr = np.copy(t)
for i in range(len(tr)):
tr[i] = tr[i]+i*10000+(np.random.rand()-0.5)*5000
div = 5*(np.random.rand(len(t))-0.5) #Give values som randoms to accumulate
X = np.zeros(len(t))
X[@] = 150
for i in range(1,len(t)):
X[1]=X[1i-1]+div[i]

plt.plot(X)

plt.show()

df = pd.DataFrame({'timestamp’:tr, 'value':X})
Test = Accumulator(df)

plt.plot(Test.data[ 'cumulative'])

plt.show()

print(Test.data.head(20))

print('---- Unit test --- of accumulator')
X = np.ones(len(t))*60*60

plt.plot(X)

plt.show()

df_check = pd.DataFrame({'timestamp':t, 'value':X})
UnitTest = Accumulator(df_check)
plt.plot(UnitTest.data[ 'cumulative'])
print(UnitTest.data['cumulative'].tail(20))
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6 Source code — Streams

# -*- coding: utf-8 -*-

Created on Sun Feb 17 18:00:07 2019

@author: Stig

import numpy as np
import pandas as pd
from DatapointsToolbox import *

class Accumulator:
This is a acumulator of datapoints gotten from the CDP, it also assumes the rate to
accumulate is in pr/hour rates.

The acumulator has an object inside called data which is a pandas dataframe, and it
is not a derived class of the dataframe. though it whould be more elegant and bette
r to work with..

def __init_ (self,df,**IntVars):

the param df is the return object of CogniteClient.datapoints.get_datapoints('ta
g').to_pandas()

spesifically - list(stable.datapoints.DatapointsResponse).to_pandas()

This Performce manly the acumulation process, and adds a 'cumulative' column whi
ch acumulates the data.

ATM it converts a pr Hour rate.

#df = datapoints_pd_cdp
df['dt'] = df['timestamp'].diff()/1000 # create dt collumn and converted to sec

df.dropna(inplace=True) #Inplace = True, withuth it it copys the df, memory eff
icient and stability. Also prompting warnings

""" Trapezoidal method """
dt = df['dt"'].values
df['PrSecRate'] = (df['value']/60)/60 #Creates a Per secondt rate
x = df['PrSecRate'].values

cumulative = np.zeros(len(x))

increments = np.zeros(len(x))

increments[@] = x[@]*dt[@] #This value is not used in the accumulation but it ke

eps the incremental values consistent and has not a zeros at the start

for i in range(1,len(x)):
#Trapezoidal increments - The area under the "curve" section
increments[i]=((x[i-1]+x[1])/2)*dt[1i]
#Summing the increments - Summing the areas of all the curve sections
cumulative[i] = cumulative[i-1]+((x[i-1]+x[i])/2)*dt[i]

#Trapezoidal method
End Trapezoidal method"""
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Source code — Streams

df['incr'] = df['value']/(60*60)*df['dt'] #Rate from pr hour to pr sec, and mul

tipise times dt

cumulative = np.zeros(len(df))

#Acumulating increments

cumulative[@] = df.loc[1, 'incr']

for i in range(1,len(cumulative)):
cumulative[i] = cumulative[i-

1] + df.loc[i+1,"incr'] #DF is indexed from 1 np array from 1.

#Increas accuracy by implementing the trapeziodal method?

df_cumulative = pd.DataFrame(cumulative,columns=["'cumulative'])
df_cumulative.index = df_cumulative.index + 1 #
df = pd.concat([df,df_cumulative],axis=1)

df["incr'] = increments
df[ 'cumulative'] = cumulative

df
df

df.reset_index()
df.drop('index',axis=1) #reset so index starts at o

df[ 'datetime'] = pd.to_datetime(df['timestamp'], unit='ms') # Create a datetime

column of timestamp

ri.

def

def

df['elapsed'] = df['dt'].cumsum() #Elapsed seconds since start of accumulation
self.data = df

#Adding the flow weighted average values
if(len(IntVars)!=0):
for IntVarName, IntVar in IntVars.items(): #Split the following key value pa
the first in the tuple is the name of the key, the second is the value
FWA(IntVar,IntVarName)

df(self):
#A simple method returning the dataframe to simplify development.
return self.data

FWA(self, Intvar, IntVarUnitName):

This methdo adds a Extensive variable and creates a represenatble flow weighted

average value for the start to the elapsed value.

It acheves this by first finding the closes datapoint between the acumulated rat

e variable then calculates the extensive variable towards that rate

ClosesIndex = Vfindlowestindex(self.data,IntVar)
IntVariable = IntVar['value'].values
incr = self.data['incr'].values
cumulative = self.data['cumulative'].values
FWA = np.zeros(len(incr))
FWA[@] =IntVariable[©0]
for i in range(1,len(FWA)):
FWA[i] = FWA[i-

1]+(incr[i]*IntVariable[ClosesIndex[i]]) #Buildning the numerator of the FWA

FWA = np.divide(FWA,cumulative) #Deviding the numerator by the denomenator witch

is the cumulative untill a point.
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self.data[IntVarUnitName] = FWA

def findIndexToAdd(Main,Added):

Function used when syncronicing the elapstime between two streams to be added to

eachother

The first Acumulator added becomes the main witch the other timestamps are syncr

onized to.
returns a np.array addedIndexes to the added.

AddedIndex = np.zeros(len(Main)).astype(int)

MainElapsed = Main['elapsed'].values#.astype(int)
AddedElapsed = Added[ 'elapsed'].values#.astype(int)

#Find the closest elapsed time, to add acumulated at spesific time.

for i in range(1,len(AddedIndex)):

DT = np.zeros(len(AddedElapsed))
for j in range(len(AddedElapsed)):
DT[]j] = abs(AddedElapsed[j]-MainElapsed[i])
res = np.where(DT == min(DT))
AddedIndex[i] = int(max(res[0]))

return AddedIndex

def AddStreams(Main,ToBeAdded):

Adding to accumulator streams by syncronizing elapsed times and adds one to anot

her

returns a np array of the syncronzed and added cumulative streams

TBAIndecies = findIndexToAdd(Main,ToBeAdded)
MainCumulative = Main['cumulative'].values
ToBeAddedToMain = ToBeAdded['cumulative'].values

for i in range(len(TBAIndecies-1)):

MainCumulative[i] = MainCumulative[i] + ToBeAddedToMain[TBAIndecies[i]]

return MainCumulative

def AddStream(self,Accumulator):
self.data[ 'cumulative'] = AddStreams(self.data,Accumulator)

# "STATIC FUNCTIONS" ??

def findIndexToAdd(Main,Added):

Function used when syncronicing the elapstime between two streams to be added to eac

hother

The first Acumulator added becomes the main witch the other timestamps are syncroniz

ed to.
returns a np.array addedIndexes to the added.

AddedIndex = np.zeros(len(Main)).astype(int)

MainElapsed = Main['elapsed'].values#.astype(int)
AddedElapsed = Added['elapsed'].values#.astype(int)
#Find the closest elapsed time, to add acumulated at spesific time.
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for i in range(1,len(AddedIndex)):

DT = np.zeros(len(AddedElapsed))
for j in range(len(AddedElapsed)):
DT[j] = abs(AddedElapsed[j]-MainElapsed[i])
res = np.where(DT == min(DT))
AddedIndex[i] = int(max(res[0]))

return AddedIndex

def AddStreams(Main,ToBeAdded):

Adding to accumulator streams by syncronizing elapsed times and adds one to another

returns a np array of the syncronzed and added cumulative streams
TBAIndecies = findIndexToAdd(Main,ToBeAdded)

MainCumulative = Main['cumulative'].values

ToBeAddedToMain = ToBeAdded['cumulative'].values

for i in range(len(TBAIndecies-1)):
MainCumulative[i] = MainCumulative[i] + ToBeAddedToMain[TBAIndecies[i]]

return MainCumulative

if (_name__ == '__main__'):
import matplotlib.pyplot as plt

#Unit testing of Accumulator
hours = 4
t = np.linspace(0,1000,1001)*1000
tr = np.copy(t)
for i in range(len(tr)):
tr[i] = tr[i]+1i*10000+(np.random.rand()-0.5)*5000
div = 5*(np.random.rand(len(t))-0.5) #Give values som randoms to accumulate
X = np.zeros(len(t))
X[@] = 150
for i in range(1,len(t)):
X[1]=X[i-1]+div[i]

plt.plot(X)

plt.show()

df = pd.DataFrame({'timestamp':tr, 'value':X})
Test = Accumulator(df)
plt.plot(Test.data['cumulative'])

plt.show()

print(Test.data.head(20))

print('---- Unit test --- of accumulator')
X = np.ones(len(t))*60*60

plt.plot(X)

plt.show()

df_check = pd.DataFrame({'timestamp':t, 'value':X})
UnitTest = Accumulator(df_check)
plt.plot(UnitTest.data['cumulative'])
print(UnitTest.data[ 'cumulative'].tail(20))
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# -*- coding: utf-8 -*-

Created on Thu Feb 28 19:39:54 2019

@author: stig

import numpy as np

import pandas as pd

from datetime import datetime
from datetime import timedelta

def findlowestindex(biggest_df,smallest_df):

lowestindex = np.zeros(len(biggest_df)) #By lowest index the, meas that the in

dex covertion with the least time between.
lowestArr = np.zeros(len(biggest_df))

j_high = o

for i in range(len(biggest_df)):
lowest = np.inf #High initial start value
j_ref = np.inf #High initial start valyue
rise = False

for j in range(len(smallest_df)):
if(j_high==0):
ja =13
else:

jgq = j_high+j #effiecient excecution of the algorithm, no need to 1

oop the entire array in each inner 1loop.
if(jg>=len(smallest_df)-1): # Out of datapoints, out of datapoint-
timestamps
break

DT = abs(smallest_df.loc[jq, 'timestamp']-
biggest_df.loc[i, 'timestamp'])

if(DT<lowest):
lowest = DT
else:
rise = True
if(j_ref >= lowest) and rise:
lowestindex[i] = jg-1
lowestArr[i] = lowest
break #Found closest for this index i iteration.
J_ref = DT

j_high = lowestindex[i]
#tcheck last idexes if timestamp out of range with respect to the other

if(lowestindex[len(lowestindex) -
1] == @): #Indicate need by seeing if last index has value 0.

for i in range(1,len(lowestindex)): #loops through entire array, to ensure

no bugs from odd division of index etc.
if(lowestindex[i]<lowestindex[i-
1]): #checks to se that each index is same or higher value
lowestindex[i] = lowestindex[i-
1] # if not set to same value as before.

return lowestindex

def Vfindlowestindex(biggest_df,smallest_df):
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lowestindex = np.zeros(len(biggest_df)) #By lowest index the, meas that the in

covertion with the least time between.

lowestArr = np.zeros(len(biggest_df))

biggest = biggest_df['timestamp'].values.astype(int)
smallest = smallest_df['timestamp'].values.astype(int)

j_high = o

for i in range(len(biggest)):
lowest = np.inf #High initial start value
j_ref = np.inf #High initial start valyue
rise = False

for j in range(len(smallest)):
if(j_high==0):
ja =13
else:

jq = j_high+j #effiecient excecution of the algorithm, no need to 1

oop the entire array in each inner loop.
if(jg>=len(smallest)-1): # Out of datapoints, out of datapoint-
timestamps
break
ja= int(jq)

1] =

1]):

1]

def

def

DT = abs(smallest[jq]-biggest[i])

if(DT<lowest):
lowest = DT
else:
rise = True
if(j_ref >= lowest) and rise:
lowestindex[i] = jg-1
lowestArr[i] = lowest
break #Found closest for this index i iteration.
j_ref = DT

j_high = lowestindex[i]
#tcheck last idexes if timestamp out of range with respect to the other

if(lowestindex[len(lowestindex)-
= @): #Indicate need by seeing if last index has value ©.

for i in range(1,len(lowestindex)): #loops through entire array, to ensure
no bugs from odd division of index etc.

if(lowestindex[i]<lowestindex[i-
#tchecks to se that each index is same or higher value
lowestindex[i] = lowestindex[i-
# if not set to same value as before.

return lowestindex

find_nearest(array, value):

array = np.asarray(array)

idx = (np.abs(array - value)).argmin()

return idx

findIndexToAdd(Main,Added):
AddedIndex = np.zeros(len(Main)).astype(int)

MainElapsed = Main['elapsed'].values#.astype(int)
AddedElapsed = Added[ 'elapsed'].values#.astype(int)
#Find the closest elapsed time, to add acumulated at spesific time.

for i in range(1,len(AddedIndex)):

DT = np.zeros(len(AddedElapsed))
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for j in range(len(AddedElapsed)):

DT[]j] = abs(AddedElapsed[j]-MainElapsed[i])
res = np.where(DT == min(DT))
AddedIndex[i] = int(max(res[0]))

return AddedIndex

def AddStreams(Main,ToBeAdded):

Adding to accumulator streams by syncronizing elapsed times and adds one to ano

ther
returns a np array of the syncronzed and added cumulative streams

TBAIndecies = findIndexToAdd(Main,ToBeAdded)
MainCumulative = Main['cumulative'].values
ToBeAddedToMain = ToBeAdded['cumulative'].values

for i in range(len(TBAIndecies-1)):
MainCumulative[i] = MainCumulative[i] + ToBeAddedToMain[TBAIndecies[i]]

return MainCumulative

def SyncTimestamp(smallest_df, largest_df):

#Converting ms timestamps to pr 10 sec "[desisec]", and converts them to intege

r, som now it is find the closes matchin
outer = (smallest_df['timestamp'].values/10000).astype(int)
inner = (largest_df['timestamp'].values/10000).astype(int)

start = 1

pairs = []

for i in range(start,len(outer)-1):
highest = ©

for j in range(start,len(inner)-1):
if(j+highest > len(inner)-1):
break
else:
inner_index = j+highest

if(inner[inner_index]==outer[i]):
pairs.append((i,j))
highest = j
return pairs

def K_Trad(Subject, Referance):

returns a touple of two np.arrays (elapsed , k_factors) where elapsed is the ac

cumulation time and k_factors

#Klist = []

Matchindexes = SyncTimestamp(Subject,Referance)
k_factors = np.zeros(len(Matchindexes))
elapsed = np.zeros(len(Matchindexes))
cnt = 0
for pair in Matchindexes:
i,j = pair
Sub = Subject.loc[i, 'cumulative']
Ref = Referance.loc[j, 'cumulative']
k_factors[cnt] = Ref/Sub
elapsed[cnt] = Subject.loc[i, 'elapsed']/60
cnt = cnt + 1
#K1list.append((timestamp,K factor))
return (elapsed,k_factors)
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8 Source code — Time Window locator

Printed 05/05-2019

# -*- coding: utf-8 -*-

Created on Sat Apr 6 21:31:19 2019

@author: stig

import pandas as pd
from datetime import datetime

def FindTrialWindows(start,end,cdp, AddMin = 20,RemMin = 120):

#3rd party heade manifold valves
Bgpyla = '16HV0210/XGH/PRIM'
Vilje = '16HVO510/XGH/PRIM'
Volund = '16HV0610/XGH/PRIM'

#inlet separator valves to ensure the multi phase steram is not flow to both the inlet se
parator and the 3.rd party separator at the same time.

BpylalInlet '16HV0220/BCH/PRIM’
ViljelInlet '16HV0520/BCH/PRIM'
VolundInlet = '16HV0620/BCH/PRIM’

ts_name = ['Bpyla’', 'Vilje', 'Volund','BgylaInlet','ViljeInlet', 'VolundInlet']
ts = [Bgyla, Vilje, Volund,BgylaInlet,ViljeInlet,VolundInlet]

#Hent ventil posisjons data fra Cognite over headerventiler til 3rd party separatoren.
df = cdp.datapoints.get_datapoints_frame(time_series=ts,aggregates=["step"], granularity=
"30second", start=start, end=end)

df['datetime'] = pd.to_datetime(df['timestamp'], unit="ms")

#renaming the 3. party inlet header valves

df.rename(columns = {'16HV0210/XGH/PRIM|stepinterpolation’' : ts _name[@], '16HVO510/XGH/PR
IM|stepinterpolation': ts_name[1], '16HV@610/XGH/PRIM|stepinterpolation’:ts_name[2]}
, inplace = True)

#Remainming the main inlet separator header valves

df.rename(columns = {'16HV0220/BCH/PRIM|stepinterpolation’ : ts_name[3], '16HV@520/BCH/PR
IM|stepinterpolation': ts_name[4], '16HV@620/BCH/PRIM|stepinterpolation':ts_name[5]}
, inplace = True)

df.interpolate(inplace = True) #Fyller ut NAN'er
df[ 'Paralell'] = df[ts_name[@]]+df[ts_name[1]]+df[ts_name[2]] == 2.0 #Finner tider den s
om er til Paralell kalibrering.

#Finner tiderne som det er utfgrt parralell kalibrering samt sjekker at linjene ikke star
til alvheim main inlet separator, at lgpa flower kun til 3.part sep.

VilVol_ParTimes = df[df['Paralell’]&df[ 'Volund']&df['Vilje']&(df['ViljeInlet']+df[ 'Volund
Inlet']==0.0)][ "timestamp"]

BgpVol ParTimes = df[df['Paralell’]&df['Bgyla’]&df[ 'Volund']&(df['BgylaInlet’]+df['VolundI
nlet']==0.0)]["timestamp']
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BgVil_ParTimes = df[df['Paralell’]&df['Boyla’]&df['Vilje']&(df[ 'BpylaInlet’]J+df['ViljelInl
et']==0.0)][ 'timestamp']

# legg til forriggling pa at headeren til Alvheim inlet separator ogsd ikke er open, slik
at en strgm strgmmer bade til 3.part separator og inlet separator

#Add timedelta
from datetime import timedelta

#adding stabilization time after calibration set in moteon

if(len(VilVol_ParTimes)==0):

print("No Vilje Vound Window found")

ViVoWindow="No Time Window found"

else:

ViVoWindow = (datetime.fromtimestamp(min(VilVol_ParTimes)/1000.0) + timedelta(minutes
=AddMin) ,datetime.fromtimestamp(max(VilVol ParTimes)/1000.0) -
timedelta(minutes=RemMin))

if(len(Bg¢Vol ParTimes)==0):

print("No Bgyla Volund Window found")

BgVoWindow = "No Time Window found"

else:

BgpVoWindow = (datetime.fromtimestamp(min(B¢Vol ParTimes)/1000.0) + timedelta(minutes=
AddMin) ,datetime.fromtimestamp(max(BgVol_ParTimes)/1000.0) -
timedelta(minutes=RemMin))

if(len(BpVil_ParTimes)==0):
print("No Bgyla Vilje Window found")
BgpViWindow = "No Time Window found"

else:
BgpViWindow = (datetime.fromtimestamp(min(Bg¢Vil ParTimes)/1000.0) + timedelta(minutes=
AddMin) ,datetime.fromtimestamp(max(Bg¢Vil ParTimes)/1000.90) -
timedelta(minutes=RemMin))

return (VivVoWindow,BgVoWindow,BgViWindow)

if (_name__ == '__main__"):

#Unit testing of Accumulator
print('test not implemented')
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1 Appendix D — Parallel Calibration Algorithm

Contents

In the main thesis the method used to calculate the calibration factors is established, but when
it comes to the implementation of this method in to an algorithm, and also displaying and
plotting the results and performs a statistical analysis on the resulting calibration factors.

This Appendix will go into detail about the inner working and synchronization of data as well
as the plots and results created and used in this thesis.
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2 Development of the algorithm

The input to the algorithm is a python list object of Trials, where the Trials are also python
list of streams objects as discussed in the previous appendix on the Digital Twins, and in the
solving of this algorithm the data layout and calculations done based on values from the
digital copies which are used to perform a parallel calibration.

Trial 1 Trial 2 | Trial 3 |

Separator Streams MPM Stream 1 MPM Stream 3 Separator Streams MPM Stream 2 MPM Stream 3 Separator Streams

Cumualtive values

Trials |
\

Parallel Calibration Algorithm
\

\ K-factors \

112 112 112 112 112 112 112 112 112
111 111 111 111 111 111 111 111 111
N 111 111 111 111 111 111 111 111 111

Figure 1 - Input and output of the k-factor calculation within the parallel calibration
algorithm, with a 2x2x2 trial configuration.

2.1 Scale and synchronize data points

Each phase in each stream in each trial has their own number of datapoints and when it
comes to synchronizing the data points of the cumulative values in each phase stream. This is
done by first finding the stream with the lowest number of datapoints in the stream within the
time window of the specific trial, this is set as the reference number of runs for the trial. Then
each other stream in a give phase is synchronized by finding the closes datapoint to reference
datapoint trial and is executed efficiently through elegant use of the NumPy library, as shown
in Figure 2.
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Ol Trials
Elapsed time
of trial N - -
Trial 1 Trial 2 Trial 3
1 0.0 ! MPM Stream 1 H MPM Stream 2 ‘ ‘ Separator Stream ‘ MPM Stream 1 H MPM Stream 2 ‘ ‘ Separator Stream ‘ MPM Stream 1 H MPM Stream 2 ‘ ‘ Separator Stream
5 1.0 oil Gas Water oil Gas Water oil Gas Water oil Gas Water oil Gas Water oil Gas Water oil Gas Water oil Gas Water oil Gas Water
13 2.1 1 o0 1 oo 1 oo 1 [ o0 1 Joo | 1 oo 1 [ o0 1 oo | 1 o0 1 [ o0 1 oo 1 [o0 1 [ 00 1T oo t oo 1 [ o0 1 Joo| 1 [oo 1|00 1 oo 1 100 1|00 1 o0 1 jo00 1 | oo 1 oo 1 fo0
19 3.4 5 |10 5 | 10 5 | 10 5 | 10 5 | 10 5 | 10 5 | 10 5 |10 5 | 10 5 |10 5 | 10 5 | 10 5 | 10 5 | 10 5 | 10 5 | 10 5 | 10 s | 10 5 | 10 5 | 10 5 | 10 5 | 10 5 | 10 5 | 10 5 | 10 s | 10 5 | 10
1B |21 1B 21| 13|21 13| 21 3|21 13|21 13|21 13|21 13|21 1B |21 B 21| 1B |21 B |21 1B |21 1B |21 B |21 B |21 1B |21 3 |21 B 21| 1B |21 B |21 B 21| 1B |21 B3 |21 B | 21| 1B |21
19 | 34 19 |34 | 19 |34 19 | 34 19 |34 | 19 |34 19 | 34 19 [34 || 19 |34 19 |34 19 |34 | 19 |34 19 | 34 19 |34 | 19 |34 19 | 34 19 |34 | 19 |34 19 | 34 19 |34 | 19 |34 19 | 34 19 |34 | 19 |34 19 | 34 19 | 34 | 19 |34
23018 5242 y» o y g - - - . . . . . . .
230185242 (| 23018 5242 || 23018| 5242 || 23018| 5242 || 23018 5242 (| 23018| 5242 | | 23018( 5242 || 23018 | 5242 | 23018 5242 || 23018 5242 || 23018| 5242 || 23018| 5242 || 23018 5242 || 23018| 5242 || 23018 5242 | | 23018 5242 || 23018| 5242 || 23018| 5242 | | 23018 5242 || 23018| 5242 || 23018 5242 | | 23018 5242 || 23018| 5242 || 23018 5242 | | 23018 5242 || 23018 5242 || 23018 5242
23025 5245 23025 5245 || 23025 | 5245 || 23025 5245 || 23025 5245 || 23025 5245 || 23025 5245 | | 23025 5245 || 23025 | 5245 || 23025 5245 || 23025 5245 || 23025 5245 || 23025 5245 || 23025 5245 || 23025 5245 || 23025| 5245 | | 23025 5245 || 23025 | 5245 || 23025 5245 | | 23025] 5245 || 23025 5245 || 23025 5245 || 23025 5245 || 23025 | 5245 || 23025 5245 | | 23025 5245 || 23025] 5245 || 23025 5245
Trial 1 Trial 2 Trial 3
llection of — ;
Collection o Loop through each column 21 | 21§ 4l
i . y 34 | 34 | 64
elapsed times 23018 (| 23018] 23018 and find the closed elapsed
23025]| 23025 | 23025 time between the reference . .
: 5242 || 5242 | 10482
index and the current column 5245 || 5245 || 0490
Collection of
Finds the length of the cumulative values
dataset with least number .
of values and creates Finds the column index of the v Synchronize | synchronize| | Synchronize| Ssynchronize| Synchronize| | Synchronize| synchronize| Synchronize
smallest stream, and makes it Gas il il
YR Water Oi Gas Water Oi Gas Water
o] oo . : .
0 o 0 4 3 10 Combine cumulative rates into a
6 || 4 || 1. .
0 0 0 —ee synchronized dataset, by
0 | 0 | 0 | e— . . L P
synchronizing on indices
4030 || 3502 || 8004
6 0 0 . 4035 || 3503 || 8005
o 3502 0 5 "
oo o A (e[ Matrix of synchronized
indices

Matrix of empty indices

Matrix of reference index
and empty indices

Synchronize trial phase

Syncronized Oil phase in trial 1

\
0.0 0.0 0.0
2.1 1.0 3.0
4.5 21 6.8
6.8 3.4 10.8
4802 5242 || 10473
4809 5245 || 10479

Figure 2 - Figure of the algorithm flow of synchronization of a specific trial phase as the preprocessing before parallel calibration
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2.2 Create the M, matrix

A gold of the parallel calibration is to try to recreate the same developmental k-factors across
“time” that the traditional method uses. but when the data comes from T number of different
time slots with different elapsed time within the time windows, to look at the x-axis as across
time is not necessarily correct which is why the plots don’t have time as the x-axis but runs.
But in order to create a developmental k-factor across the synchronized trial runs, the
structure of the M,, has to be determined, and then later filled with values across the elapsed
runs and subsequentially solved to achieve the resulting k-factors.

2.2.1 Create M, Frame

By looping through all streams in all the trials the algorithm finds through clever lookup of
the name of each stream, a frame matrix can be created which can later be filled by values.
This initial frame is a binary valued matrix in R7* Dimensions, where a one represents a
value to be filled and 0 represents that this stream was not online during this trial.

2.2.2 Fill M,, Frame

When the M,, frame has been established a copy of this frame with float valued cells and this
is then to be filled with values for each run and solved. As shown in Figure 3.



Cumualtive values

2 Development of the algorithm
Trial 1 | Trial 2 | Trial 3

MPM Stream 1 MPM Stream 2 Separator Streams MPM Stream 1 ‘ MPM Stream 3 ‘ Separator Streams MPM Stream 2 ‘ MPM Stream 3 ‘ Separator Streams

0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

1.0

21
34

5242
5245

\ \ p ra\m\c libratjon Algorithm

/ L Gas \ \ Water
For each run \_ / \ For each run For each run

Trial 1 h / h o g
Trial 2 r ° M, m M, m
. 4 p "p p "p
Trial 2 0
_ p-1
k, = M, m, Solve System of Solve System of
Solve System of equations equations equations
\ K-factog/ / \
\ Oil ‘ \ Gas \ \ Water \
‘ MPM1 ‘ ‘ MPM2 ‘ ‘ MPM3 ‘ MPM1 ‘ ‘ MPM2 ‘ ‘ MPM3 ‘ MPM1 ‘ ‘ MPM2 ‘ ‘ MPM3 ‘
Run 15 15 15 15 15 15 15 15 15
12 12 12 12 12 1.2 12 12 12
13 13 13 13 13 13 13 13 13
10 10 1.0 10 1.0 10 1.0 1.0 10
11 11 11 11 11 11 11 11 11
18 18 18 18 18 18 18 18 18
112 l.iZ 112 1..12 112 1.‘12 1.‘12 1.‘12 1..12
111 111 111 111 111 111 111 111 111
N 111 111 111 111 111 111 111 111 111

Figure 3 - Inside the algorithm - filling M,, Matrix and m, vector with a 2x2x2 Trial input
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2.2.3 Special Case: Traditional through the Parallel Calibration algorithm

One special case worth mentioning is that if the trial streams given into the parallel
calibration algorithm are based purely on a traditional calibration which mean that the only
one multiphase stream is entering the separator during a trial. the resulting M,, matrix is a
diagonal matrix as shown in equation (2.1) and the invers of a diagonal matrix is the
reciprocal of each line on the diagonal as shown in (2.2).

[mp,l,l 0 0 ]
0 0
N e = JI o
0 0 e Mg
1
0 0
mp,1,1
0 ! 0
Mp_l = my 22 (2.2)
1
0 0
mp,s,T
1 0 0 | _{mp,ref,l}_
m m
p,1,1 My ref i p.1,1 [kp,1]
1 mprefz
M_1 _ 0 . 0 mp,ref_z . R i _ kp,2 —k 23
p My = Mp2,2 : UMz )T V[T e (2.3)
i My ref,T : lkp_sJ
0 0 {mp,ref,T}
Mp,s,T [ MpsT )]

In solving the system of equation then show that the values received in the k,vector equation
(2.3) are then the same as the values during a traditional calibration.

2.3 Solving the general case

The implementation of the algorithm is developed not to solve a specific case, but the general
case with S number of streams, as shown in Figure 4.
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Trials

Trial 1 \ Trial 2 \ Trial T |
MPM Stream 1 ‘ MPM Stream S ‘ Separator Streams MPM Stream 2 ‘ MPM Stream S ‘ Separator Streams [ ] [ ] [ ] MPM Stream 1 ‘ MPM Stream S ‘ Separator Streams
- - - 00 0.0 0.0 . . . 0.0 00 0.0 . . . : : : 0.0 00 00 - - -

Cumualtive values

Trials

'

Parallel Calibration Algorithm

'

‘ K-factors ‘
| Gas | Water |
‘ MPM-S ‘ ‘ MPM-1 ‘ ‘ MPM-2 ‘ ‘ MPM-S ‘ ‘ MPM-1 ‘ ‘ MPM-2 ‘
Run
15 15 15 15 15 15 15
12 12 12 12 12 12 12
13 13 13 13 13 13 13
1.0 1.0 1.0 1.0 1.0 1.0 1.0
11 11 11 11 11 11 11
18 18 18 1.8 18 1.8 1.8
o O . . e o o e o o
112 112 112 112 112 112 112 112 112
] 111 111 111 111 111 111 111 111 111
N 111 111 111 111 111 111 111 111 111

Figure 4 - Data input and output of a general case with S number of streams
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2.4 Simplifying execution through object orientation

The parallel calibration method is object oriented in order to simplify the execution of the
method and structures the code to a much greater extent, this is to both simplify the storage of
the raw data and the creation of a calibration report / data basis. Makes the assessment of the
quality of the calibration easier to execute with functions already implemented. As well as all
the values from all the trials and the values calculated within the calibration is available
within the instantiated parallel calibration object.

2.5 Asses the quality of a parallel calibration

The algorithm contains a structured data source of both aggregated and raw datapoints for the
plotting of both the result development, and the conditions during the trial data was created.
And a substantial amount of code within the parallel calibration source code is on concerning
the control and check the quality / resulting values form the algorithm, as well as inspecting
the values within the trials, to ensure that both the input and the output from the algorithm
works with and generates representative values to the reality.

But within the parallel calibration object there are the following plots available

e Plot of k-factor development -Figure 5

e Plot of cumulative values in augmented matrix form, which is the raw data which
goes into the system of equations - Figure 6

e Plot of the main raw datapoints of the mass flowrates in each phase, which is the raw
data collected by each stream object in each trial, and displayed in the augmented
matrix form plots - Figure 7

e Plot of the essential states of the separators and the intensive variables in the streams
shown in Figure 8.

e Histogram over the time between each datapoint, where the y axis is in log base 10 in
order to look into the data quality entering the accumulators, it returns 3 figures one
for each phase. Figure 9 show an example of this in the oil phase.

After a statistical analysis there is also two more essential plot available which are;

e A plot containing the calculation basis, with a vertically oriented plot of both a
histogram with the number of samples in the x-axis shared with the probability
density distribution based on the shown basis. As shown in Figure 10.

e Violin plot of the resulting k-factors for each stream and phase shown in Figure 11

But all data for any further is stored within this calibration object and is available for any data
analysis.
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In [38]: 1 Syntetic.Plot()
Volund calibration vilje calibration Boyla calibration
115 13 1100
o 12 II ¥ Wi 1075
1050
11
5 105 5 E 1025 +— Qil
‘E :H; 0 ‘ﬂl ;Hi 1ooo -_ f::ter
100 = 09 0975
095 08 — 0.950
— Gas 0925
07 Water
090 T T T T g | ] ! T T T y T T
0 500 1000 1500 2000 0 500 1000 1500 2000 o 500 1000 1500 2000
Runs Runs Runs
Figure 5 - Plot of resulting k-factor development
Parralell calibration cumulative mass [KiloTonnes]
Beyla Vilje Volund Third Party Separator
15 10 10
25 -
08 - 08 304
10 A
06 - 06 - 15 |
04 j _
05 04 10
02 o2 05 1
004 : : 004 : : 00 : : : 0.0 17 : :
0 1000 2000
10 4
1 — ail j 207
05 | 08
1 — Gas 15
Water 08 "
] 04 1 0.4 101
| 02 02 05 A
0.0 1 0.0 | 0.0 |
15 | 151
| 08 20
104 1 06 - 15
| 044 104
05
| 02 A 05
0.0 A 00 A 0.0
T T T T T T T T T T T T

Figure 6 - Plot of the cumulative values in augmented matrix form for a 2x2x2 calibartion
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Parralell calibration mass flow rate [Tonnes/hour]

Vilje Volund Beyla Third Party Separator
600 4 . 600 - | |
400 - i 400
200 - | 200 - w
e R ; ; 0 ; ; ; ;
400 1
— ol |wo - W
— Gas 300 1 300 1
— Water 200 4 ) 200 4
100 A _ 100-. || ”l || '
0] ] . At
- o { pnamnipnpe
400 1 300 4
200 1
200 4 1
u L T T T T T T T 1 T T T T D - T T T T

Figure 7 - Plot of phase flowrates in augmented Matrix form for a 3x2x2 calibration.

Parralell calibration process conditions

Vilje w0 Volund Beyla Third Party Separator
50 | PP e | | itk R 8 m
104
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» ] N )
20
201
= | A | - SR | et T
T T T T T T T T T T T T o T T T T
NPT Wiyt 80
—— Water cut{Vol%) 50 m
—— Oil Level[%] 404 @
—— Water Level[%] 40 A
Pressure [Barg] 04 R e
—— Temperatur [°C] 304

20
20
o

20

Figure 8 - Plot of intensive variables and relevant states in augmented matrix from for a
3x2x2 calibration
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Qil Parralell calibration accumulator time deltas

Vilje Volund Bayla Third Party Separator
10° 107 10° 107
10° 107 107 il
10 10t 10 10°
10° 107 10° 10°
0 20 40 60 0 20 40 60 o 20 40 60 20 A0 60
10° 1w 10°
rd 2
10 10 102
10t 1
10°
10° 10°
10 20 30 40 5 10 15 10 20 30
10° 108 10°
10° 107 107
10 I 10 10°
10° - i i i 10° 10°
20 40 20 40 20 40

Figure 9 - Histogram Plot of time between each flow rate datapoint, where the y-axis is
logarithmically displayed, in augmented matrix form, for a oil parallel calibration

Volund Oil
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135 - 135 -
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125 1 125 1
120 - Ww—-&wﬁwu_ﬁz_————
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Figure 10 - K-factor basis values for statistical analysis in the left plot and in the right plot a
horizontal histogram shared with a normal distribution’s probability density plot based on the
mean and standard deviation of the basis shown.
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phase
il
18 I Gas
I Water

16 1

14

k-factor

12 1

<~ <+
+ -

0.8 1

vilje Volund Bayla
stream

Figure 11 - Violin plot of each streams k-factors for each phase, based on the statistical basis,
form a calibration performed in late April 2019

2.6 Store values and recalling the result

When it comes to the storing of results the calibration object instantiated by the parallel
calibration class can be serialized through the python library pickle and stored in flatform?
which can later be recalled and analyzed if needed, additionally all numerical values used are
stored in pandas data frames which have inbuilt exporting functions to formats such as .csv
Zand others. Other documentations can also be automatically created by due to limited time
an automatic report, typically pdf report is not automatically created, but the Jupyter
notebook and or other python interpreters should.

! Flat form refers to that the objects in working memory are store to a file in a file system which can later be
recovered into the same object.

2 csv — file format where columns are separated by a delimiter typically comma ,” or colon ‘;’ rows are
separated by end-line character.
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3 Statistical analysis

When the method has calculated the K-factors from a collection of trials, each of the k-factors
should converge to a stable value, and on a subset of the stabilized k-factors can form a basis
data set. This statistical basis dataset can then be used to perform a statistical analysis, on the
random uncertainty of the values as well provide a window into the distribution. Assuming
this dataset is normally distributed the random uncertainty can be by assessing the normal
distribution. A coverage factor of two is used in order to specify the confidence level of the
statistical analysis. If the k-factors do not converge and stabilize the dataset of trials used are
not good, and new trials needs to be chosen.

3.1 Initial autodetection of statistical basis

The initial part of a statically basis, has implemented a method trying to determine this
statistical basis by itself, and it does so by first calculating the sum squared errors (SSE) over
a subset between 5 and 90% of the k-factors calculated as shown in equation (3.1).

n n
— 2 — 1
SSEn =) (kfi = Ffoosnn) - where Kfoosnn =~ . kf; (3.1)
i=0.05 i=0.05n

This sub dataset of the sum of the squared errors are then differentiated and squared resulting
in a dataset with peaks called the DSSE dataset, this represent changes within the k-factor
development (3.2). And a peak detection method form signal library of SciPy called
“find_peaks” is used with a preset limit, for what a peak could be. This peak detection limit
is also a constant of the standard deviation of the dataset used, in order to get a peak within
the unique nature of each k-factor development.

DSSE,, = (SSE,,_, — SSE,)? (3.2)

The result of this algorithm is shown in the left plot in Figure 10.

3.2 Calculating random uncertainty of result

Within either the auto detected basis or manually set basis set. A calculation of the random
uncertainty is done by assuming the values within the basis are normally distributed, and a
numerical integration of the normal distribution’s probability density function is performed,
with a coverage factor of 2, which is the level of confidence specified in the measurement
regulations of the NPD. The numerical integration is done through the trapezoidal method
which is the same as the accumulators in the stream classes. The vectorization of the normal
distribution is separated into 10000 numerical datapoint within the confidence interval. As
shown analytically in equation (3.3), where u is the mean and o is the standard deviation of
the statistical basis calculated through the NumPy library.

u+2o
1 _(x—;;)z
p(xl,u, O-) = N_J;g [We 20 ]dx (33)

All this is shown and displayed if a unit test of the Calibration Statistics code, on a randomly
generated dataset.
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4 Non-linear solver

Also worth mentioning was a non-linear solver proposed by Torbjgrn Selanger which was the
initial method developed and planned worth mentioning which a solver was also developed
but not implemented into the algorithm, and as the linear solver it solves for one phase at the
time, and the following method solves for one phase.

But the non-linear method is based on being able to perform the trial on two and two lines in
three trials, and each multiphase meter stream is denoted A, B and C and the separator is
denoted ref. And equation (4.1) shows the apparent multi stream k-factor for stream A and B,
for a trial. What is also worth noticing here is that the k is the reciprocal of the used k-factor.

Jmudt+ [mgdt  myu +mg
fmref dt mref

kap =

(4.1)

And from the balance laws governing the system m,..r contain the information of the actual /
real / reference sum of the measured which is called i and 7z, as shown in equation (4.2)
which is inserted into equation (4.3)

Myer = iy + Mg (4-2)
my + mpg my mpg
kAB = Sl P + — P (43)
mref my + mpg my + mpg

And through algebraic manipulation of (4.3) the reciprocal specific k-factor for each stream
has appeared in equation (4.4)

1 1 1

o T Ty M T L s L s (4.4
my my meg mpg KA my KB mpg

And further through algebraic manipulations the specific k-factor for a meter can be
calculated through equation (4.5). but it still contains some of the intrinsic values of m,.. ¢

K 1
A= —1
1 g (4.5)
S w7 B
Kg = mpg

These m,.., with the tilde mark, are basically the corrected values of the multiphase meter.
And the values are realized through the value the method is supposed to solve for.

~ ~ my . Mg
mref = Mmy + mpg = mAkA + mBkB 2T =My ,_k
B

k4 = s (4.6)

And by using the measured values in (4.6) and inserting them into (4.5)
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1 1
A= -1 = -1
. 1 m 1
R T B G e ) B R e el IR I )
» (72) ™ Kyt ymy
i kA B A B
Kp mg

And through the final manipulation of the variables an equation with just a single unknown /
non measured variable has been achieved as shown in equation (4.7)

But for the order the measured values going into the method are turned into parameters for
the non-linear solver equation 4.8 shows the parameters used in each function.

ma+mp _fmAdt+ medt

Fap = kAB - Myef fmrefdt
M [ 1y, dt
mref fﬁlref dt
YaB = =

my - fmAdt

Then the final equation for an instance is solved all three combinations of values, where the
k-factor is the only unknow as shown for one instance in equation (4.9).

1
KA=

-1

1 (4.9

@A — tYap T K,

1
Kyt Pas

An implementation of the solver in python compared to the linear method compared to each
other is shown in Figure 12. But the K, in this method is the reciprocal of the actual k-factor.
And by setting all the function to equal zeros a non-linear root solver can be used, and Python
framework has a library called SciPy’s3 which has a popular optimize library that have root
solving / optimizations algorithms implemented and available for the use to solve the non-
linear solver.

3See SciPy’s documentation of the method https://docs.scipy.org/doc/scipy/reference/optimize.html, but it is

numerically based optimization algorithm, if this is of interest also see Newtons-Raphson method and Secant
method
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In [58]: 1 #Test data!
2 A_test = np.array([158,0,188])
3 B_test = np.array([188,186,8])
4  C_test = np.array([0.8,185.0,185])
5 ref_test = np.array([276.08,260.0,258.8])
In [51]: 1 def Solvelnstance(A,B,C,ref,x8=(1.88,1.80,1.08))
5 -
3 Solves an instance, A,B,C,ref all contain an 1x3 numpy array where the index is the tril index,
4
5 %0 is a 3x tuple with initial guesses for each K-factors
7 alpha = np.array([(A[@]+B[@])/ref[@],(B[1]+C[1])/ref[1],(C[2]+A[2])/ref[2]])
8 beta = np.array([A[@]/B[@],B[1]/C[1].C[2]/A[2]])
9 gamma = np.array([ref[@]/Aa[@],ref[1]/B[1],ref[2]/C[2]])
18
11 def equations(x):
12 K_a,K_b,K_c = x # The unkown variables
13
14 f_AB = 1/(1/(alpha[8]-(1/((1/K_b)+{(1/K_a)*beta[0]))))-(gamma[e]-1/K_a))-K_a
15 f_BC = 1/(1/(alpha[1]-(1/((1/K_c)+((1/K_b)*beta[1]))))-(gamma[1]-1/K_b)})-K_b
16 f ca = 1/(1/(alpha[2]-(1/((1/K_a)+((1/K_c)*beta2]))))-(gamma[2]-1/K_c)}-K_c
17
18 return(f_AB,f_BC,f_CA)
19
28 Cal = optimize.fsolve(equations,x8)
21 #This method calculates the inverse of the K factors, so the values get inverted
22 Ccal = 1/Cal
23 #Returns the values
24 return Cal
25
26 Cal = SolveInstance(4 test,B_test,C_test,ref_test)
27 | print(str(Cal))
[1.e4 1.14 1.39047619]
In [53]: 1 def LinearSolver(A,B,C,ref):
2 TheMatrix = np.vstack((A,B,C)).transpose()
3 TheMatrixInverse = np.linalg.inv(TheMatrix)
4 K = np.dot(TheMatrixInverse, ref)
5 return K

7 LinCal = LinearSolver(A_test,B_test,C_test,ref_test)
g print(LinCal)

[1.e4 1.14 1.39047619]

Figure 12 - Implementation of the non-linear solver, compared to the result to the linear
method, and the results achieve are the same
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5 Source Code — Parallel calibration

Printed 12/05-2019

# -*- coding: utf-8 -*-

Created on for Stig Harald Gustavsens Master Thesis - 2019

@author: stig

#Adding standard use libraries

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import seaborn as sns

from datetime import datetime
from datetime import timedelta

import os #For file handeling and saving
import copy

from Streams import *
from DatapointsToolbox import *
from CalibrationStatistics import *

def

he index of the closes value given as a parameter

def

ams

find_nearest(array, value):

""" This method uses the powers of numpy and takes an array and find and returns t
array = np.asarray(array)

idx = (np.abs(array - value)).argmin()

return idx

SyncPhase(elapsed):

This method gets a list of the elapsed times for the a phase form each of the stre
and

syncronizes the elapsed time of the streams towards the stream with the smallest n

umber of data points,

the

and fills this into a matrix of values of the inedcis witch correspond to each of
syncronized timestamp
#find the lowest index.
Smallest = np.inf
cnt= 0
for times in elapsed:
if (len(times)<Smallest):
smallest = len(times)
SmallestStream = cnt
cnt = cnt+l

#Find the smallest difference between elapsedtime
cnt2 = 0
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113.
114.
115.
116.
117.
118.
119.

for times in elapsed:
if(len(times)==smallest):

v = np.arange(0,smallest)

else:

v = np.zeros(smallest)

if(cnt2>=1):

last
cnt2

v = np.vstack((last,v))

\%
cnt2+1

indecies = vi#.transpose()

Melapsed

cnt3 = 0
for stream in elapsed:

if(len(stream) == len(Melapsed)): #Jump over the referance stream

continue

else:
for i in range(len(Melapsed)):
indecies[cnt3,i] = find_nearest(stream,Melapsed[i])

cnt3 = cnt3+1

return indecies.transpose()

def SyncTrial(Streams):

elapsed[SmallestStream]

#Creates

Source Code — Parallel calibration

vectors for the indexes

This Method goes systematically through all the Phases and get the syncronized ind
ex values from the SyncPhase for each of the phases

Oilelapsed = []
Gaselapsed = []
Wtrelapsed = []

#Vectorize elapsed time

for stream in Streams:
Oilelapsed.append(stream.0ilMass.data[ 'elapsed'].values)
Gaselapsed.append(stream.GasMass.data[ 'elapsed'].values)
Wtrelapsed.append(stream.WtrMass.data[ 'elapsed'].values)

Syncd0il = SyncPhase(Oilelapsed)
SyncdGas = SyncPhase(Gaselapsed)
SyncdWtr = SyncPhase(Wtrelapsed)

return(Syncd0il, SyncdGas, SyncdWtr)

def GetRuns(SyncedPhases, Streams):

This Uses the Syncronized phases of each of the streams and build up the tiral Mat
rices for each of the phases
And returns The a touple of Each Phase in the streams, to create the values for th

e streams in a given paralell calibration Trial.

(Sy0il,SyGas,SyWtr) = SyncedPhases

Orun

for i in range(len(Orun[:,1])):

J

np.zeros(SyOil.shape)

=0
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for stream in Streams:
Orun[i,j] = stream.0OilMass.data.loc[Sy0Oil[i,j], 'cumulative']
j=j+1

Grun = np.zeros(SyGas.shape)
for i in range(len(SyGas[:,1])):
j=2o
for stream in Streams:
Grun[i,j] = stream.GasMass.data.loc[SyGas[i,]j], 'cumulative']
j = j+1

Wrun = np.zeros(SyWtr.shape)
for i in range(len(SyWtr[:,1])):
j=20
for stream in Streams:
Wrun[i,j] = stream.WtrMass.data.loc[SyWtr[i,j], 'cumulative']
j=j+1

return (Orun,Grun,Wrun)

def ParralellTrial(Streams):
""" This method performes a generation of a paralell trial data where the
TrialMatrixes = GetRuns(SyncTrial(Streams),Streams)
return(TrialMatrixes)

def GetElapsed(SyncedPhases, Streams):

ncronize data when plotting and correctly placing the x-axis
(Sy0il,SyGas,SyWtr) = SyncedPhases

Orun = np.zeros(SyOil.shape)
for i in range(len(Orun[:,1])):
j=290
for stream in Streams:
Orun[i,j] = stream.0OilMass.data.loc[Sy0il[i,j], 'elapsed’]
j=j+1

Grun = np.zeros(SyGas.shape)
for i in range(len(SyGas[:,1])):
j=o
for stream in Streams:
Grun[i,j] = stream.GasMass.data.loc[SyGas[i,j], 'elapsed']
j=3j+

Wrun = np.zeros(SyWtr.shape)
for i in range(len(SyWtr[:,1])):
j=90
for stream in Streams:
Wrun[i,j] = stream.WtrMass.data.loc[SyWtr[i,j], 'elapsed']
j=3j+1

return (Orun,Grun,Wrun)

Returns a parralell calibration elapsed times for each data point, mainly to sy

def ParralellTrialElapsed(Streams): #Returs a tuple of elapsed times for each datapoin

t in a parralell calibration.
TrialElapsedMatrixes = GetElapsed(SyncTrial(Streams),Streams)
return(TrialElapsedMatrixes)

def LinearSolver(A,B,C,ref):

TheMatrix = np.vstack((A,B,C))
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TheMatrixInverse = np.linalg.inv(TheMatrix) #May become singular and non-
invertable?

K = np.dot(TheMatrixInverse, ref)

return K

Under her kommer det som skal pakkes inn i egen Parralell kalibrerings klasse.

def FindStreamNames(TrialStreams):

A small method wich goes trough a set of Trial streams and separates out all the s
treams in each trial and collect all the names of the streams

StreamNames = []

for Trial in TrialStreams:

for Stream in Trial:
if Stream.name not in StreamNames:
StreamNames.append(Stream.name)

StreamNames.remove('Third Party Separator')
return StreamNames

def BuildMFrame(TrialStreams):

This method finds all the stream names and checks the streams inside the list of a
1lle the TrialStreams and the order to and

and arranges and creates a M matrix from of zeros and ones in order to know witch
values to be filled later.

where © remain zero and ones will be filled with cumulative values for the solver.

StreamNames = FindStreamNames(TrialStreams)
first = True
for Trial in TrialStreams:

#Checker = StreamNames

row = np.zeros(len(StreamNames))

for Stream in Trial:

if(Stream.name == "Third Party Separator"): #Skips the refreance measurmen
t since this measurment goes to the lowercase m vector (refreance vector)
continue

StreamIndex = StreamNames.index(Stream.name)
row[StreamIndex] = 1

if(first):
M_frame = row

else:
M_frame = np.vstack((M_frame,row))
first = False

return M_frame

def GetM_m(Frame, PTrial, phase):
Creats a list of tuples of M matrix and m vectors witch can be inserted into the p
arralell calibration solver.
Mm = []
for i in range(@, min(len(trial[phase]) for trial in PTrial)):
#Do the thing
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M = Frame.astype(float) #Copys the frame and sets values as float variables i

the M matrix where the ones will be filled and the zeros will remain zero

m = np.zeros(len(Frame)) #Creates a m vector for the separator accumulated val

for the given trial instance.
for j in range(len(Frame)):

cnt = 0
for k in range(len(Frame[j])):

if (Frame[j,k] == @): #If the value is zero meas the stream has not b

flowing towards the separator this stream
continue
else:

M[j,k] = PTrial[j][phase][i][cnt] #Sets the give accumulated value
for the spesific stream into the M matrix
cnt = cnt + 1 # A count whitch takes care of the correct placement

the M matrix as well as inn the m vector

m[j] = PTrial[j][phase][i][cnt] #Fills the referance accumulated from the
separator into m vector

Mm.append((M,m))
return Mm

def Solver(Mm): #Linear solver the parameter is a touple of M matrix and m vector

Solves the system of equation to get the kalibration values

TheMatrix, m = Mm #Tuple unpacking of matrix and vector

TheMatrixInverse = np.linalg.inv(TheMatrix) #May become singular and non-
invertable?

K = np.dot(TheMatrixInverse, m)

return K
def ParralellCalibrate(TrialStreams):

A general solver witch get a list of TrialStreams and continues on to solve parral
ell calibration for the spesific instance.

Trials = []

for TrialStream in TrialStreams:

Trials.append(ParralellTrial(TrialStream)) #Syncronicing timestamps and locati

ng data.

Frame = BuildMFrame(TrialStreams) #Buids the M frame for the

Kfactors = []
for phase in range(3): # 3 phases 0il, Gas and Water in that order.
Mm = GetM_m(Frame,Trials,phase) #Gets a touple of the M matrix and m phase
first = True
for i in range(1,len(Mm)):
try:
K_i = Solver(Mm[i])
except:
print("Singular matrix at "+str(i)+"iteration")
continue

if(first):
K =K_i

else:
K

first

np.vstack((K,K_i))
False

Kfactors.append(K)
return Kfactors
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Ferdig med parralell kalibrering metoden

class ParralellCalibration:

This is a Class to create an istance of a Calibration object, in order to simplify
the reporting and documentation of the method as well as further analysis of data.

def __init_ (self,TrialStreams):

#Static Values

self.phases = ["0il","Gas", "Water"]

self.Colors = ['#000000', '#DFOO71', '#00A030"', '#EE7900', '#777777',"' #000028', '#
BO9B9B9', '#E6GE6E6" ]

self.DateCalculated = datetime.now()

#Perform Parralell Calibration
self.StreamNames = FindStreamNames(TrialStreams)
self.TrialStreams = TrialStreams

#

# Add order Streams in trial funksjon here! so that the streams come in the co
rrect order for the algorithm

#

self.Elapsed = []
for TrialStream in TrialStreams:
self.Elapsed.append(ParralellTrialElapsed(TrialStream)) #Getting timestamp
s of Elapsed time
self.Kfaktors = ParralellCalibrate(TrialStreams)
self.frame = BuildMFrame(TrialStreams) #Buids the M frame for the

#Storeing the final k-factor - just the last instance.
self.lastKfactors = []
for i in range(len(self.StreamNames)):
self.lastKfactors.append(np.array([self.Kfaktors[@][len(self.Kfaktors[0])-
1,i],self.Kfaktors[1][len(self.Kfaktors[1])-
1,i],self.Kfaktors[2][len(self.Kfaktors[2])-1,i]1]))

#Parralell calibration excecuted.

def Plot(self,save=False):
for i in range(len(self.StreamNames)):

plt.plot(self.Kfaktors[0][50:,i], label ='0il', color="#DF0O71")
plt.plot(self.Kfaktors[1][50:,i], label 'Gas', color='#00A030")
plt.plot(self.Kfaktors[2][50:,i], label ='Water',color='#EE7900")
plt.xlabel('Runs')
plt.ylabel('K-factor")
plt.title(self.StreamNames[i]+' calibration')
plt.legend()
plt.grid()
plt.show()
plt.clf()#Clares all the axis in the figure for a new iteration of plottin

if(save):
plt.savefig(self.StreamNames[i]+"_Kfactors.png")
plt.show()

def PlotStreams(self,save=False,figuresize=(15,10)):
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This Method Plots the Flowrates in the matrix for for each of the trial includ
ing the separator
for phase in range(len(self.phases)): #For Each Phase
SquareMatrixSize = len(self.Elapsed)
fig, ax = plt.subplots(SquareMatrixSize,SquareMatrixSize+1,figsize=figures
ize)

fig.suptitle(self.phases[phase]+" Parralell calibration mass flow rate dat
a",fontsize=15)
for i in range(SquareMatrixSize): # For each Trial
cnt = 0
for j in range(SquareMatrixSize+1): # For each column in axis matrix

try:
#Plotting the Separator values
if(type(self.TrialStreams[i][cnt]) == SeparatorStreams):
if(i==0): #Sets the name of the stream at the top.
ax[i,SquareMatrixSize].set_title(self.TrialStreams[i][
cnt].name)

#Checks the phase and plots accordingly
if(self.phases[phase]=="0il" and self.TrialStreams[i][cnt]
.name == 'Third Party Separator'):
ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].
OilMass.data[ 'value'],color=self.Colors[phase])

if(self.phases[phase]=="Gas" and self.TrialStreams[i][cnt]
.name == 'Third Party Separator'):
ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].
GasMass.data[ 'value'],color=self.Colors[phase])

if(self.phases[phase]=="Water"and self.TrialStreams[i][cnt
].name == 'Third Party Separator'):
ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].
WtrMass.data[ 'value'],color=self.Colors[phase])

cnt= cnt+l
continue

if(j<SquareMatrixSize): #If within the MPFM Streams and not in
the separators
if(i==0):
ax[0,j].set_title(self.StreamNames[j])
if(self.frame[i,j]==0): #If it is Zero then no need to plo
t, and jumt to next axsis with incrementing the trial, because the trial has no been p
lotted
ax[i,j].set_xticklabels([]) #removing the x ticks on x
axis
ax[i,j].set_yticklabels([]) #removing the y ticks on y
axis
continue
else:
TheStreamIndex = self.StreamNames.index(self.TrialStre
ams[i][cnt].name)
#TrialStreams[i][j].0ilMass.data[ 'cumulative']
if(self.phases[phase]=="0il1"):
ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt
].0ilMass.data[ 'value'],color=self.Colors[phase])
if(self.phases[phase]=="Gas"):
ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt
].GasMass.data[ 'value'],color=self.Colors[phase])
if(self.phases[phase]=="Water"):
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ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt
].WtrMass.data[ 'value'],color=self.Colors[phase])
cnt = cnt+l

except IndexError:
cnt = cnt+l

continue
if(save):
fig.savefig(title+".png")
fig.show()

def PlotCumulativeMatrix(self,save=False,figuresize=(12,8)):
This Method Plots the Flowrates in the matrix for for each of the trial includ
ing the separator
for phase in range(len(self.phases)): #For Each Phase
SquareMatrixSize = len(self.Elapsed)
fig, ax = plt.subplots(SquareMatrixSize,SquareMatrixSize+1,figsize=figures
ize)

fig.suptitle(self.phases[phase]+" Parralell calibration mass flow rate dat
a",fontsize=15)
for i1 in range(SquareMatrixSize): #For each Trial
cnt = 0
for j in range(SquareMatrixSize+1): #For each Stream in Trial / column
in axis matrix
try:
#Plotting the Separator values
if(type(self.TrialStreams[i][cnt]) == SeparatorStreams):
if(i==0): #Sets the name of the stream at the top.
ax[i,SquareMatrixSize].set_title(self.TrialStreams[i][
cnt].name)

#Checks the phase and plots accordingly
if(self.phases[phase]=="0il" and self.TrialStreams[i][cnt]
.name == 'Third Party Separator'):
ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].
OilMass.data[ 'cumulative'],color=self.Colors[phase])

if(self.phases[phase]=="Gas" and self.TrialStreams[i][cnt]
.name == 'Third Party Separator'):
ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].
GasMass.data[ 'cumulative'],color=self.Colors[phase])

if(self.phases[phase]=="Water"and self.TrialStreams[i][cnt
].name == 'Third Party Separator'):
ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].
WtrMass.data[ 'cumulative'],color=self.Colors[phase])

cnt= cnt+l
continue

if(j<SquareMatrixSize): #If within the MPFM Streams and not in
the separators
if(i==0):
ax[i,j].set_title(self.StreamNames[j])
if(self.frame[i,j]==0): #If it is Zero then no need to plo
t, and jumt to next axsis with incrementing the trial, because the trial has no been p
lotted
ax[i,j].set_xticklabels([]) #removing the x ticks on x
axis
ax[i,j].set_yticklabels([]) #removing the y ticks on y
axis
continue
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else:
TheStreamIndex = self.StreamNames.index(self.TrialStre
ams[i][cnt].name)
#TrialStreams[i][j].0ilMass.data['cumulative']
if(self.phases[phase]=="0il"):
ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt
].0ilMass.data[ 'cumulative'],color=self.Colors[phase])
if(self.phases[phase]=="Gas"):
ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt
].GasMass.data[ 'cumulative'],color=self.Colors[phase])
if(self.phases[phase]=="Water"):
ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt
].WtrMass.data[ 'cumulative'],color=self.Colors[phase])
cnt = cnt+l

except IndexError:
cnt = cnt+l
continue
#fig.tight layout()
fig.show()

def PlotOneCumulativeMatrix(self,save=False,figuresize=(12,8)):
This Method Plots the Flowrates in the matrix for for each of the trial includ
ing the separator
titlenames = FindStreamNames(self.TrialStreams)
legend = True
SquareMatrixSize = len(self.Elapsed)
fig, ax = plt.subplots(SquareMatrixSize,SquareMatrixSize+1,figsize=figuresize)

fig.suptitle(" Parralell calibration cumulative mass [KiloTonnes]",fontsize=15

for i in range(SquareMatrixSize): #For each Trial
cnt = 0
for j in range(SquareMatrixSize+1): #For each Stream in Trial / column in
axis matrix
try:
#Plotting the Separator values
if(type(self.TrialStreams[i][cnt]) == SeparatorStreams):
if(i==0): #Sets the name of the stream at the top.
ax[i,SquareMatrixSize].set_title(self.TrialStreams[i][cnt]
.name)

ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].0OilMass.
data[ 'cumulative']/1000/1000,color=self.Colors[0])

ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].GasMass.
data[ 'cumulative']/1000/1000, color=self.Colors[1])

ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].WtrMass.
data[ 'cumulative']/1000/1000, color=self.Colors[2])

ax[i,j].set_xticklabels([])

cnt= cnt+l

continue

if(j<SquareMatrixSize): #If within the MPFM Streams and not in the
separators
if(self.StreamNames[j] in titlenames and len(titlenames) != 0)

ax[@,j].set_title(self.StreamNames[j])
titlenames.remove(self.StreamNames[j])
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if(self.frame[i,j]==0): #If it is Zero then no need to plot, a
nd jumt to next axsis with incrementing the trial, because the trial has no been plott
ed

if(legend):
ax[i,j].plot([],[],1label="0il",color=self.Colors[0])
ax[i,j].plot([],[],1label="Gas"',color=self.Colors[1])
ax[i,j].plot([],[],1label="Water',color=self.Colors[2])

ax[i,j].legend(fontsize = 'x-large')
legend = False
ax[i,j].set_xticklabels([]) #removing the x ticks on xaxis

ax[i,j].set_yticklabels([]) #removing the y ticks on yaxis

continue
else:

TheStreamIndex = self.StreamNames.index(self.TrialStreams[
i][cnt].name)

#TrialStreams[i][j].0ilMass.data[ 'cumulative']

ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt].0ilMas
s.data[ 'cumulative']/1000/1000,color=self.Colors[0])

ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt].GasMas
s.data[ 'cumulative']/1000/1000,color=self.Colors[1])

ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt].WtrMas
s.data[ 'cumulative']/1000/1000, color=self.Colors[2])

ax[i,j].set_xticklabels([])

cnt = cnt+l

except IndexError:
cnt = cnt+l

continue
if(save):
fig.savefig(title+".png")
fig.show()

def PlotOneStreamMatrix(self,save=False,figuresize=(12,8)):
This Method Plots the Flowrates in the matrix for for each of the trial includ
ing the separator
titlenames = FindStreamNames(self.TrialStreams)
legend = True
SquareMatrixSize = len(self.Elapsed)
fig, ax = plt.subplots(SquareMatrixSize,SquareMatrixSize+l1,figsize=figuresize)

fig.suptitle(" Parralell calibration mass flow rate [Tonnes/hour]",fontsize=15

for i in range(SquareMatrixSize): #For each Trial
cnt = 0
for j in range(SquareMatrixSize+1): #For each Stream in Trial / column in
axis matrix
try:
#Plotting the Separator values
if(type(self.TrialStreams[i][cnt]) == SeparatorStreams):
if(i==0): #Sets the name of the stream at the top.
ax[i,SquareMatrixSize].set_title(self.TrialStreams[i][cnt]
.name)

ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].0OilMass.
data[ 'timestamp'],self.TrialStreams[i][cnt].0ilMass.data[ ‘value']/1000,color=self.Colo
rs[@],zorder=1)

ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].GasMass.
data[ 'timestamp'],self.TrialStreams[i][cnt].GasMass.data[ 'value']/1000,color=self.Colo
rs[1],zorder=2)
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ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].WtrMass.
data[ 'timestamp'],self.TrialStreams[i][cnt].WtrMass.data[ ‘value']/1000,color=self.Colo
rs[2],zorder=0)

ax[i,j].set_xticklabels([])

cnt= cnt+l
continue

if(j<SquareMatrixSize): #If within the MPFM Streams and not in the
separators
if(self.StreamNames[j] in titlenames and len(titlenames) != 0)

ax[0,]j].set_title(self.StreamNames[j])
titlenames.remove(self.StreamNames[j])
if(self.frame[i,j]==0): #If it is Zero then no need to plot, a
nd jumt to next axsis with incrementing the trial, because the trial has no been plott
ed
if(legend):
ax[i,j].plot([],[],1label="0il",color=self.Colors[0])
ax[i,j].plot([],[],label="Gas',color=self.Colors[1])
ax[i,j].plot([],[],label="Water',color=self.Colors[2])

ax[i,j].legend(fontsize = 'x-large')
legend = False
ax[i,j].set_xticklabels([]) #removing the x ticks on xaxis

ax[i,j].set_yticklabels([]) #removing the y ticks on yaxis

continue
else:

TheStreamIndex = self.StreamNames.index(self.TrialStreams|[
i][cnt].name)

#TrialStreams[i][j].0ilMass.data[ 'cumulative']

ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt].0ilMas
s.data[ "timestamp'],self.TrialStreams[i][cnt].0ilMass.data[ 'value']/1000,color=self.Co
lors[@],zorder=1)

ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt].GasMas
s.data[ "timestamp'],self.TrialStreams[i][cnt].GasMass.data[ 'value']/1000,color=self.Co
lors[1],zorder=2)

ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt].WtrMas
s.data[ "timestamp'],self.TrialStreams[i][cnt].WtrMass.data[ 'value']/1000,color=self.Co
lors[2],zorder=0)

ax[i,j].set_xticklabels([])

cnt = cnt+l

except IndexError:
cnt = cnt+l

continue
if(save):
fig.savefig(title+".png")
fig.show()

def PlotMatrix(self,save=False,figuresize=(15,10)):

This Method Plots the Cumulative Matrices used in the method
titlenames = FindStreamNames(self.TrialStreams)
for phase in range(len(self.phases)): #For Each Phase
SquareMatrixSize = len(self.Elapsed)
fig, ax = plt.subplots(SquareMatrixSize,SquareMatrixSize,figsize=figuresiz

e)

fig.suptitle(self.phases[phase]+" Parralell calibration trial matrix data"
,fontsize=15)
for i in range(SquareMatrixSize): #For each Trial
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cnt=0
for j in range(SquareMatrixSize): #For each Stream in Trial
if(self.StreamNames[j] in titlenames and len(titlenames) != 0):

ax[0,j].set_title(self.StreamNames[j])
titlenames.remove(self.StreamNames[j])
if(self.frame[i,j]==0):
ax[i,j].set_xticklabels([]) #removing the x ticks on xaxis
ax[i,j].set_yticklabels([]) #removing the y ticks on yaxis
continue
else:
if(self.TrialStreams[i][cnt].name not in self.StreamNames):
continue #it is a separator stream.
else:
TheStreamIndex = self.StreamNames.index(self.TrialStreams[
name)
#TrialStreams[i][j].0ilMass.data[ 'cumulative']
if(self.phases[phase]=="0il"):
ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt].01i

IMass.data[ 'cumulative'],color=self.Colors[phase])

if(self.phases[phase]=="Gas"):
ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt].Ga

sMass.data[ 'cumulative'],color=self.Colors[phase])

if(self.phases[phase]=="Water"):
ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt].Wt

rMass.data[ 'cumulative'], color=self.Colors[phase])

def

ing the

is the -

ize)

cnt = cnt +1
if(save):
fig.savefig(title+".png")
fig.show()

PlotStreamsIntVar(self,save=False,figuresize=(15,10)):

This Method Plots the Flowrates in the matrix for for each of the trial includ
separator

titlenames = FindStreamNames(self.TrialStreams)

legend = True

for phase in range(1): #Only need one output for entire calibration data. it

SquareMatrixSize = len(self.Elapsed)
fig, ax = plt.subplots(SquareMatrixSize,SquareMatrixSize+1,figsize=figures

#fig.autofmt_xdate()

fig.suptitle("Parralell calibration process conditions",fontsize=15)
for i1 in range(SquareMatrixSize): #For each Trial
cnt = 0
for j in range(SquareMatrixSize+1): #For each Stream in Trial
try:
#Plotting the Separator values
if(type(self.TrialStreams[i][cnt]) == SeparatorStreams):
if(i==0): #Sets the name of the stream at the top.
ax[i,SquareMatrixSize].set_title(self.TrialStreams[i][

cnt].name)

#Checks the phase and plots accordingly
if(self.phases[phase]=="0il" and self.TrialStreams[i][cnt]

.name == 'Third Party Separator'):

ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].

wc[ 'timestamp'],self.TrialStreams[i][cnt].wc[ 'value'],label ='Water cut[Vol%]',color=s

elf.Colors[0@])

ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].

SeparatorOilLevel[ 'timestamp'],self.TrialStreams[i][cnt].SeparatorOilLevel[ 'value'],la
bel ='0il Level[%]',color=self.Colors[1])
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ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].
SeparatorWaterLevel[ ‘timestamp'],self.TrialStreams[i][cnt].SeparatoriWaterLevel[ 'value'
1,1label ='Water Level[%]',color=self.Colors[2])

ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].
SeparatorPressure[ 'timestamp'],self.TrialStreams[i][cnt].SeparatorPressure[ 'value'],la
bel ='Pressure [Barg]',color=self.Colors[3])

ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].
SeparatorTemp[ 'timestamp'],self.TrialStreams[i][cnt].SeparatorTemp[ 'value'],label ='Te
mperatur [°C]',color=self.Colors[4])

#ax[1i,SquareMatrixSize].legend()

if(self.phases[phase]=="Gas" and self.TrialStreams[i][cnt]

.name == 'Third Party Separator'):

ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].
SeparatorPressure[ 'timestamp'],self.TrialStreams[i][cnt].SeparatorPressure[ 'value'],la
bel ='Pressure [Barg]',color=self.Colors[0])

ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].
SeparatorTemp[ 'timestamp'],self.TrialStreams[i][cnt].SeparatorTemp[ 'value'],label ='Te
mperatur [°C]',color=self.Colors[1])

ax[i,SquareMatrixSize].legend()

if(self.phases[phase]=="Water"and self.TrialStreams[i][cnt

].name == 'Third Party Separator'):

ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].
wc[ "timestamp'],self.TrialStreams[i][cnt].wc[ 'value'],label ='Water cut[Vol%]',color=s
elf.Colors[@])

ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].
SeparatorOilLevel[ 'timestamp'],self.TrialStreams[i][cnt].SeparatorOilLevel[ 'value'],la
bel ='0il Level[%]',color=self.Colors[1])

ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].
SeparatorWaterLevel[ 'timestamp'],self.TrialStreams[i][cnt].SeparatoriWaterLevel[ 'value'
1,1label ='Water Level[%]',color=self.Colors[2])

#ax[1i,SquareMatrixSize].legend()

ax[i,SquareMatrixSize].set_xticklabels([]) #Removes the va
lues on the x-scale

#ax[i,SquareMatrixSize].fmt_xdata = mdates.DateFormatter(’
%d-%h")

cnt= cnt+l

continue

#self.SeparatorWaterLevel

if(j<SquareMatrixSize): #If within the MPFM Streams and not in
the separators
if(self.StreamNames[j] in titlenames and len(titlenames) !
= 0):
ax[0,j].set_title(self.StreamNames[j])
titlenames.remove(self.StreamNames[j])
if(self.frame[i,j]==0): #If it is Zero then no need to plo
t, and jumt to next axsis with incrementing the trial, because the trial has no been p
lotted

if(legend): #Plotting the legend in the first empty ma
trix cell

ax[i,j].plot([]1,[]1,label ='Water cut[Vol%]',color=

self.Colors[0])

ax[i,j].plot([],[],1label ='0il Level[%]',color=sel
f.Colors[1])

ax[i,j].plot([1,[],1abel

'Water Level[%]',color=s
elf.Colors[2])
ax[i,j].plot([],[],1abel

'Pressure [Barg]',color=
self.Colors[3])
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ax[i,j].plot([],[],1label ='Temperatur [°C]',color=
self.Colors[4])

ax[i,j].legend(fontsize = 'x-large')

#ax[i,j].plot([],[],1label ='Pressure [Barg]',color
=self.Colors[3])

legend = False

ax[i,j].set_xticklabels([]) #removing the x ticks on x
axis
ax[i,j].set_yticklabels([]) #removing the y ticks on y
axis
continue
else:
TheStreamIndex = self.StreamNames.index(self.TrialStre
ams[i][cnt].name)
#TrialStreams[i][j].0ilMass.data[ 'cumulative']
if(self.phases[phase]=="0il"):
ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt
].Pressure[ 'timestamp'],self.TrialStreams[i][cnt].Pressure[ 'value'],label ='Pressure [
Bar]',color=self.Colors[3])
ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt
].Temp[ 'timestamp'],self.TrialStreams[i][cnt].Temp[ 'value'],label ='Temperatur [°C]',c
olor=self.Colors[4])
#tax[i,TheStreamIndex].legend()
if(self.phases[phase]=="Gas"):
ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt
]1.Pressure[ 'timestamp'],self.TrialStreams[i][cnt].Pressure[ ‘value'],label ='Pressure [
Bar]',color=self.Colors[3])
ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt
]1.Temp[ "timestamp'],self.TrialStreams[i][cnt].Temp[ 'value'],label ='Temperatur [°C]',c
olor=self.Colors[1])
#tax[1i,TheStreamIndex].legend()
if(self.phases[phase]=="Water"):
ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt
].Pressure[ 'timestamp'],self.TrialStreams[i][cnt].Pressure[ ‘value'],label ='Pressure [
Bar]',color=self.Colors[3])
ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt
].Temp[ 'timestamp'],self.TrialStreams[i][cnt].Temp[ 'value'],label ='Temperatur [°C]',c
olor=self.Colors[1])
#tax[i,TheStreamIndex].legend()
ax[i,TheStreamIndex].set_ xticklabels([]) #Removes the
values on the x-scale
#tax[i,TheStreamIndex].fmt_xdata = mdates.DateFormatter
("%d-%h")

cnt = cnt+l

except IndexError:
cnt = cnt+l

continue
if(save):
fig.savefig(title+".png")
fig.show()

def PlotAccHist(self,n_bins=20,save=False,figuresize=(12,8)):
This Method Plots the Flowrates in the matrix for for each of the trial includ
ing the separator
titlenames = FindStreamNames(self.TrialStreams)
for phase in range(len(self.phases)): #For Each Phase
SquareMatrixSize = len(self.Elapsed)
fig, ax = plt.subplots(SquareMatrixSize,SquareMatrixSize+1,figsize=figures
ize)
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fig.suptitle(self.phases[phase]+" Parralell calibration accumulator time d
eltas",fontsize=15)
for i1 in range(SquareMatrixSize): #For each Trial
cnt = 0
for j in range(SquareMatrixSize+1): #For each Stream in Trial / column
in axis matrix
try:
#Plotting the Separator values
if(type(self.TrialStreams[i][cnt]) == SeparatorStreams):
if(i==0): #Sets the name of the stream at the top.
ax[i,SquareMatrixSize].set_title(self.TrialStreams[i][
cnt].name)

#Checks the phase and plots accordingly
if(self.phases[phase]=="0il" and self.TrialStreams[i][cnt]
.name == 'Third Party Separator'):
ax[i,SquareMatrixSize].hist(self.TrialStreams[i][cnt].
OilMass.data[ 'dt'],color=self.Colors[phase], bins=n_bins)
Max = max(self.TrialStreams[i][cnt].0OilMass.data[ ' 'dt"]

)

(Max))

#ax[i,SquareMatrixSize].text('Highest time delta:'+str

if(self.phases[phase]=="Gas" and self.TrialStreams[i][cnt]
.name == 'Third Party Separator'):
ax[i,SquareMatrixSize].hist(self.TrialStreams[i][cnt].
GasMass.data[ 'dt'],color=self.Colors[phase], bins=n_bins)
Max = max(self.TrialStreams[i][cnt].GasMass.data[ 'dt']

)

(Max))

#ax[1i,SquareMatrixSize].text('Highest time delta:'+str

if(self.phases[phase]=="Water"and self.TrialStreams[i][cnt
].name == 'Third Party Separator'):
ax[i,SquareMatrixSize].hist(self.TrialStreams[i][cnt].
WtrMass.data[ 'dt'],color=self.Colors[phase], bins=n_bins)
Max = max(self.TrialStreams[i][cnt].WtrMass.data[ 'dt"']
)

(Max))

#ax[i,SquareMatrixSize].text('Highest time delta:'+str

ax[i,SquareMatrixSize].set_yscale('log")
cnt= cnt+l
continue

if(j<SquareMatrixSize): #If within the MPFM Streams and not in
the separators
if(self.StreamNames[j] in titlenames and len(titlenames) !
=0):
ax[0,j].set_title(self.StreamNames[j])
titlenames.remove(self.StreamNames[j])
if(self.frame[i,j]==0): #If it is Zero then no need to plo
t, and jumt to next axsis with incrementing the trial, because the trial has no been p
lotted
ax[i,j].set_xticklabels([]) #removing the x ticks on x
axis
ax[i,j].set_yticklabels([]) #removing the y ticks on y
axis
continue
else:
TheStreamIndex = self.StreamNames.index(self.TrialStre
ams[i][cnt].name)
#TrialStreams[i][j].0ilMass.data[ 'cumulative']
if(self.phases[phase]=="0il"):
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ax[i,TheStreamIndex].hist(self.TrialStreams[i][cnt

].0ilMass.data[ 'dt'],color=self.Colors[phase], bins=n_bins)

dt'])

Max = max(self.TrialStreams[i][cnt].OilMass.data["

#tax[i,1i,TheStreamIndex].text('Highest time delta:’

+str(Max))

if(self.phases[phase]=="Gas"):
ax[i,TheStreamIndex].hist(self.TrialStreams[i][cnt

].GasMass.data[ 'dt'],color=self.Colors[phase], bins=n_bins)

dt'])

Max = max(self.TrialStreams[i][cnt].GasMass.data["

#tax[i,1i,TheStreamIndex].text('Highest time delta:’

+str(Max))

if(self.phases[phase]=="Water"):
ax[i,TheStreamIndex].hist(self.TrialStreams[i][cnt

].WtrMass.data[ 'dt'],color=self.Colors[phase], bins=n_bins)

dt'])

Max = max(self.TrialStreams[i][cnt].WtrMass.data["

#tax[1i,1i,TheStreamIndex].text('Highest time delta:’

+str(Max))

ax[i,TheStreamIndex].set_yscale('log')
cnt = cnt+l

except IndexError:
cnt = cnt+l

continue
if(save):
fig.savefig(title+".png")
fig.show()

def GetKfactors(self,Stream,Phase):

if(Stream in self.StreamNames):
streamIndex = self.StreamNames.index(Stream)
else:
print('Stream name not found')
return ‘'Stream name not found'
if(Phase in self.phases):
PhaseIndex = self.phases.index(Phase)
else:
print('Phase not found')
return 'phase not found'

return self.Kfaktors[PhaseIndex][:,streamIndex]

def PrintMethodReport(self):

1,i1))
1,i1))
1,i]))

This print out a report of the parralell calibration

for i in range(len(self.StreamNames)):
print("-----------------o - "+self.StreamNames[i]+"------------------

print(" 0il K-factor = "+str(self.Kfaktors[@][len(self.Kfaktors[0])-
print(" Gas K-factor = "+str(self.Kfaktors[1][len(self.Kfaktors[1])-
print(" Water K-factor = "+str(self.Kfaktors[2][len(self.Kfaktors[2])-

Praint (M- mm s e e ")

def Statisics(self):

self.StatStreams = []
for i in range(len(self.StreamNames)):

34



828.
829.

830.

831.

832.
833.
834.
835.
836.
837.
838.
839.
840.
841.
842.
843.
844.
845.
846.
847.
848.
849.
850.
851.
852.
853.
854.
855.
856.
857.
858.
859.
860.
861.
862.
863.
864.
865.

866.
867.
868.
869.
870.
871.
872.
873.
874.
875.
876.
877.
878.
879.
880.
881.

882.
883.
884.
885.
886.
887.
888.

Source Code — Parallel calibration

Stream = []

Stream.append(stats(self.Kfaktors[0][0:,1i],self.StreamNames[i], self.phase
s[e]))

Stream.append(stats(self.Kfaktors[1][0:,i],self.StreamNames[i], self.phase
s[1]))

Stream.append(stats(self.Kfaktors[2][0:,i],self.StreamNames[i], self.phase
s[2]))

self.StatStreams.append(Stream)

self.PlotStats()
self.PrintStats()
self.CreateStatsDF()

def PlotStats(self):

for stream in self.StatStreams:
for phase in stream:
phase.plot()

def PrintStats(self):

for stream in self.StatStreams:
for phase in stream:
print(phase.to_string())

def GetStats(self,Stream,Phase):

if(Stream in self.StreamNames):

streamIndex = self.StreamNames.index(Stream)
else:

print('Stream name not found')

return 'Stream name not found'
if(Phase in self.phases):

PhaseIndex = self.phases.index(Phase)
else:

print('Phase not found")

return 'Phase not found'

return self.StatStreams[streamIndex][PhaseIndex]

def CreateStatsDF(self):
""" Creates a resulting multi dimentional Pandas datafram of the result from t
he statistics """
StreamNames = []
Phase = []
first = True
for Stream in self.StatStreams:
for result in Stream:
StreamNames.append(result.name)
Phase.append(result.phase)
if(first):
ResultMatrix = result.ResultVector()
first = False
else:
ResultMatrix = np.vstack((ResultMatrix,result.ResultVector()))

MdimIndecis = list(zip(StreamNames,Phase))

MdimIndecis = pd.MultiIndex.from_tuples(MdimIndecis)

self.StatsDF = pd.DataFrame(ResultMatrix,MdimIndecis, [ 'mean’', 'uncert’', 'St.dev’
, 'SampleSize'])

self.StatsDF.index.names = ['Stream', 'Phase’]

# self.StatsDF.xs('0il',level="Phase') returnere alle olje kfaktor linjene
# self.StatsDF.loc('Bgyla’) returnere en normal DF med bgyla talla

def CreateBasisDF(self):
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dfs = []
for Stream in self.StatStreams:
for phase in Stream:
thisBase = phase.Basis
stream = []
streamphase = []
for i in range(len(thisBase)):
stream.append(phase.name)
streamphase.append(phase.phase)
data = {'stream':stream, 'phase':streamphase, 'k-

factor':thisBase.tolist()}

dfs.append(pd.DataFrame(data))

self.BasisDF = pd.concat(dfs, ignore_index=True)

def ViolinPlot(self,FigureSize = (10,10)):
self.CreateBasisDF()
plt.figure(figsize=FigureSize)
ax = sns.violinplot(x='stream', y='k-

factor', hue ='phase', data=self.BasisDF)

plt.show()

def Stats(self):
self.PlotStats()
self.PrintStats()

def Report(self,title = 'Parrell calibration report'):
#not yet implemented
print('not yet implemented')

def Save(self,CalibrationName):
self.rootDir = os.getcwd()
#tself.dirname = self.rootDir+"/"+CalibrationName"_ "+str(self.DateCalculated)
#os.mkdir(CalibrationName"_"+str(self.DateCalculated))
os.chdir(self.dirname)

def SavePlots(self):

"Not yet implemented"”

return "Not yet implemented"
def SaveTrials(self):

"Not yet implemented”

return "Not yet implemented"

def PlotCalvsCal(Cals,StreamName):

fig, axes = plt.subplots(figsize=(15,10),dpi=300,nrows=3,ncols=1)

#or current_ax in axes:

# current_ax.plot(Kfaktorer[0][0:,0], label ='0il P', color="#DF0071")
# current_ax.plot(Bg¢TO[1][0:], label = '0il_T', color='#00A030")

Cal2 = Cals[9@]

Call = Cals[1]

axes[0].plot(Call.GetKfactors(StreamName, '0il"')[20:], label ='0il_Trad', color='#D

FeO71')

axes[0@].plot(Cal2.GetKfactors(StreamName, '0il"')[20:], label ='0il_Para', color='#0

0A030")

ttaxes[0].plot(TBp[0][1][©:], label = '0il T', color='#00A030")
axes[0].legend()
axes[@].set_title(StreamName+' Comparrison Calibration')
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Source Code — Parallel calibration

axes[1].plot(Call.GetKfactors(StreamName, 'Gas')[20:], label ='Gas_Trad', color='#D
Foo71')

axes[1].plot(Cal2.GetKfactors(StreamName, 'Gas')[20:], label ='Gas_Para', color='#0
0A030")

#taxes[1].plot(TBp[1][1][@:], 1label = 'Gas_T', color='#00A030")

axes[1].legend()

axes[2].plot(Call.GetKfactors(StreamName, 'Water')[20:], label ='Water_Trad', color
='#DFOO71")

axes[2].plot(Cal2.GetKfactors(StreamName, 'Water')[20:], label ='Water_Para', color
='#00A030")

#taxes[2].plot(TBp[2][1][0:], label = 'Water_T', color='#00A030")

axes[2].legend(fontsize = 'x-large')

fig.show()

def PlotOneCalvsCal(Cals,StreamName):
plt.figure(figsize=(15,10))

Colors = ['#000000', '#DFOO71', '#00A030', '#EE7900', '#777777',' #000028', #B9B9BY',"
#EGEGE6' ]

#or current_ax in axes:

# current_ax.plot(Kfaktorer[0][0:,0], label ='0il_P', color='#DF0O71")
# current_ax.plot(BeTO[1][@©:], label = '0il_T', color='#00A030")

Cal2 = Cals[9@]

Call = Cals[1]

plt.plot(Call.GetKfactors(StreamName, '0il')[50:], label

'0il Trad', color=Colors|

oD plt.plot(Cal2.GetKfactors(StreamName, '0il')[50:], label ='0il_Para', color=Colors][
) plt.plot(Call.GetKfactors(StreamName, 'Gas')[50:], label ='Gas_Trad', color=Colors|
2) plt.plot(Cal2.GetKfactors(StreamName, 'Gas')[50:], label ='Gas_Para', color=Colors[
3D plt.plot(Call.GetKfactors(StreamName, 'Water')[50:], label ='Water_Trad', color=Col
Or‘S[‘[::I]L’z.plot(Calz.Ge‘cK-Factor‘s(Str‘eamName,'Water")[SO:], label ='Water_Para', color=Col
ors[6])

ttaxes[0].plot(TBp[0][1][0©:], label = '0il T', color='#00A030")
plt.ylabel('K-factor',fontsize = 'x-large' )

plt.xlabel('Syncronice runs across trials' ,fontsize = 'x-large')
plt.legend(fontsize = 'x-large')

plt.title(StreamName+' Comparison Calibration',fontsize = 'x-large')
plt.show()

#Box plot comparrison eller violinplot noge sant :)
#def ViolinPlot(Calibrations,FigureSize = (10,10)):
first = Calibrations[9]

sec = Calibrations[1]

plt.figure(figsize=FigureSize)
ax = sns.violinplot(x='stream', y='k-factor', hue ='phase', data=self.BasisDF)

e

plt.show()

#unit testing of important functions

if (_name__ == '_main__'):
Frame = np.array([[1,1,0],[0,1,1],[1,0,1]])
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Source Code — Parallel calibration

baseTl = np.array([1,1,2])
baseT2 = np.array([0.5,1,1.5])
baseT3 = np.array([0.25,0.5,0.75])

Tl = baseT1
T2 = baseT2
T3 = baseT3

X = np.linspace(1,1000,100)
for i in range(len(x)):

Tl = np.vstack((T1,baseT1*x[i]))
T2 = np.vstack((T2,baseT2*x[i]))
T3 = np.vstack((T3,baseT3*x[i]))

Trials = [[T1,T1,T1],[T2,T2,T2],[T3,T3,T3]]
Mm = GetM_m(Frame,Trials,0)

for i in range(len(Mm)):
M = Mm[i][0]
m = Mm[i][1]
print(str(M))
print(" = ")
print(str(m))

#Copy this from where it is used in the code. or just implement it as a function :

)
Kfactors = []
for phase in range(3): # 3 phases 0il, Gas and Water in that order.
Mm = GetM_m(Frame,Trials,phase) #Gets a touple of the M matrix and m phase
first = True
for i in range(1,len(Mm)):
try:
K_i = Solver(Mm[i])
except:
print("Singular matrix at "+str(i)+"iteration")
continue
if(first):
K=K i
else:
K = np.vstack((K,K_i))
first = False
Kfactors.append(K)
for i in range(len(Kfactors[0][:,0])):
print(str(Kfactors[@][i][0])+" "+str(Kfactors[@][i][1])+" "+str(Kfactors[@][i]
[(21))
print(""""\n \n \n \n \n \n \n \n /n /n /n /n /n /n /n """)
for i in range(len(Kfactors[1][:,0])):
print(str(Kfactors[1][i][0])+" "+str(Kfactors[1][i][21])+" "+str(Kfactors[1][i]
[21))
print(""""\n \n \n \n \n \n \n \n /n /n /n /n /n /n /n """)
for i in range(len(Kfactors[2][:,0])):
print(str(Kfactors[2][i][0])+" "+str(Kfactors[2][i][1])+" "+str(Kfactors[2][i]
[(21))
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6 Source Code - Calibration Statistics

Printed 12/05-2019

# -*- coding: utf-8 -*-

Created on Sat Apr 13 23:26:19 2019

@author: stig

import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import find_peaks

def

def

def

SSE (Kfaktorer):
"""Finds the sum squared error within the dataset"""
totnum = len(Kfaktorer)
Startnum = int(@.05*totnum)
MaxUse = int(@.9*totnum) # Max use 90% of the values
SSEs = []
for i in range(MaxUse):
ItersFactors = Kfaktorer[len(Kfaktorer)-Startnum-i:]
mu = np.mean(ItersFactors) #The mean
SSE = 0
for j in range(len(ItersFactors)):
SSE = SSE + (ItersFactors[j]-mu)**2
SSEs.append(SSE)
return SSEs

DSSE(SSEs):

""" Finds the differances of the sum squared error list

DSSEs = []

for i in range(1,len(SSEs)):
DSSEs.append((SSEs[i-1]-SSEs[1i])**2)

return DSSEs

findStableValues(Kfaktorer,height=1.0e-06):

Finds the stable values from the end to a change, by finding slopes by differentiati
on a Sum of squared errors, and use peak detection to detect

SSEs = SSE(Kfaktorer)
DSSEs = DSSE(SSEs)

peak, __ = find_peaks(np.asarray(DSSEs), height, distance=2.1)

if(len(peak)==0):
peak, __ = find_peaks(np.asarray(DSSEs), 9.199606608655428e-07, distance=2.1)
if(len(peak)==0):
lim = int(@.8*1len(Kfaktorer))
else:
lim = peak[@]
else:
lim = peak[@] #taking the first peak as the stopping point.

Basis = Kfaktorer[len(Kfaktorer)-1lim:]

return (Basis,lim)
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def CalcRandUncert(Basis,rep=False):

def

This method numerically integrates a normal distrobution to probe the uncertanity of

the Basis data.

mean = np.mean(Basis)

sigma = np.std(Basis)

stdev = sigma #if you see this don't tell anyone.
mu = mean

Coverage = 2 #Definint the coverage factor for integration limits

lower = mean-(Coverage*stdev)
upper = mean+(Coverage*stdev)

steps = 10000 #numb of intervall segments for numerical integration of normal probab

ility density distibution.

t = np.linspace(lower,upper,10000)

dt = (t[1]-t[@])/steps

f = 1/(np.sqrt(2*np.pi*(sigma**2)))*np.exp(-(t-

mu)**2/(2*sigma**2)) #Created a normal distibution vector between +-
2 std. deviations

The Actual calculation and integration of the normal distrobution

X = f[@]*dt #inital datapoint with or without? i cannot decide, it is also a part of

the first iteration in the for loop
for i in range(1,len(t)):

X = X + ((f[i-1]*f[1])/2)*dt #Numerically integrates a normalditrobution

if(rep):
print("Mean="+str(mean)+"+-"+str(X*100)+"% Sigma="+str(stdev))

return (mean,X,stdev)

PlotStats(Kfaktorer,lim,Basis,title="",save=False):

Colors = ['#000000', '#DFOO71"', '#00A030", '#EE7900', '#777777","' #000028', '#B9B9B9', '#E

6E6E6" ]

mu = np.mean(Basis)

sigma = np.std(Basis)
lower = mu-(4*sigma)
upper = mu+(4*sigma)

steps = 1000
t = np.linspace(lower,upper,steps)
f = 1/(sigma*np.sqrt(2*np.pi))*np.exp(-(t-mu)**2/(2*sigma**2))

rempart = 25

ymin = np.min(Kfaktorer[rempart:])

ymax = np.max(Kfaktorer[rempart:])

fig = plt.figure()

fig.suptitle(title)

Trend = fig.add_axes([0.1,0.1,0.8,0.8])

Prob = fig.add_axes([0.9,0.1,0.3,0.8])
Trend.plot(Kfaktorer[rempart:],color=Colors[6])
Trend.plot(np.arange(len(Kfaktorer)-1lim-rempart,len(Kfaktorer)-
rempart),Basis,color=Colors[1])

Prob.hist(Basis, bins=3@, orientation = 'horizontal',color=Colors[2])
Prob.plot(f,t, color=Colors[3])
Prob.set_ylim(ymin,ymax)
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119. Trend.set_ylim(ymin,ymax)

120. if(save):

121. fig.savefig(title+".png")

122. else:

123. fig.show()

124.

125.

126.

127.

128.

129. class stats():

130. def __init__ (self,Kfaktorer,name='"',phase = '',PLen=-1):

131.

132. self.name = name

133. self.phase = phase

134. self.Kfaktorer = Kfaktorer

135. self.totStdev = np.std(Kfaktorer)

136. self.totmean = np.mean(Kfaktorer)

137. self.PeakDetLim = (self.totStdev**7)*100

138. if (PLen == -1):

139. self.Basis, self.lim = findStableValues(Kfaktorer,self.PeakDetLim)

140. else:

141. self.lim = PLen

142. self.Basis = Kfaktorer[len(Kfaktorer)-1lim:]

143. self.mean , self.X ,self.stdev = CalcRandUncert(self.Basis)

144. self.N = len(self.Basis)

145.

146. def ReCalc(self,newlim):

147. self.lim = newlim

148. self.Basis = self.Kfaktorer[len(self.Kfaktorer)-self.lim:]

149. self.mean , self.X ,self.stdev = CalcRandUncert(self.Basis)

150. self.N = len(self.Basis)

151.

152. self.plot()

153. print(self.to_string())

154.

155.

156. def plot(self):

157. PlotStats(self.Kfaktorer,self.lim,self.Basis,self.name+" "+self.phase)

158.

159. def plotDiag(self):

160. e

161. Diagnostics plot

162. e

163.

164. SSEs = SSE(self.Kfaktorer)

165. DSSEs = DSSE(SSEs)

166.

167. fig = plt.figure()

168. axSSE = fig.add_axes()

169. axDSSE = fig.add_axes()

170. axSSE.plot(SSEs)

171. axDSSE.plot(DSSEs)

172.

173. def ResultVector(self):

174. return np.array([self.mean,self.X*100,self.stdev,len(self.Basis)])

175.

176. def to_string(self):

177. return self.name+" "+self.phase+" mean = "+str(self.mean)+" * "+str(self.X*100)+
" % - St.dev ="+str(self.stdev)+" #Samples ="+str(len(self.Basis))

178.

179.

180. if __name__ == "_main__":

181. """ Unit testing of find and do statistics"""

182. N_num = 1000 #ma vare partall

183. X = np.linspace(0.5,-20,N_num)
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184. noise = (np.random.rand(N_num)-0.5)*0.03

185. noisreduction = np.hstack((np.linspace(1.6,0.1,int(N_num/2)),0.1*np.ones(int(N_num/2
))))

186. noise = np.multiply(noise,noisreduction)

187. cumunoise = np.zeros(len(noise))

188. for i in range(1,len(noise)):

189. cumunoise[i] =cumunoise[i-1]+noise[i]

190. y = 140.5*np.exp(10*x)/100+cumunoise#+(0.01*np.sin(x))

191. #y[int(0.3*10008)] = y[int(0.7*1000)]*1.05

192.

193. plt.plot(y)

194. plt.title('Randomly generated k-factor development')

195. plt.show()

196. SSEs = SSE(y)

197. plt.plot(SSEs)

198. plt.title('SSE")

199. plt.show()

200. DSSEs = DSSE(SSEs)

201. plt.plot(DSSEs)

202. plt.title('DSSE")

203. plt.show()

204. plt.semilogy(DSSEs)

205. plt.title('DSSE - logarithmic')

206. plt.show()

207. std = np.std(y)

208. (Basis,lim) = findStableValues(y,std**7*100)

209. print("lim = "+str(lim))

210. plt.plot(Basis)

211. plt.show()

212. PlotStats(y,lim,Basis)

213. CalcRandUncert(Basis,rep=True)

214. test = stats(y, 'unit testing')

215. print(test.to_string())

216. test.plot()

217. test.ReCalc(259)

218.
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1 Appendix E — Calibration Execution and Results January

Contents

This appendix will have the results of the performed calibrations both Traditional, synthetic
and perform a comparison. There are two data sets available for this comparison one from
January 2019 and one from late march the same year. This Appendix will cover the execution
of these test and give the data and result of the traditional and synthetic calibration. And gives
insight to the accuracy of the parallel algorithm compared to a traditional method.
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2 January — Traditional vs Synthetic

2 January — Traditional vs Synthetic

Traditional calibration was carried out in January 2019, this chapter will perform a traditional
and synthetic parallel calibration. Also, worth to note that the Multi-phase meter on Bayla
was changed to another model, and in the march test later in this appendix a new installed
multi-phase meter will be in operations.

Figure 1 shows the first lines of code, considering the implementation of standard methods,
and formatting the output as well as getting the parallel calibration libraries an a Cognite
client and getting the time windows when the traditional calibration was carried out.

In [35]: %xjavascript
IPython.OutputArea.auto scroll threshold = 9999;

In [1]: import numpy as np
import pandas as pd
from datetime import datetime
from datetime import timedelta
from matplotlib import pyplot as plt
Zmatplotlib inline

In [2]: from ParralellCalibration import *

In [4]: from cognite import CogniteClient
cdp = CogniteClient()

In [

L
—

from JanuarTimes import *

(datetime.datetime(2619, 1, 27, 5, 18, 38), datetime.datetime(2819, 1, 27, 13,
8, 38))

(datetime.datetime(2819, 1, 26, 5, 22, 38), datetime.datetime(2819, 1, 26, 12,
35))

(datetime.datetime(2619, 1, 25, 5, 38), datetime.datetime(2819, 1, 25, 13, 2)})

In [6]: Duration = timedelta{minutes=488)

Figure 1 - Initial libraries and locating time windows for traditional calibration



2 January — Traditional vs Synthetic
2.1 Synthetic Parallel calibration

In [7]:  SynteticTl = []
SynteticTl.append(MulitPhaseStream{"Bayla"”,Bayla_timewindow[@],Béyla_timewlindow[8]+Duration,cdp))
SynteticTl.append(MulitPhaseStream{"vilje",vilje_timewindow[@],vilje_timewindow[8]+Duration,cdp))

#syntetic Combination of separator streams

R1Bgyla =Separatorstreams(Bgyla_timewindow[e],Bgyla_timewindow[8]+Duration, cdp)
R1Vilje =Separaterstreams(vilje_timewindow[e],vilje_timewindow[8]+Duration,cdp)
refl = R1Vilje

refl.oilMass.datal 'cumulative'] = Addstreams(R1vilje.oilMass.data,R1Bayla.0ilMass.data)
rRefl.GasMass.datal 'cumulative'] = Addstreams(R1vilje.GasMass.data,R1Bayla.GasMass.data)
rRefl.wtrMass.data[ 'cumulative'] = Addstreams(Ri1vilje.wtrMass.data,R1Bayla.wtrMass.data)

synteticTi.append(Refl)

In [8]:  synteticT2 = []

synteticT2.append(MulitPhasestream{"vilje",vilje_timewindow[e],vilje_timewindow[8]+Duration,cdp))
synteticT2.append(MulitPhasestream{ "volund” ,volund_timewindow[8],velund_timewindow[@]+Duration,cdp}}

#syntetic combination of separator streams

R2vilje =Separatcrstreams(vilje_timewindow[e],vilje_timewindow[e]+Duration,cdp)
rR2volund =separatorstreams(volund_timewindow[e],volund_timewindow[2]+Duration,cdp)
ref2 = R2volund
Ref2.0ilMass.datal 'cumulativ
Ref2.GasMass.datal 'cumulativ
Ref2.wtrMass.datal 'cumulativ
synteticT2.append({Ref2)

Addstreams(R2volund.0ilMass.data,R2vilje.0ilMass.data)
Addstreams(R2volund.GasMass.data,R2vilje.GasMass . data)
Addstreams(R2volund .witrMass.data,R2vilje.wtrMass.data)

m o

]
]
1

In [2]:  synteticT3 = []

synteticTz.append{MulitPhasestream{“Beyla”,Beyla_timewindow[2],Beyla_timewindow[2]+Duration,cdp))
synteticT3.append(MulitPhasestream{ "volund” ,volund_timewindow[e],velund_timewindow[@]+Duration,cdp))

#syntetic Ccombination of separator streams

RIBgyla =SeparatcorStreams(Eg¢yla_timewindow[e],Bgyla_timewindow[&]+Duration, cdp)
rR3IVolund =Separatorstreams(volund_timewindow[e],volund_timewindow[2]+Duration,cdp)
ref3 = R3Beyla
rRef3.0ilMass.datal 'cumulativ
Ref3.GasMass.datal 'cumulativ
Ref3.WtrMass.datal 'cumulativ

Addstreams(R3Beyla.0ilMass.data,R3volund.0ilMass.data)
Addstreams(R3Beyla.GasMass.data,R3volund. GasMass.data)
Addstreams(R3Bgyla.WtrMass.data,R3volund.WtrMass.data)

m o

]
]
1

SynteticT3.append({Ref3)

In [12]: | Syntetic = Parralellcalibration([SynteticTl,sSynteticT2,SynteticT2])

Figure 2 - Initial code and Synthetic parallel calibration

Figure 2 shows the initial code, then processed to get the time windows for traditional
calibration. Then it creates a synthetic trial dataset based on the streams in question, for each
trial the streams remain the same, but the reference streams (separators streams) are added
together.
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2 January — Traditional vs Synthetic
Figure 3 shows the development of k-factors over the elapsed time of the trials.
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Since this is a synthetic dataset, when gauging the process stability during these trials, this
can be seen in Figure 9 in the traditional method, since the synthetic data does nothing with
the intensive variables in the system, this won’t be representable of the real states, due to the
higher the flow is through the separator, both the temperature and pressure should be higher.

2.1.1 Trial Plots

Parralell calibration cumulative mass [KiloTonnes]
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Figure 4 — synthetic cumulative mass matrix plot




2 January — Traditional vs Synthetic

Figure 4 shows the data going into the parallel calibration solver, where the synthetic here is
the Third party separator as explained in the code in Figure 2.

2.1.2 Statistics

The result of the calibration is shown in Figure 5, which is based on the statistical basis
shown in Figure 6.

38]: Syntetic.5tatsDF

1:

(=]

In [
out[3
mean uncert St.dev SampleSize

Stream Phase

Beyla Oil 0.999605 0541444 0.002593 1080.0
Gas 1.066666 1.335782 0.001031 500.0

Water 0939100 1152746 0.001218 1500.0

Vilje Oil 0882737 0199537 0.007036 835.0
Gas 0966499 0400514 0.002862 1897.0

Water 1.200562 0734741 0.001789 1124.0

Volund Oil 1.014309 0412972 0.003399 1947.0
Gas 0925355 1.415619 0.000992 1000.0

Water 1.071362 0825541 0.001701 1327.0

Figure 5- Resulting data frame of synthetic calibration
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Figure 6 - Statistical basis form k-factor development synthetic calibration, with vertical histogram with number of samples and probability
density
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2.2 Traditional calibration

In [18]: Triall = CreateTrial

F
i

Trial? = CreateTrial([
i
([

Trial3s = createTrial

Creating volund Stream
Creating Separator Streams
Trial Finnished

Creating vilje stream
Creating separator Streams
Trial Finnished

Creating Bgyla Stream
Creating separator Sstreams
Trial Fimnished

nd"], (Volund_timewindow[&],volund_timewindow[&]+Duration),cdp)
"], (vilje_timewindow[@],vilje_timewindow[@]+Duration),cdp)
#y1a"], (Beyla_timewindow[e],Beyla_timewindow[e]+Duration},cdp)

In [11]: TradCal = ParralellCalibration{[Triall,Trial2,Trial3])

Figure 7 - Traditional calibration performed

Figure 7 Shows the execution of a traditional calibration but uses the parallel calibration
algorithm, but the results are the same, where the trial matrix is a diagonal matrix with only
non-zero values on the diagonal, the inverse of the diagonal matrix then becomes the
reciprocals of the values in each of the diagonal line. All in all, the use of the parallel

calibration class to perform a traditional calibration can be and is done.
Figure 8 Shows the resulting k-factor development through the trials.
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Figure 8 — Resulting k-factors over the Traditional calibration

2.2.1 Trial Plots

o 500 1000 1500 2000
Runs

Figure 9 shows the intensive variables of the trials. Figure 10 shows the cumulative matrix
plot of the accumulated mass, this plot is the values over the different runs going into the

solver
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2 January — Traditional vs Synthetic
Parralell calibration process conditions
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Figure 9 - Intensive variables of data set
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Parralell calibration cumulative mass [KiloTonnes]
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Figure 10 - Cumulative matrix plot

2.2.2 Statistics

Figure 11 shows the resulting values for each stream and each phase based on the data basis

shown in Figure 12.

10



In [38]: TradCal.StatsDF

Dut[38]:

mean uncert St.dev SampleSize

Stream Phase
Vilje Qil 0383457 0232006 0.006051 953.0
Gas 0.956498 0570060 0.002483 1897.0
Water 1.200458 0784554 0.001789 1122.0
Volund Qil 1.016419 0325407 0.004314 1923.0
Gas 0.925481 1.414976 0.000992 1000.0
Water 1.072090 00942954 0.001489 1394.0
Beyla Qil 0993741 0990563 0.001417 995.0
Gas 1.066596 1.415145 0.000992 500.0
Water 0938859 1.825493 0.000769 1000.0

Figure 11 - Resulting data frame of calibration

2 January — Traditional vs Synthetic
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Figure 12 - Statistical basis form k-factor development traditional calibration, with vertical histogram with number of samples and probability
density
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2.3 Comparison

The result of both calibration compared towards each other for each stream is shown in
Figure 13 for Volund, Figure 14 for Vilje and Figure 15 for Bgyla multi-phase flow meters.
Just form these figures the result of both methods seam to replicate each other very well and
that the parallel calibration method based on synthetic data works very well. A print of the
data frames of the differences is also shown in Figure 16. And is collected in Table 1.

Volund Comparrison Calibration
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115 1 = Qil_Para
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Figure 13 - Volund calibration comparrison
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Vilje Comparrison Calibration
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Beyla Comparrison Calibration
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Figure 15 - Bgyla calibration comparrison
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In [42]:

Out[42]:

2 January — Traditional vs Synthetic

(TradCal.5tatsDF.loc[ 'Beyla']-Syntetic.5tatsDF.loc[ 'Boyla’])

mean uncert St.dev SampleSize

Phase
Oil -0.0008584 0449119 -0.001176 -64.0
GGas -0.000068 0079363 -0.000059 0.0
Water -0.000230 0672747 -0.000449 -500.0

(TradCal.StatsDF.loc[ 'Vi

lje']-Syntetic.StatsDF.loc['Vilje'])

mean uncert St.dev SampleSize

Phase
il 0.000720 0.032468 -0.846128e-04 230
Gas -0.000001 0.079546 -3.993710e-04 0.0
Water -0.000104 0000113 -2.580672e-07 -2.0

(TradCal.S5tatsDF.loc[ "Volund' ]-Syntetic.S5tatsDF. loc[ "Volund'])

mean uncert St.dev SampleSize

Phase
il 0.002110 -0.087565 9.147768e-04 -24.0
Gas 0.000126 -0.000643 4.508911e-07 0.0
Water 0.000228 0117422 -2117613e-04 67.0

Figure 16 - Print of differences between Traditional and synthetic calibration
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Table 1 - Comparison of Traditional an Synthetic parallel

January Calibration Traditional Synthetic Parallel Differences between Synthetic and Traditional (ref)

Stream | Phase | mean unr?:grdtgirgty c?;a\l/?;tiaé?] Si?;gle mean urgggr(jtgmty ?;?/?;t?g?] sasrir;péle de(\)/;ail_o " Deviation u?\icfferr; nlgty (SEES\EQL{V)
[%] [%] factor

Oil | 0.99874 0.99 1.42E-03 996 0.99961 0.54 2.59E-03 1060 8.64E-04 0.09% -0.449 0.001
Bgyla Gas | 1.06660 1.42 9.92E-04 500 1.06667 1.34 1.05E-03 500 7.00E-05 0.01% -0.079 0.000
Water | 0.93887 1.83 7.69E-04 1000 0.93910 1.15 1.22E-03 1500 2.31E-04 0.02% -0.673 0.000
Oil | 1.01642 0.33 4.31E-03 1923 1.01431 0.41 3.40E-03 1947 -2.11E-03 -0.21% 0.088 -0.001
Volund Gas | 0.92548 1.41 9.92E-04 1000 0.92536 1.42 9.92E-04 1000 -1.26E-04 -0.01% 0.001 0.000
Water | 107209 0.94 1.49E-03 1394 1.07186 0.83 1.70E-03 1327 -2.28E-04 -0.02% -0.117 0.000
Oil | 0.88346 0.23 6.05E-03 958 | 0.88274 0.20 7.04E-03 935 | _7.20E.04 -0.08% 0.032 0.001
Vilje Gas | 0.96650 0.57 2.46E-03 1897 0.96650 0.49 2.86E-03 1897 1.00E-06 0.00% -0.080 0.000
Water | 120046 0.78 1.79E-03 1122 1.20056 0.78 1.79E-03 1124 1.04E-04 0.01% 0.000 0.000

17
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3 Compare result to real calibration

Table 2 below compare the different result to the actual accepted k-factors from the metering
system on Alvheim, and this is subsequently plotted in Figure 17, Figure 18 and Figure 19 for
each respective multi-phase meter streams.

Table 2 - Result compared to real result

Current Algorithm
C;;rt:::t?clm Phase metering Traditional ) Synthetic parallel
system
Oil 0.97919 0.99874 0.99961
Boyla Gas 1.01439 1.0666 1.06667
Water 0.93353 0.93887 0.9391
Oil 0.86164 0.88346 0.88274
Vilje Gas 0.96043 0.9665 0.9665
Water 1.15805 1.20046 1.20056
Oil 0.98797 1.01642 1.01431
Volund Gas 0.90674 0.92548 0.92536
Water 1.04478 1.07209 1.07186
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Figure 17 - calibration result comparison Vilje January
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Figure 18 - calibration result comparison Volund January
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Figure 19 - calibration result comparison Bgyla January
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1 Appendix F Calibration execution and result April

Contents

This appendix will have the results of the performed calibrations both Traditional, synthetic
and perform a comparison. There are two data sets available for this comparison one from
January 2019 and one from late march the same year. This Appendix will cover the execution
and result of parallel calibrations in both the start and end of April and compare the results.
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2 Traditional vs Synthetic

2 Traditional vs Synthetic

Traditional calibration was carried out in late March 2019, this chapter will perform a
traditional and synthetic parallel calibration, this is also the initial calibration of a newly
installed multiphase meter on Bayla.

Figure 1 shows the first lines of code, considering the implementation of standard methods,
and formatting the output as well as getting the parallel calibration libraries and a Cognite
client and getting the time windows when the traditional calibration was carried out.

In [3

In

In

In

In [

In

5]:

[1]:

[2]:

[4]:

[8a]
—

[e]:

kkjavascript
IPython.OutputArea.auto_scroll_threshold = 9599;

import numpy as np

import pandas as pd

from datetime import datetime

from datetime import timedelta

from matplotlib import pyplot as plt
#matplotlib inline

from ParralellcCalibration import *

from cognite import CogniteClient
cdp = CogniteClient()

from JanuarTimes import *

(datetime.datetime(2819, 1, 27, 5, 18, 328), datetime.datetime(2819, 1, 27, 12,
8, 20))

(datetime.datetime(2619, 1, 26, 5, 22, 38), datetime.datetime(2819, 1, 26, 13,
35))

(datetime.datetime(26819, 1, 25, 5, 38), datetime.datetime(2@12, 1, 25, 13, 2))

Duration = timedelta(minutes=488)

Figure 1 - Initial libraries and locating time windows for traditional calibration



2.1 Synthetic Parallel calibration

In [7]: SynteticTl = []

2 Traditional vs Synthetic

SynteticT1.append(MulitPhaseStream("Bayla",Boyla_timewindow[@],Bdyla_timewindow[@]+Duration,cdp))
SynteticTl.append(MulitPhaseStream("vilje" ,vilje_timewindow[@],Vilje_timewindow[@]+Duration,cdp))

#Syntetic Combination of separator streams

R1Bgyla =SeparatorStreams(Beyla_timewindow[@],Beyla_ timewindow[@]+Duration,cdp)
R1Vilje =SeparatorStreams(Vilje_ timewindow[@],Vilje_ timewindow[@]+Duration,cdp)

Refl = RIVilje

Refl.0ilMass.data[ " cumulat
Refl.GasMass.data[ " cumulat
Refl.WtrMass.data[ " cumulat

SynteticTl.append(Refl)

In [8]: SynteticT2 = []

= AddStreams (R1Vilje.0ilMass.data,R1Bdyla.0ilMass.data)
= Addstreams(R1Vilje.GasMass.data,R1Bgyla.GasMass.data)
= Addstreams (R1Vilje.WtrMass.data,R1Bgyla.WtriMass.data)

SynteticT2.append(MulitPhasestream(“vilje",vilje_timewindow[@],Vilje_timewindow[@]+Duration,cdp))
SynteticT2.append(MulitPhaseStream("Volund"”,Volund_timewindow[@],Volund_timewindow[@]+Duration,cdp))

#Syntetic Combination of separator streams

R2Vilje =SeparatorStreams(Vilje timewindow[@],Vilje timewindow[@]+Duration,cdp)
R2Volund =SeparatorStreams(Volund timewindow[@],Volund timewindow[@]+Duration,cdp)

Ref2 = R2Volund
Ref2.0ilMass.data[ " cumulati
Ref2.GasMass.data[ " cumulat
Ref2.WtrMass.data[ "cumulativ
SynteticT2.append(Ref2)

In [9]: SynteticT3 = []

] = Addstreams(R2vVelund.0ilMass.data,R2Vilje.0ilMass.data)
1 = AddStreams(R2volund.GasMass.data,R2Vilje.GasMass.data)
] = AddStreams(R2Volund.WtrMass.data,R2vilje.WtrMass.data)

SynteticT3.append(MulitPhaseStream("Bdyla",Beyla_timewindow[@],Bdyla_timewindow[@]+Duration,cdp))
SynteticT3.append(MulitPhaseStream("Volund" ,Volund_timewindow[@],Volund timewindow[@]+Duration,cdp))

#Syntetic Coml ion of separator streams

R3Bgyla =SeparatorStreams(Béyla_timewindow[@],Beyla_timewindow[@]+Duration,cdp)
R3Volund =Separatorstreams(Volund timewindow[@],volund_ timewindow[@]+Duration,cdp)

Ref3 = R3Bdyla
Ref3.0ilMass.data[ "cumulative’
Ref3.GasMass.data[ " cumulat
Ref3.WtrMass.data[ " cumulat

ve

SynteticT3.append(Ref3)

In [108]: Syntetic = ParralellCalibration([SynteticTl,5ynteticT2,SynteticT3])

Figure 2 - Initial code and Synthetic parallel calibration

] = AddStreams(R3Béyla.0ilMass.data,R3Volund.0ilMass.data)
'] = AddStreams(R3Béyla.GasMass.data,R3Volund.GasMass.data)
] = AddStreams(R3Béyla.WtrMass.data,R3Volund.WtrMass.data)

Figure 2 shows the initial code, then processed to get the time windows for traditional
calibration. Then it creates a synthetic trial dataset based on the streams in question, for each
trial the streams remain the same, but the reference streams (separators streams) are added

together.



In [11]: 1  Syntetic.Plot()

Volund calibration

Vilje calibration

2 Traditional vs Synthetic
Figure 3 shows the development of k-factors over the elapsed time of the synthetic trials.

Boyla calibration

o 500
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Runs

2000

Figure 3 - Synthetic K-factor development
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Since this is a synthetic dataset, when gauging the process stability during these trials, this

can be seen in Figure 9 in the traditional method, since the synthetic data does nothing with
the intensive variables in the system, this won’t be representable of the real states, due to the
higher the flow is through the separator, both the temperature and pressure should be higher.

2.1.1 Trial Plots

Parralell calibration cumulative mass [KiloTonnes]
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Figure 4 — synthetic cumulative mass matrix plot




2 Traditional vs Synthetic

Figure 4 shows the data going into the parallel calibration solver, where the synthetic here is
the 3" party separator as explained in the code in Figure 2.

2.1.2 Statistics

The result of the calibration is shown in Figure 5 which is based on the statistical basis shown
Figure 6.

In [39]: Syntetic.StatsDF

.....

mean uncert St.dev Sample Size

Stream Phase

Beyla Qil 1591172 0128115 0.010953 1186.0
Gas 0877627 1.775814 0.000731 2700

Water 1.087585%3 0.710340 0.001978 1200.0

Vilje Qil 0863043 0130133 0.010733 1584.0
Gas 1.016502 0.314180 0.004463 1035.0

Water 1.198344 03745810 0.003748 1375.0

Volund Qil 1.151642 0342508 0.004089 1127.0
Gas 0.951882 1.522929 0.000922 300.0

Water 0934487 1176917 0.0011893 400.0

Figure 5- Resulting data frame of synthetic calibration
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Figure 6 - Statistical basis of synthetic calibration
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2 Traditional vs Synthetic

2.2 Traditional calibration

In [13]: Triall = CreateTrial(["volund"],(Volund_timewindow[@],volund timewindow[@]+Duration),cdp)
Trial2 = CreateTrial(["vilje"],(vilje timewindow[@],Vvilje_timewindow[@]+Duration),cdp)
Trisl3 = CreateTrial(["Bayla"], (Béyla timewindow[@],Béyla timewindow[@]+Duration),cdp)

Creating Volund Stream
Creating Separator Streams
Trial Finnished

Creating Vilje Stream
Creating Separator Streams
Trial Finnished

Creating Beyla Stream
Creating Separator Streams
Trial Finnished

In [14]: TradCal = ParralellCalibration([Trial2,Triall,Trial3])

Figure 7 - Traditional calibration performed

Figure 7 Shows the execution of a traditional calibration but uses the parallel calibration
algorithm, but the results are the same, where the trial matrix is a diagonal matrix with only
non-zero values on the diagonal, the inverse of the diagonal matrix then becomes the
reciprocals of the values in each of the diagonal line. All in all, the use of the parallel
calibration class to perform a traditional calibration can be and is done.

Figure 8 Shows the resulting k-factor development through the trials.

In [15]: TradCal.Plot()
volund calibration vilje calibration Boyla calibration
130 18 §
— ol
125 — Gas
Water 164
20 o — .
L 115 - —— o — o
] £ o081 g4 — Gas
110 & & x
o 4 bo’ Water
105 6
100 04 o Y-
Gas ro1
055 # Water h ———
0 500 1000 1500 2000 0 500 1000 1500 2000 0 w00 1000 1500 2000
Runs Runs

Figure 8 — Resulting k-factors over the Traditional calibration

2.2.1 Trial Plots

Figure 9 shows the intensive variables of the trials, with a blue square around the separator
conditions on the Vilje trial; during the Vilje trial the separator conditions where not stable
there where significant changes to the oil level and peaks of high water cut, which are not
nessasery beneficial for a parallel calibration Figure 10 shows the cumulative matrix plot of
the accumulated mass, this plot is the values over the different runs going into the solver



2 Traditional vs Synthetic

Parralell calibration process conditions
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Figure 9 - Intensive variables of data set



2 Traditional vs Synthetic

Parralell calibration cumulative mass [KiloTonnes]

Vilje Volund Boyla Third Party Separator
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Figure 10 - Cumulative matrix plot

2.2.2 Statistics

Figure 11 shows the resulting values for each stream and each phase based on the data basis

shown in Figure 12.
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In [38]: TradCal.StatsDF
Out[38]
mean uncert St.dev Sample Size
Stream Phase
Vilje Qi 0.862017 0.144923 0.009887 1506.0
Gas 1.015128 0408133 0003457 1210.0
Water 1.197539 0.585430 0.002385 973.0
Volund Qil 1.151804 0.495146 0.002330 1040.0
Gas 0.949872 2077192 0.000678 1000.0
Water 0.955202 1.700435 0.000525 §20.0
Beyla Qi 1.581782 0.145775 0.009530 1075.0
Gas 0.979099 3.559319 0.000384 2700
Water 1.083259 1.210052 0.001160 1000.0

Figure 11 - Resulting data frame of calibration

2 Traditional vs Synthetic
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2 Traditional vs Synthetic
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Figure 12 - Statistical basis of Traditional calibration
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2.3 Comparison

The result of both calibration compared towards each other for each stream is shown in
Figure 13 for Volund, Figure 14 for Vilje and Figure 15 for Bgyla multi-phase flow meters.
Just form these figures the result of both methods seam to replicate each other very well and
that the parallel calibration method performs satisfactorily. But the data set for Traditional
and synthetic parallel calibration has one weakness which is the Vilje trial, which is not a
type of trial wanted for a parallel calibration.
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Figure 13 - Volund calibration comparison
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Traditional vs Synthetic

Vilje Comparrison Calibration
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Figure 14- Vilje calibration comparison
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Figure 15 - Bgyla calibration comparison
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2x2x2 parallel calibration

3 2x2x2 parallel calibration

A 2x2x2 calibration was performed on Alvheim Figure 16 shows the code for the buildup of
trials, import libraries, and the time windows and duration, and the trial configuration for this
calibration. Figure 17 shows the resulting k-factor development across the runs. Figure 18
show the cumulative values fed into the calibration method. Figure 19 show the mass
flowrates for each stream and trial. Figure 20 shows the process conditions. Figure 21 depicts
the statistical basis of the different k-factor developments and plots a histogram of the sample
distribution together with the probability density plot of a normal distribution based on the
statistical basis. Figure 22 show the resulting values in a pandas dataframe, and Figure 23
shows a violin plot of the resulting statistical basis for each stream and phase.
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out[e]:

In

In

In

In

In

[18]:

[11]:

[12]:

[13]:

[14]:

FXjavascript

IPython.QutputArea.auto_screll_threshold = 9999;

import numpy as np
import pandas as pd
import matplotlib as plt

: | from datetime import datetime

%matplotlib inline

cdp = CogniteClient()

:  from cognite import CogniteClient

:  from Parralellcalibration import *

from TimeWindowLocator import *

start = datetime(281%, 3, 38)
end = datetime(2019, 4, 3)

: | #locate time windows for Parralell calibration

VivowWindow, BgVoWindow,BeVilindow = FindTrialWindows(start,end,cdp)

: | ViVowindow
(datetime.datetime(2019, 3, 31,

datetime.datetime(2019, 3, 31,
: | BgVoWindow

{datetime.datetime(2019, 3, 38,
datetime.datetime(2019, 3, 31,

BeVikWindow

3, 28, 38),
12, 13))

15, 4, 38),
1, 6))

(datetime.datetime(2019, 3, 31, 14, 326), datetime.datetime(2019, 4, 1, @, 35))

Duration = timedelta(minutes=488)

Triall = CreateTrial(["Vilje",

Creating Vilje Stream
Creating Volund Stream
Creating Separator Streams
Trial Finnished

Trial2 = CreateTrial(["Beyla",

Creating Bpyla Stream
Creating Volund Stream
Creating Separator Streams
Trial Finnished

Trial3 = CreateTrial(["Beyla",

Creating Beyla Stream
Creating vilje Stream
Creating Separator Streams
Trial Finnished

"Volund"], (ViVolWindow[8],ViVoWindow[@]+Duration), cdp)

"Volund"], (BeVoWindow[@],BeVoWindow[@]+Duration), cdp)

"vilje"], (BeViWindow[@],BeViWindow[8]+Duration), cdp)

Calibration = ParralellCalibration([Trial3,Trial2,Triall])

Figure 16 - Execution of calibration
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2x2x2 parallel calibration

In [15]: | Calibration.Plot()
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Figure 17 - k-factor development as a result of the calibration
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2x2x2 parallel calibration

Parralell calibration cumulative mass [KiloTonnes]
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Figure 18 - cumulative values across the trials in augmente matrix plotting

500
400 A
300
200 4
100 4

500
400
300
200
100

Parralell calibration mass flow rate [Tonnes/hour]
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Figure 19 - mass flowrates across the trials in augmented matrix plotting
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20 4

20 4

Parralell calibration process conditions

2x2x2 parallel calibration

Figure 20 - Process conditions during trials
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2x2x2 parallel calibration
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Figure 21 - Statistical basis and distribution of calibration, k-factor development and basis in left plot and vertical histogram of sample numbers
and probability density of a normal distribution.
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In [28]: Calibration.StatsDF

2x2x2 parallel calibration

Out[28]:
mean uncert St.dev SampleSize
Stream Phase
Beyla Oil 1.559129 0.132458 0.010599 1841.0
Gas 0989396 1.171835 0.001198 1000.0
Water 1.081198 1.086397 0.001292 317.0
Vilje Oil 0782720 0.140507 0.009991 1974.0
Gas 0988635 0.557248 0.002519 1200.0
Water 1245149 0807568 0.001738 717.0
Violund Oil 1.070587 0.465426 0.003016 1323.0
Gas 0878454 0677131 0.002073 1000.0
Water 0988980 0405762 0.003480 1816.0
Figure 22 - result data frame of calibration
phase
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Figure 23 - Violin plot of the resulting basis of the calibration
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3x2x2 parallel calibration

4 3x2x2 parallel calibration

A 2x2x2 calibration was performed on Alvheim Figure 24 shows the code for the buildup of
trials, import libraries, and the time windows and duration, and the trial configuration for this
calibration. Figure 25 shows the resulting k-factor development across the runs. Figure 26
show the cumulative values fed into the calibration method. Figure 27 show the mass
flowrates for each stream and trial. Figure 28 shows the process conditions. Figure 29 depicts
the statistical basis of the different k-factor developments and plots a histogram of the sample
distribution together with the probability density plot of a normal distribution based on the
statistical basis. Figure 31 show the resulting values in a pandas dataframe, and Figure 30
shows a violin plot of the resulting statistical basis for each stream and phase.

In [1]: %Xjavascript
IPython.QutputhArea.auto_scroll_threshold = 9999;

In [2]: import numpy as np
import pandas as pd
import matplotlib as plt

In [3]: from datetime import datetime
%matplotlib inline

In [4]: from cognite import CogniteClient
cdp = CogniteClient()

In [5]: from ParralellCalibration import *
from TimeWindowLocator import *

In [B]: | #Locate time windows for Parralell calibration
start = datetime(2019, 3, 38)
end = datetime(2019, 4, 3)
VivowWindow, BgVoWindow,BeVikWindow = FindTrialWindows(start,end,cdp)

In [7]: | Duration = timedelta(minutes=int(8*68@)) #8 hour duration of trials
In [8]:  TrippelWindow = [datetime(2819, 4, 3,1),datetime(2019, 4, 3,1)+Duration]

In [9]: Triall = CreateTrial(["vilje","Volund”,"Bpyla"],TrippelWindow,cdp)

Creating Vilje Stream
Creating Volund Stream
Creating Beyla Stream
Creating Separator Streams
Trial Finnished

In [1@]:  Trial2 = CreateTrial(["velund","Beyla™], (BeVoWindow[e],BgVolWindow[@]+Duration),cdp)

Creating Volund Stream
Creating Beyla Stream
Creating Separator Streams
Trial Finnished

In [11]: Trial3 = CreateTrial(["vilje","Wolund"], (ViVoWindow[®©],ViVoWindow[@&]+Duration),cdp

Creating Vilje Stream
Creating Volund Stream
Creating Separator Streams
Trial Finnished

In [12]: Calibration = ParralellCalibration([Triall,Trial3,Trial2])

Figure 24 - execution of calibration
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3x2x2 parallel calibration
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Figure 25 - Resulting k-factor development of the algorithm



3x2x2 parallel calibration

Parralell calibration cumulative mass [KiloTonnes]
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Figure 26 - Cumulative values entering the calibration method

Parralell calibration mass flow rate [Tonnes/hour]
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Figure 27 - mass flowrates of streams and trials
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Parralell calibration process conditions

3x2x2 parallel calibration
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Figure 28 - Process condition during trials
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3x2x2 parallel calibration
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Figure 29 - k-factor development with statistical basis, with complementary histogram and normal distributions probability density function
based on statistical basis
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k-factor

3x2x2 parallel calibration
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Figure 30 - Violin plot of resulting statistical basis
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In [41]: Calibration.StatsDF

Out[41]:

mean uncert St.dev SampleSize

Stream Phase
Vilje Oil 0831449 0170941 0.008213 1269.0
Gas 1.069077 2475105 0.0005&67 300.0
Water 1.146770 0826159 0.001699 300.0
Volund Oil  1.034110 0172486 0.008139 1635.0
Gas 0913304 2155170 0.000651 300.0
Water 1.084777 0705037 0.001991 300.0
Beyla Oil 1.623175 0179520 0.007320 300.0
Gas 1.054495 2794607 0.000502 300.0
Water 1.002312 0452364 0.003103 1654.0

Figure 31 - pandas dataframe of resulting numerical values

3x2x2 parallel calibration
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One month later 3x2x2

5 One month later 3x2x2

In the last days of April 2019 a new parallel calibration sequence was executed on Alvheim
giving the following results, and is shown in the figures below. Figure 32 shows the
execution and configuration of calibration. Figure 33 shows the resulting k-factor
development, Figure 34 shows the chosen statistical basis for the calibration. Figure 35 shows
the mass flowrates for the calibration. Figure 36 shows the process conditions during the
calibration. Figure 37 shows the resulting calibration in a pandas dataframe. Figure 38 shows
a violin plot of the result.

In [1]: H¥javascript
IPython.OutputArea.auto_scroll_threshold = 2939;

In [2]: | import numpy as np
import pandas as pd
from datetime import datetime
from datetime import timedelta
from matplotlib import pyplot as plt
#matplotlib inline

In [2]: | from cognite import CogniteClient
cdp = CogniteClient()

In [4]: | from ParralellCalibration import *
from TimeWindowLocator import *

In [5]: | #Locate time windows for Parralell calibration
start = datetime(2819, 4, 28)
end = datetime(2019, 5, 1)
ViVolindow, BeVollindow,BeViWindow = FindTrialWindows(start,end,cdp

No Beyla Vilje Window found
In [6]: | TrippelWindow = [datetime(2019, 5, 1,@),datetime(2019, 5, 1,18)
In [7]: | Duration = timedelta(minutes=5%68)

In [8]: Triall = CreateTrial(["volund","vilje","Beyla"],(TrippelWindow[@],TrippelWindow[@]+Duration},cdp)

Creating volund Stream
Creating Vilje Stream
Creating Boyla Stream
Creating Separator Streams
Trial Finnished

In [9]: | Trial2 = CreateTrial(["Volund","Bgyla"], (BeVoWindow[@],BeVoWindow[@]+Duration), cdp)

Creating Volund Stream
Creating Beyla Stream
Creating Separator Streams
Trial Finnished

In [1@]: | Trial3 = CreateTrial(["volund","vilje"],(vivowindow[e],vivoWindow[@]+Duration),cdp)

Creating volund Stream
Creating Vilje Stream
Creating Separator Streams
Trial Finnished

In [11]:  Calibration = ParralellCalibration([Triall,Trial2,Trial3]

Figure 32 - Calibration execution late April
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In [12]: (alibration.Plot(}|
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Figure 33 - k-factor development

One month later 3x2x2
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One month later 3x2x2
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Figure 34 - Statistical basis of calibration one month later

Bayla Oil
17 17 4
16 16
15 “Went's —
14 14 4
13 134
12 12 4
11 114
10 10 A
bal r T T T T T 034 T
0 250 500 750 1000 1250 1500 17500 20 0
Boyla Gas
120 A 120
115 A 115
110 110
105 105
1004 100
T T T T T T T T T
] 250 500 750 1000 1250 1500 1750 0 100
Bayla Water
110 110
105 105
100 i“ VY 100
095 095
090 090
085 085
080 080
075 075
07041 T T T T T T 070 T
o 250 500 750 1000 1250 1500 17500 100

30



500

Parralell calibration mass flow rate [Tonnes/hour]

Volund

vilie

Bayla

One month later 3x2x2

Third Party Separator

400 A

300 1

200 1

100

400 A

300 1

200 1

100 A

400 4

300 1

200 1

100 A

20 4

20

20 4

600 1

400 1

200 1

400 A

200 1

il
Gas
Water

500
400 A
300
200 1
100 A

04

G001

10

0.8

300 4
400 1 06 1
200 1
200 4 04 1
100 -
02
D L T T T 00 T T D h T T T
7.0 75 8.0 8.5
1e7+1.5565e12
Figure 35 - mass flowrate during April May calibration
Parralell calibration process conditions
Volund Vilje Beyla Third Party Separator
= SRR R 50;-.‘-' I A 50 1 m R m_w‘wmm
w© 40 1 60
30 4 A0 g iy e
0
20
| AR
T T T T T T T T T T T u- T T T T
Wiy ‘. 50 - weeiepl 80 1
¥ —— Water cut[Vol%] AT S
— 0l Level[%)] . @
—— Water Level[%]
Pressure [Barg] 0 40 _vﬁ_,_,x-n-.__‘_._"__
—— Temperatur [°C]
20
o]
— — 10
08 -
&0 4
40 06 1
40 W
0 04
20
; ; ; ; ; ; 00 . ; ; ; 01 ; ; ;
00 02 04 06 08 10

Figure 36 Process condition during april may calibration
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In [47]: | Calibration.CreateStatsDF()
Calibration.StatsDF

Out[47]:

mean uncert St.dev SampleSize

Stream Phase
Volund il 1.020043 0190211 0.007381 200.0
Gas 0988242 0294714 0.004764 1000.0
Water 0991756 0122919 0.011421 14820
Vilje Qil 1111205 0165291 0.008493 2300
Gas 1085793 0424791 0.003305 500.0
Water 1013514 0176047 0007974 1529.0
Beyla 0l 1.511291 0101088 0.013888 200.0
Gas 1.069523 0313227 0004432 1000.0
Water 1.020290 0.156402 0.008437 12220

Figure 37 - resulting dataframe of calibration
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Figure 38 - violin plot of 3x2x2 calibration in April / May
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6 Result

Combining the real result and the results from the algorithm execution as documented in this appendix
the results combined together is shown in Table 6.1, and plotted in point plots for each of the streams
in Figure 39 for Beyla, Figure 40 for Vilje and Figure 41 for Volund

Result

Table 6.1: Resulting values of actual, and the algorithms ,traditional, synthetic parallel and parallel calibration in

March / April 2019

Calibration | Algorithm

Time: March / April 2019 27/3 to 29/3 30/3 to 3/4 30/4to 1/5
Current Synthetic Parallel Parallel 1mnd later

Stream Phase system Traditional parallel 2x2x2 3x2x2 3x2x2
Oil 1.56405 1.59178 1.59117 1.55913 1.62318 1.51129
Boyla Gas 0.90507 0.97910 0.97763 0.98940 1.05450 1.06952
Water 1.07492 1.09826 1.09789 1.08120 1.00231 1.02029
Oil 0.82050 0.86202 0.86305 0.78272 0.83145 1.11121
Vilje Gas 0.97801 1.01513 1.01680 0.98864 | 1.06908 1.08579
Water 1.13873 1.19756 1.19935 1.24515 1.14677 1.01351
Oil 1.14429 1.15180 1.15164 1.07059 1.03411 1.02004
Volund Gas 0.90674 0.94987 0.95168 0.97845 | 0.91330 0.96824
Water 1.04478 0.98520 0.98450 0.98896 1.08478 0.99176

k-factor
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0,8

A Current system @Traditional M Synthetic parallel ®Parallel 2x2x2

Resulting comparison - Bgyla march/april results
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Water

Figure 39 - Resulting comparison of Bgyla on March April results
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Result

Resulting comparison - Volund march/april results
A Current system @ Traditional M Synthetic parallel ®Parallel 2x2x2 = Parallel 3x2x2 + 1mnd later 3x2x2
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Figure 40 - Resulting comparison of Vilje on March April results

Resulting comparison - Volund march/april results
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Figure 41 - Resulting comparison of VVolund on March April results
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