
 
www.usn.no  

 

The University of South-Eastern Norway takes no responsibility for the results and 

conclusions in this student report. 

 

FMH606 Master's Thesis 2019 

Industrial IT and Automation 

 

Parallel calibration of multiphase flow 
meters (MPFM) based on measurements of 

phase streams in separators 

Stream #S
Oil

Gas

Water

Stream 1

flashing
condensing

lower dens. Non-polar liquidHigher dens . polar liquid

Stream 2

 

𝐹𝑜𝑟 𝑝 = [𝑜𝑖𝑙, 𝑔𝑎𝑠, 𝑤𝑎𝑡𝑒𝑟]  

[
 
 
 
 
 
 
 
 ∫

𝑑𝑚𝑝,1,1

𝑑𝑡

𝑡1,1

𝑡0,1

𝑑𝑡 ∫
𝑑𝑚𝑝,2,1

𝑑𝑡

𝑡1,1

𝑡0,1

𝑑𝑡 ⋯ ∫
𝑑𝑚𝑝,𝑆,1

𝑑𝑡

𝑡1,1

𝑡0,1

𝑑𝑡

∫
𝑑𝑚𝑝,1,2

𝑑𝑡

𝑡1,2

𝑡0,2

𝑑𝑡 ∫
𝑑𝑚𝑝,2,2

𝑑𝑡

𝑡1,2

𝑡0,2

𝑑𝑡 ⋯ ∫
𝑑𝑚𝑝,𝑆,2

𝑑𝑡

𝑡1,2

𝑡0,2

𝑑𝑡

⋮ ⋮ ⋱ ⋮

∫
𝑑𝑚𝑝,1,3

𝑑𝑡

𝑡1,𝑆

𝑡0,𝑆

𝑑𝑡 ∫
𝑑𝑚𝑝,2,3

𝑑𝑡

𝑡1,𝑆

𝑡0,𝑆

𝑑𝑡 ⋯ ∫
𝑑𝑚𝑝,𝑆,𝑇

𝑑𝑡
𝑑𝑡

𝑡1,𝑆

𝑡0,𝑆 ]
 
 
 
 
 
 
 
 

∙

[
 
 
 
𝑘𝑝,1

𝑘𝑝,2

⋮
𝑘𝑝,𝑆]

 
 
 
=

[
 
 
 
 
 
 
 
 ∫

𝑑𝑚𝑝,𝑟𝑒𝑓,1

𝑑𝑡
𝑑𝑡

𝑡1,1

𝑡0,1

∫
𝑑𝑚𝑝,𝑟𝑒𝑓,2

𝑑𝑡
𝑑𝑡

𝑡1,2

𝑡0,2

⋮

∫
𝑑𝑚𝑝,𝑟𝑒𝑓,𝑇

𝑑𝑡
𝑑𝑡

𝑡1,𝑆

𝑡0,𝑆 ]
 
 
 
 
 
 
 
 

 

 

Stig Harald Gustavsen 

 



 
www.usn.no  

 

The University of South-Eastern Norway takes no responsibility for the results and 

conclusions in this student report. 

Course: FMH606 Master's Thesis, 2019 

Title: Parallel calibration of multiphase flow meters (MPFM) based on measurements of 

phase streams in separators 

Number of pages: 74 

Keywords: Parallel Calibration, Cognite Data Fusion, Multiphase flow meters, Fiscal Oil and Gas 

Metering and Allocation, Scientific computing, Computational Engineering, Python, Data Fusion, 

Digital Twin, Object Oriented Data Science, Condition Based Maintenance 

Student: Stig Harald Gustavsen 

Supervisor:   Saba Mylvaganam 

External partner:   Torbjørn Selanger 

Availability: Open, with selected confidential appendices. 

  

 

Summary:  

The Alvheim field suffers from significant production deferrals of oil and gas, during 

calibration of multiphase flow meters used in ownership allocation. This thesis has 

developed an algorithm solving a new method, which effectively negates these deferrals. 

This is done through an object-oriented data science approach, in creating a framework 

for performing these calibrations in an elegant and efficient manner. The algorithm has 

been tested and compared to real world data and shows promising results. The tests 

during April 2019 showed an increase of 15000bbl of oil production during parallel 

calibration compared to a normal calibration.  The Cognite Data Fusion repository 

helped in streamlining the development process with easy and swift access to process 

data. The algorithm was implemented and developed in the programming language 

Python. Additionally, this thesis covers the purpose and technical background of 

ownership allocation measurements and the systems and sensors involved in 

measurement and calibration. The details of the developed algorithm, and the calibration 

results are presented and discussed. 



 Preface 

3 

Preface 
This master thesis is owing a huge amount of gratitude to all the numerical integrators doing 

summation operations of tiny increments or finite differences around the world. Both as a 

cumulative operator or numerically solving differential equations, giving important insight into 

how the laws of nature act and how we humans can use this for our own benefit, humanity 

owes a huge thanks for your tedious work.  

This Thesis will develop an implementation of an algorithm which uses a method initially 

proposed by the process engineer in Torbjørn Selanger,  where the idea came when a process 

technician named Peter Kongstad Schmidt asked “why this can’t be solved at the same time”, 

which peaked Torbjørn’s thoughts and the idea of the method was created, this was then 

linearized by Therese Renstrøm. Both Torbjørn and Therese are working in the production 

optimization group of the digitalization program called Eureka in Aker BP ASA. And without 

anyone of these people this method would not have seen the light of day and no algorithm for 

me to develop. 

The implementation was done in the programming language of python with the use of NumPy 

and Pandas libraries for data manipulation and calculations, and the Cognite Data Fusion 

repository and the data source through the Cognite Python SDK. The diagrams and drawings 

in this thesis were drawn with Microsoft Visio. It is suggested that the reader of this paper have 

some previous exposure to process technology, instrumentation, P&ID notation, and an 

understanding of fundamentals in programming, numerical mathematical methods and linear 

algebra. 

Topic description, a work breakdown structure and a Gantt for the planned execution and 

baseline of this thesis is in appendix A. 

I want to thank my teachers, professors and organizers at the University of South-Eastern 

Norway (USN), for enabling me to execute both an engineering bachelor and a Master of 

Science program, while working a fulltime job at Aker BP ASA these last 7 years. And further 

thank the Norwegian society for oil and gas measurement (NFOGM) and the MPM team in 

TechnipFMC for both the information and to be allowed to share some of their produced figures 

within my thesis. But not to mention the teams working with Python and its related frameworks 

and libraries; NumPy, SciPy, PyData’s Pandas, Matplotlib, IPython and their spin off project 

Jupyter for enabling anyone to do scientific computing with great libraries, fantastic 

development environment, freely and open source. A last shout out to the production crew 

working onboard the Alvheim field in the North Sea, whom has spent several days rerouting 

fluids in the process system onboard, these last few months, providing real data used in this 

thesis.  

I’ve been incredibly lucky with the thesis topic which are on subjects near and dear to my 

passions of; applications of numerical integrators, scientific computing and last but not least 

precise and representative measurements of oil and gas. Good luck to the reader, I hope this 

collection of documents are of interest, and that the figures are more appreciated than the text. 

 

Porsgrunn / Valhall, 13/05-2019 

Stig Harald Gustavsen 



 Contents 

4 

Contents 
Preface ..................................................................................................................... 3 

Contents ................................................................................................................... 4 

List of figures ............................................................................................................ 7 

Acronym ................................................................................................................... 9 

Symbols .................................................................................................................. 10 

1 Introduction ....................................................................................................... 11 

2 Petroleum industry in Norway ....................................................................... 13 

2.1 History .................................................................................................................................... 13 
2.2 Licenses and Blocks ............................................................................................................ 13 
2.3 Ownership, production metering, allocation and hydrocarbon management ............... 14 

2.3.1 Allocation ....................................................................................................................... 14 
2.3.2 Measurement and measurands for allocation of oil and gas. .................................. 14 
2.3.3 Field Blend ..................................................................................................................... 15 

2.4 Future prospects and focus on the Norwegian Continental Shelf (NCS) ....................... 16 

3 Separation and flow of fluids - Brief theoretical background ..................... 17 

3.1 Hydrocarbon fluid and separation ...................................................................................... 17 
3.2 Fluid flow ............................................................................................................................... 17 

3.2.1 Phase separation .......................................................................................................... 18 
3.2.2 Single-Phase flow stream ............................................................................................. 18 
3.2.3 Multiphase flows stream .............................................................................................. 18 
3.2.4 Accumulation of flow .................................................................................................... 20 

3.3 Balance laws ......................................................................................................................... 21 
3.4 Modeling of the dynamic phenomena ................................................................................ 21 

3.4.1 Separator modeling; balance laws and phase mass exchange dynamics ............. 21 
3.5 Flashing, PVT and Phase equilibrium ................................................................................. 23 

4 Technical background of hydrocarbon flow metering ................................. 24 

4.1 Instrumentation ..................................................................................................................... 24 
4.2 Liquid flow measurement .................................................................................................... 24 

4.2.1 Oil flow measurement ................................................................................................... 25 
4.2.2 Calibration and traceability of liquid volume flow meters ........................................ 26 

4.3 Gas flow measurements ...................................................................................................... 28 
4.4 The computer part – Flow computer ................................................................................... 29 
4.5 Multiphase flow meters ........................................................................................................ 30 

4.5.1 Density measurement ................................................................................................... 31 
4.5.2 Velocity measurement of fluids ................................................................................... 31 
4.5.3 Tomographic measurement ......................................................................................... 32 

4.6 Operations / Maintenance of measurement equipment and systems ............................. 33 
4.7 Uncertainty ............................................................................................................................ 33 

4.7.1 Traceability .................................................................................................................... 34 
4.8 Supervisory metering system ............................................................................................. 34 

4.8.1 Data connectivity and interfaces. ................................................................................ 35 

5 Alvheim third party field installation ............................................................. 37 

5.1 Alvheim field in general ....................................................................................................... 37 
5.2 Topside MPFM Manifold ....................................................................................................... 37 



 Contents 

5 

5.3 Third Party Separator ........................................................................................................... 38 
5.3.1 Oil stream ....................................................................................................................... 39 
5.3.2 Gas Stream .................................................................................................................... 41 

6 Parallel calibration of multiphase flow meters ............................................. 43 

6.1 Digital representation of fluid streams ............................................................................... 43 
6.2 Traditional calibration method ............................................................................................ 44 

6.2.1 Calibration factor calculation ....................................................................................... 45 
6.2.2 Acceptance criteria for a traditional calibration ........................................................ 47 

6.3 Parallel calibration method .................................................................................................. 48 
6.3.1 Calibration factor calculation ....................................................................................... 48 
6.3.2 Non-linear solver ........................................................................................................... 49 
6.3.3 Linear solver .................................................................................................................. 49 

6.4 Parallel calibration algorithm .............................................................................................. 51 
6.4.1 Result and statistical analysis of the calibration method ......................................... 52 
6.4.2 Calibration evaluation ................................................................................................... 53 
6.4.3 Synthesizing data for comparing traditional calibration towards a parallel calibration
 54 

6.5 Executing parallel calibrations ............................................................................................ 54 

7 Results ............................................................................................................. 56 

7.1 January calibration ............................................................................................................... 56 
7.2 April calibration results ........................................................................................................ 59 
7.3 Financial gains of using this algorithm .............................................................................. 62 

8 Discussion ....................................................................................................... 63 

8.1 Development ......................................................................................................................... 63 
8.1.1 Non-available historical datapoints ............................................................................ 63 
8.1.2 Historical logging of each flow computer increments .............................................. 64 
8.1.3 Negligence of physical properties .............................................................................. 64 

8.2 Parallel calibration ................................................................................................................ 64 
8.2.1 Trial quality, size and order.......................................................................................... 65 

8.3 Traditional vs Parallel calibration ....................................................................................... 65 
8.4 The achieved result .............................................................................................................. 65 
8.5 Uncertainty ............................................................................................................................ 66 

8.5.1 Traditional vs Synthetic parallel calibration ............................................................... 66 
8.5.2 Calibrating closer to normal operating conditions ................................................... 66 
8.5.3 Numerical uncertainty in the parallel calibration method ......................................... 67 
8.5.4 In calculation of flashing .............................................................................................. 67 
8.5.5 Accumulation quality .................................................................................................... 67 

8.6 Further work and development ........................................................................................... 67 
8.6.1 Automatic multi trial combination ............................................................................... 67 
8.6.2 Multi-dimensional multiphase meter calibration characteristic ............................... 67 
8.6.3 Increment database in flow computer to CDP ........................................................... 68 
8.6.4 Sliding time-window approach .................................................................................... 68 
8.6.5 Visualizing the k-factor over runs ............................................................................... 68 
8.6.6 Soft-sensor of multiphase meters ............................................................................... 68 
8.6.7 Calculate separator streams to multiphase conditions ............................................ 68 
8.6.8 Petrochemical calculations program development ................................................... 68 
8.6.9 Digital twin giving further insight than planned ........................................................ 69 

8.7 Proposal for new structure for parallel calibration ........................................................... 70 

9 Conclusion .......................................................................................................... 71 

References .............................................................................................................. 72 



 Contents 

6 

Appendices ............................................................................................................. 74 

 



 List of figures 

7 

List of figures 
FIGURE 1 HYDROCARBON VALUE CHAIN .............................................................................................................. 14 
FIGURE 2 - PETROLEUM FIELD ALLOCATION BY MASS EXAMPLE ASSOCIATED WITH DIFFERENT LICENSE 

AGREEMENTS .............................................................................................................................................. 16 
FIGURE 3 - CONCEPT OF VOLUMETRIC FLOW AND DISCRETE ACCUMULATION, WHERE IS U VELOCITY AND 𝑢 

AVERAGE VELOCITY [13] ............................................................................................................................. 18 
FIGURE 4 – MULTIPHASE FLOW WITH INCREASING GVF, WHERE THE BLUE PART IS LIQUID AND THE YELLOW 

REPRESENTS GAS AND GAS BUBBLES [15] .................................................................................................. 19 
FIGURE 5 - TWO-PHASE FLOW MAP OF A VERTICAL PIPE [14] ............................................................................. 20 
FIGURE 6 - BLOCK SCHEMATIC ABSTRACTION OF MASS BALANCE ...................................................................... 22 
FIGURE 7 - MASS BALANCE OF MULTIPHASE STREAMS AND SEPARATOR ........................................................... 22 
FIGURE 8 – LIQUID TURBINE METER FLOW CALIBRATION WITH COMPACT PROVER .......................................... 27 
FIGURE 9 - OVERVIEW OF TYPICAL AND SIMPLIFIED SINGLE-PHASE FLUID MEASUREMENT STREAM WITH THE 

ABSTRACT TASKS AND CALCULATIONS OF THE FLOW COMPUTER ............................................................ 29 
FIGURE 10 - CONCEPTUAL OVERVIEW OF INSTRUMENTS INVOLVED IN A MULTIPHASE METER ........................ 30 
FIGURE 11 MPM METER COMPONENTS [15] ....................................................................................................... 31 
FIGURE 12 - VENTURI CONE ELEMENT IN A MPM METER [15] ............................................................................ 32 
FIGURE 13 – TECHNIP FMC- MPM 3D BROADBAND™ TECHNOLOGY [15] ........................................................... 33 
FIGURE 14 - TRACEABILITY MAP OF A TURBINE FLOW METER ............................................................................ 34 
FIGURE 15 - DATA FLOW FOR DATA USED IN THESIS ........................................................................................... 36 
FIGURE 16 - ALVHEIM THIRD PARTY PRODUCTION AND MPM'S ON METERING SCADA ..................................... 37 
FIGURE 17 - VILJE AND VOLUND MPM - MPFMS.................................................................................................. 38 
FIGURE 18 - ALVHEIM 3RD PARTY SEPARATOR ...................................................................................................... 39 
FIGURE 19 - SIMPLIFIED P&ID OVER THIRD-PARTY SEPARATORS OIL METERING STATION ................................. 40 
FIGURE 20 - PICTURE OF OIL STREAM 1 WITH EXPLANATIONS ............................................................................ 40 
FIGURE 21 - OIL STREAM FAST-LOOP ................................................................................................................... 41 
FIGURE 22 - SIMPLIFIED P&ID OVER THIRD-PARTY SEPARATORS GAS METERING STREAMS .............................. 42 
FIGURE 23 - CONCEPT OF DIGITAL TWIN OF SEPARATOR STREAMS .................................................................... 43 
FIGURE 24 - CONCEPT OF DIGITAL TWIN OF A MULTIPHASE STREAM ................................................................. 44 
FIGURE 25 - CONCEPTUAL OVERVIEW OF TRADITIONAL CALIBRATION METHOD ............................................... 46 
FIGURE 26 - NOT ACCEPTABLE K-FACTOR DEVELOPMENT THROUGH TRADITIONAL CALIBRATION ON THE 

METERING SYSTEM ON ALVHEIM ............................................................................................................... 47 
FIGURE 27 – ACCEPTABLE K-FACTOR DEVELOPMENT THROUGH TRADITIONAL CALIBRATION ON THE METERING 

SYSTEM ON ALVHEIM .................................................................................................................................. 48 
FIGURE 28 - DATA BASIS, FLOW, CALCULATIONS, AND PREPARATION FOR PARALLEL CALIBRATION METHOD 

SOLVER ........................................................................................................................................................ 49 
FIGURE 29 - INSIDE THE ALGORITHM - FILLING 𝑴𝑝 MATRIX AND 𝒎𝑝 VECTOR WITH A 2X2X2 TRIAL INPUT ..... 52 
FIGURE 30 - EXAMPLE OF DETECTED STATISTICAL BASIS (RED) FROM K-FACTOR DEVELOPMENT (GRAY), 

VERTICAL SAMPLEL HISTOGRAM (GREEN) WITH A NORMAL DISTROBUTION PROBABILITY DENSITYPLOT 
(ORANGE) .................................................................................................................................................... 53 

FIGURE 31 - AUGMENTED MATRIX PLOT OF PROCESS CONDITIONS DURING TRIALS, WHERE THE X AXIS IS 
SUCCESSIVE RAW DATAPOINT DURING THE TRIAL, AND THEREFORE NO NUMBERS. ............................... 54 

FIGURE 32 - FLOW CHART AND METHOD EXECUTION FOR A 3X2X2 CALIBRATION IN AN IPYTHON 
ENVIRONMENT............................................................................................................................................ 55 

FIGURE 33 - K-FACTOR DEVELOPMENT OF TRADITIONAL VS SYNTHETIC PARALLEL CALIBRATION FOR BØYLA IN 
JANUARY 2019 ............................................................................................................................................ 56 

FIGURE 34 - K-FACTOR DEVELOPMENT OF TRADITIONAL VS SYNTHETIC PARALLEL CALIBRATION FOR VILJE IN 
JANUARY 2019 ............................................................................................................................................ 57 

FIGURE 35- K-FACTOR DEVELOPMENT OF TRADITIONAL VS SYNTHETIC PARALLEL CALIBRATION FOR VOLUND IN 
JANUARY 2019 ............................................................................................................................................ 57 



 List of figures 

8 

FIGURE 36 - RESULT COMPARISON OF VOLUND FROM JANUARY CALIBRATION TRIALS, WHERE THE REAL 
VALUE, TRADITIONAL AND A SYNTHETIC TEST WAS PERFORMED ............................................................. 59 

FIGURE 37 - RESULT COMPARISON OF BØYLA DURING MARCH/APRIL CALIBRATIONS ....................................... 60 
FIGURE 38 - RESULT COMPARISON OF VOLUND DURING MARCH/APRIL CALIBRATIONS ................................... 61 
FIGURE 39 - RESULT COMPARISON OF VILJE DURING MARCH/APRIL CALIBRATIONS ......................................... 61 
FIGURE 40 – QUALITATIVE ASPECTS OF SEPARATOR CAPACITY UTILIZATION UNDER PARALLEL AND 

TRADITIONAL CALIBRATION ........................................................................................................................ 62 
FIGURE 41 - NEW STRUCTURE FOR PARALLEL CALIBRATION CONCEPT ............................................................... 70 

 



 Acronym 

9 

Acronym  
Acronym Explanation 

AGA American Gas Association 

API American Petroleum Institute 

ASA  Notation of a publicly listed company at stock exchange 

BOE Barrel of oil equivalent 

CDF 
Cognite Data Fusion – contextualized industrial data repository form 

Cognite 

ERP 
Enterprise resource and planning – abstract layer for the use of process 

information 

E&P  Exploration & Production 

FE Flow Element 

FPSO Floating production storage and offloading 

FQI Flow Quantity Indicator (Accumulator in P&ID notation) 

FT Flow Transmitter 

FWA Flow Weighted Average 

GOR Gas oil ratio 

GUM Guide to the expression of uncertainty in measurement 

GVF Gas Volume Fraction 

ISO International Organization for Standardization 

JCGM Joint Committee for Guides in Metrology  

MPE / OED Ministry for Petroleum and energy 

MPFM Multi-phase Flow Meter 

NCS Norwegian continental shelf 

NFOGM Norwegian society for oil and gas measurement  

NPD / OD Norwegian petroleum directorate / Oljedirektoretatet 

OIW Oil In Water 

OPC Open Process control 

P&ID Piping and instrument diagram 

PSA / Ptil Petroleum safety Authority / Petroleumstilsynet 

PVT 
Pressure Volume Temperature with regards to Equations of state 

(correction and flashing) 

SCADA Supervisory Control And Data Acquisition 

USFM Ultrasonic flow meter 

VOS Velocity of sound 

wgt% weight percent fraction 
  



 Symbols 

10 

Symbols 
Symbol Explanation Unit 

𝒌𝑝 Vector of mass-based k-factor for a specific phase-p ∈ ℝ𝑆 [−] 

𝑑𝑚𝑝,𝑠,𝑇

𝑑𝑡
 

Mass-flowrate Leibniz notation, subscript; p-phase, s-stream, T-trial 𝑘𝑔

ℎ
 

𝑚̇𝑝,𝑠,𝑇 Mass-flowrate Newtons notation subscript; p-phase, s-stream, T-trial 𝑘𝑔

ℎ
 

𝑚𝑝,𝑠,𝑇 Accumulated mass for specific subscript p-phase and s-stream, T-trial 𝑘𝑔 

𝒎𝑝 Vector of reference masses for a specific phase-p ∈ ℝ𝑇 𝑘𝑔 

𝑴𝑝 Matrix of accumulated masses for a specific phase-p ∈ ℝ𝑇×𝑆 𝑘𝑔 

𝑡𝑛 Time / timestamp / time segment point 𝑠𝑒𝑐 

𝑥𝑖 Mass fraction of a specific component i in a stream [−] 

   

 



 1 Introduction 

11 

1 Introduction 
To date one of the most important topics of discussion in Norwegian oil and gas industry is 

digitalization. A large effort is currently put towards using digital technology, proper 

contextualization and unification of industrial data in to one common data repository. This will 

enable automation and more comprehensive data analysis, in order to enhance the business 

models established in the industry. Aker BP ASA [1] has joined in the establishment with Aker 

ASA [2] in the creation of the software company Cognite AS [3] to facilitate such a data 

repository, through the Cognite Data Fusion. Within the data storage repository, large amounts 

of historical sensor and aggregated values from sensors, monitoring and control systems is 

stored. This data is mainly used to look up previous states, but not prone to data science or any 

post calculation, This thesis develops on top of the data received from Cognite, which has 

simplified the development and access to the data streaming in from Aker BP’s oil and gas 

producing asset. 

Aker BP operates a floating oil and gas factory named Alvheim [4] in the North Sea. Alvheim 

initially produced from structures belonging to the field. Later in the operational development 

of the Alvheim asset, third party fields where tied back to Alvheim, utilizing the existing 

processing capacity and infrastructure. But the licensees and ownership fractions of the 

Alvheim field is not the same as on the third-party fields, where each field has a unique 

ownership split between the companies involved with development and operations. These 

fields are simultaneously producing oil and gas back to Alvheim, and the ability to accurately 

and correctly allocate the ownership of the produced oil and gas on Alvheim is of interest. This 

interest is not just for the involved companies but also with regards to calculating taxes to the 

Norwegian people. The third-party allocation measurements are performed on streams of oil 

and gas in the same pipe, in so-called multiphase streams with the use of multiphase flow 

meters (MPFMs), and these flow meters need to be calibrated regularly to ensure that the 

accuracy and representativity of the measurements are acceptable. And when it comes to the 

calibration method in use today, a significant deferral of production occurs during the 

calibration. This thesis will look into a more efficient method of calibrating these meters. 

The main motivation is to be able to have no downtime for calibration runs of multiphase flow 

meters and better control of the health and performance of these meters, used in allocation of 

third-party fields. This is an emerging focus of both the Norwegian governments resource 

utilization of oil and gas deposits, as well as some of the oil and gas exploration and production 

(E&P) companies. To be able to effectively and elegantly allocate the ownership of oil and gas 

streams from multiple fields in order to utilize the existing infrastructure when the main oil 

fields are approaching their tail production1 and capacity on the existing infrastructure opens. 

both in extracting resources from smaller oil and gas deposits normally not prioritized due to 

development cost together and providing mature oil and gas fields with additional oil and gas 

to process as well as production and transportation tariff opportunities [5]. 

The operations on the Alvheim ship have multiple times executed sequences of rerouting fluid 

streams over several days, to facilitate real data solely for testing the method investigated in 

                                                 

1 Tale production refers to the decline curve in the later stages of the estimated production profile of an oilfield. 



 1 Introduction 

12 

this thesis. The data is facilitated through Aker BPs infrastructure and contextualized and made 

available for this thesis through the Cognite Data Fusion (CDF) repository. Programing 

language Python [6] is used to create digital representations / digital twins of equipment in the 

fields as well as implementing this in an elegant codebase for execution of an algorithm. This 

solution made in this master thesis has the potential to solve an issue that is a highly relevant 

focus point of the Norwegian petroleum industry with regards to utilizing mature fields as 

mention earlier.  

This thesis is organized in the following way:  

Chapter 1: goes into the of the petroleum production industry in Norway, covering some 

historic moments, and about allocation and the hydrocarbon value chain, and expand some of 

the details with regards to governmental focus on third party fields already mentioned in the 

introduction. 

Chapter 2: gives a brief introduction on fluids and essential concepts related to this thesis, 

regards to what goes on inside the closed containment of the fluid streams. 

Chapter 3: gives a theoretical background of the sensors, instruments and measurements 

systems involved with creating the data used in allocation of oil and gas and is used within an 

algorithm created in this thesis. 

Chapter 4: goes into creation of digital representations of streams, and how a traditional 

calibration is executed. Then the details of a parallel calibration method is developed, and ends 

with how this method is implemented into an algorithm that also utilizes the digital stream 

representations. 

Chapter 5: gives results of calibrations executed on synthetic and real data 

Chapter 6: discusses the results and the implementation of the algorithm, and the future 

development of the algorithm. 

Finally, a conclusion will summarize what is achieved in this thesis. 

Further technical details, complete results are covered in the attached appendices. There is one 

appendix which has the supplier documentation of the measurement system and data and results 

from offshore calibrations which will not be publicly available which provide a technical 

background and reports in the measurement systems used in this thesis, and not nessasery 

created by this thesis, but as a reference to non-public documents2. 

                                                 

2 Although the appendix is named appendix B, it will be found last in the appendices due to the nature of the 

document as a reference and not a product of this thesis. 



 2 Petroleum industry in Norway 

13 

2 Petroleum industry in Norway 
This chapter goes into the history and some aspects of the governances, concepts concerning 

allocation of ownership of oil and gas and possibly essential aspects for the future of oil and 

gas in Norway. 

2.1 History 

In the 1950 few believed that there where oil and gas deposition on the Norwegian 

Continental Shelf (NCS), even The Geological Survey of Norway had even written this to the 

Norwegian Ministry of Foreign Affairs in 1958 that oil, gas or Sulphur deposits on the NSC 

was not very likely. But this would all change when a gas field discovery of the Groningen 

outside the coast of Netherlands in 1959, gains interest of the American oil companies, and 

gauges the question if there is more oil in the sea further north in the North Sea. And it was 

the American oil company Phillips Petroleum in 1962 whom sent an application to the 

Norwegian government to gain permission for exploration of oil and gas on the NCS. Which 

prompted the Norwegian government to develop the rules of governance for the potential 

resources on the NCS, underlining that the resources belong to the Norwegian people, and to 

be managed by the Norwegian government. [7] The 13th Of April 1965 the Norwegian 

government under the Ministry of Petroleum and Energy (MPE / OED) gave concession to 

Petroleum Exploration and Production (E&P) companies to explore the NCS for petroleum 

deposits.  [8] 

2.2 Licenses and Blocks 

The concessions / licenses given to companies where limited to geographical areas called 

blocks. The administration of these concession blocks where first done by the MPE but in 

1972 the Norwegian Petroleum Directorate (NPD / OD) was established to function as a 

specialist directorate and administrative body of the oil and gas activities, together with the 

creation of the governmental oil company Statoil, now known as Equinor. Later in 2004 the 

NPD where split in to two, where the safety and work environment of Norway’s petroleum 

activities where to be administrated by Petroleum Safety Authority Norway (PSA / Ptil) and 

the NPD would continue with the resource management of the petroleum activities in 

Norway as well as serve as advisers to the MPE. [9].  

Back to these licenses, they are given during licensing rounds and give the E&P companies 

the opportunity to explore the block area for resources. Each geographical block contain 

multiple licenses where there are several E&P companies splitting the risk, ownership and 

development cost of exploration and production between the licensees of the block. And if 

found the potential development of a field can start. And within development phases the 

choice for infrastructure and measurement and allocation solutions is initially decided, which 

is a topic relevant for this thesis. 

 



 2 Petroleum industry in Norway 

14 

2.3 Ownership, production metering, allocation and 
hydrocarbon management 

In simple terms an upstream petroleum producing asset such as Alvheim, has Oil and gas 

streaming up from a well in a petroleum reservoir. The well fluid is processed by removing 

unwanted fluids such as water and prepared for transport through pipelines or shuttle tankers 

to further refining and the market. Figure 1 shows an example of a value chain for a E&P 

company3. 

Production hub

Licence 1

Well Well

Licence 2

Well Well

Licence 3

Well Well

Loading 
buoy

Upstream Midstream Downstream

Shuttle tanker

The market

Refinery

Ethane

Propane

  

Sales gas

Liquid Natural Gas

Tankers to market

The market

Pipeline operator

Oil

Gas

 

Figure 1 Hydrocarbon Value Chain 

2.3.1 Allocation 

Consider an oil field constantly producing oil and gas, the quantity of petroleum produced 

has to be continuously measured and counted, and this is where the fiscal metering and 

allocation systems comes into play. Metering systems constantly measure and count the 

production, and aggregated data into daily and monthly production. And theses daily amounts 

are then further allocated into the different licenses where the hydrocarbons are extracted. 

2.3.2 Measurement and measurands for allocation of oil and gas. 

Looking at the streams of hydrocarbons produced, in petroleum engineering literature [10] 

the stream can be quantized in many different units such as mol compositions and rates, 

volumetric units such as m3 or barrels of oil, and standardized volumetric units, such as Sm3 / 

stock tank oil, or even energy in units such as barrel of oil equivalent (BOE) or pure energy 

content in Joule. But in metering and allocation and this thesis the mass flow rates and 

composition given in mass fractions will be used. Mass is a general standard to allocate 

production into transport systems, as well as it is a common unit for interdisciplinary 

                                                 

3 Oil pipelines with non-stabilized oil where the condensates are separated at a refinery / terminal are also a 

common midstream infrastructure for hydrocarbon transport. 



 2 Petroleum industry in Norway 

15 

engineering fields, and simplifies calculation by removing concepts such as pressure- and 

temperature-effects as well as compressibility of the different fluids and fluid phases. It is 

simpler and more elegant to work with mass rates and mass fractional compositions to 

explain the concepts. But allocation can be performed on any extensive property concerning 

the physical quantity such as volume, energy, mass or substance amounts in moles. It all 

depends on the measurement executed to achieve the calculated amount as well as the extent 

of the instrumentation of the allocation measurement. Uncertainties are specified for both the 

entire measurement system as well as uncertainties for individual measurements as specified 

by the NPD in Section 8 of Regulations relating to measurement of petroleum for fiscal 

purposes and for calculation of co2-tax (the measurement regulations). [11] If the 

measurement system is to deviate from practices in the NPD’s regulations this needs to be 

clarified by the NPD. Figure 2 depicts the concepts of a production asset covered in this 

chapter, as well as some mathematical notations and calculations which will be covered later 

in this thesis and its appendices. 

2.3.3 Field Blend 

The characteristic blend of hydrocarbons from the reservoirs from a specific petroleum 

producing unit. Each well in each field has its own characteristic composition and by 

combining each of the fluid streams in a production hub, a generic field blend is created. 

Each individual component in the blend have a specific market value constantly changing due 

to the dynamics in the economics of the petroleum market.  

 



 2 Petroleum industry in Norway 

16 

  – License 
(70% owner A)
(30% owner B)

2- License 
(60% owner A)
(30% owner B)
(10% owner C)

3- License 
(70% owner C)
(30% owner D)

Petroleum 
Export

Who owns how 
much of what?

Smaller fields

4- License 
(60% owner A)
(40% owner D)

5- License 
(50% owner B)
(50% owner C)

Production hub

Separate Oil, gas, 
water and sediments

Produced water discharge
Treated and cleaned 

produced water

 

Figure 2 - Petroleum Field Allocation by mass example associated with different license 

agreements 

2.4 Future prospects and focus on the Norwegian 
Continental Shelf (NCS) 

In order to have a sustainable oil and gas industry, in the developed part of the North- and the 

Norwegian-sea the focus of some the E&P companies is to utilize the existing infrastructure 

to develop and tie-in of oil fields to existing production hub, so called third-party fields. in 

order to extract oil and gas from these. And all these smaller licenses / fields usually have 

unique ownerships allocated to the fields. So, production allocation from each of the smaller 

fields has to be measured somehow. [5] this focus is so important for resource extraction the 

MPE have made a regulation relating to the use of facilities by others called the Third-party 

Access (TPA) Regulation in 2006 [12]  



 3 Separation and flow of fluids - Brief theoretical background 

17 

3 Separation and flow of fluids - Brief 
theoretical background 

This chapter goes into the theoretical background to familiarize the reader with the main 

concepts that are essential to this thesis. Concepts such as petrochemistry, phases, 

compositions and the balance laws which govern the dynamics of the system in question. 

3.1 Hydrocarbon fluid and separation 

The fluid flow from a well consist mainly of hydrocarbons, nitrogen, carbon dioxide and base 

sediments and water and hydrogen sulfide [10]. In the gas phase, hydrocarbons dominate the 

composition. But the liquid phase is primarily separated by oil and water, hence polar and 

non-polar liquid. 

The hydrocarbons are non-polar and the water is polar, this due to the water molecule is a 

dipole, the water has also hydrogen bonds with other water molecules and thereby giving it a 

higher density than liquid hydrocarbons and a higher boiling point than the majority 

molecules of similar nucleic weight such as the lighter alkanes / paraffins of the 

hydrocarbons, but this boiling point and density difference is important later when it comes to 

the processing and refining of a hydrocarbon fluid stream.  

Consider a closed container with a mix of a well sample fluid; the gas floats to the top, the oil 

separates in the middle and the water collects at the bottom of the container vessel. In reality 

on the other hand, the gravimetric phase settling is done in big vessels called separators. 

These separator vessels have a continuously changing stream of fluid in and out of the 

separator. Within the fluid mix in the separator, there is a layer of emulsion of both oil and 

water, and this emulsion require time to separate into either oil or water, And the speed at 

which this emulsion separation can occur is dependent on temperature and chemicals aids 

that helps breaking the emulsion in to two separate phases. 

3.2 Fluid flow 

Different streams can be measured and allocated in different units as covered in 2.3.2. 

Expanding upon fluid flow; flow as stated earlier can be quantified in many units, but most 

commonly fluid flow is in a volumetric unit, which is the mean velocity of a fluid multiplied 

by the cross-sectional area of the conduit the fluid is flowing in, as depicted in Figure 3.  

When it comes to the application in this thesis the conduits in question can have multiple 

phases at the same time. Because fluid streams of hydrocarbon in a pipe conduit, vessel / 

containment of the hydrocarbons in upstream oil and gas producing facilities are mainly in 

two aggregate phases, which is in liquid and gas. and in the case of this thesis there are both 

conduits of a single phase and also conduits where there are multiple of phases at the same 

time, where there are both liquid and gas flowing through the same conduit at the same time. 

and the fraction of each phase are in constant motion. But for hydrocarbon streams a rule of 

thumb is that; the closer the fluid stream is to the well in the reservoir the higher is the 

chance, of it being a multiphase stream.  



 3 Separation and flow of fluids - Brief theoretical background 

18 

 

Figure 3 - Concept of volumetric flow and discrete accumulation, where is u velocity and 𝑢̅ 

average velocity [13] 

3.2.1 Phase separation 

The initial separation of the phases of the multiphase well stream is most offend done in an 

inlet separator shown in Figure 7. This is done primarily done through gravimetric separation 

of the different phases, where the mass density of the different phases separates the different 

fluid fraction where the heaviest phase is collected at the bottom and the least heavy at the 

top. 

3.2.2 Single-Phase flow stream 

The separators effluent streams are all mainly single-phase flow streams, and in this thesis 

means that the gas outlet has only gas, the oil outlet only have oil flow and the water outlet 

stream only have water. In reality gas bobbles can occur in liquid phases, and liquid droplets 

in the gas phase, and residual water in the oil stream and residual oil in the water stream, due 

to not enough settling / retention time inside the separator vessel. 

3.2.3 Multiphase flows stream 

Physically there are mainly to aggregate phase differences which is liquid and gas , when it 

comes to multiphase flows such as the multiphase streams in the topside Third party MPFMs 

on Alvheim, it is important to split the liquid in to two phases as well, since there is a 

significant amount of water in the stream. Therefor the liquid phase is differentiated into oil 

and water. When characterizing a multiphase flow one of the main variables within 

multiphase flow is the gas volume fraction (GVF) which is the gas volume flowrate relative 

to multiphase volume flowrates at the pressure and temperature conditions in the conduit 



 3 Separation and flow of fluids - Brief theoretical background 

19 

section in question [14]. And when it comes to multiphase flow meters their uncertainties are 

categorized according to the GVF the meter is measuring. 

 

Figure 4 – Multiphase flow with increasing GVF, where the blue part is liquid and the yellow 

represents gas and gas bubbles [15] 

In addition, when looking at a two-phase stream, with liquid and gas in a stream there are 

more than the GVF to look into, such as variables for understanding the flow regime of the 

stream. These are the superficial velocities, which are the volumetric flowrate of the specific 

phase, divided by the cross sectional area of the pipe / conduit, Figure 5 from the MPFM 

handbook [14] shows the different flow regime occurring in a vertical pipe such as the 

multiphase meters are on Alvheim. Each flow regime gives rise to its own challenges when it 

comes to precisely measure the multiphase stream during different conditions, and each 

regime has a to a degree a unique uncertainty dependent on the velocity of the media. 



 3 Separation and flow of fluids - Brief theoretical background 

20 

 

Figure 5 - Two-phase flow map of a vertical pipe [14] 

In the intermittent flow regime there can occur elongated baubles causing occasionally a 

multiphase stream to have liquid and gas plugs in the axial direction of the pipe, and over a 

time period the multiphase stream can go from being fully displaced by liquid to being fully 

displaced by gas, this phenomena is called slugging, and cause challenges for measuring and 

controlling processes involved with multiphase flows4.  

3.2.4 Accumulation of flow 

The task of estimating how much has flown through a conduit from measured flowrates from 

a flow meter is very important. The measurement needs to be accumulated to go from a rate 

to a quantity. This accumulation is done by integrating the flowrate measured by a flow meter 

with respect to time. Equation (3.1) shows this for a volumetric flow to a volume and a mass 

flow to accumulated mass in two separate differential notation where the first term is the 

Leibnitz notation and the second is Newtons notation. And is displayed in the volumetric case 

as the displaced volumes in Figure 3.  

 

∫
𝑑𝑉

𝑑𝑡

𝑡1

𝑡0

𝑑𝑡 = ∫ 𝑉̇
𝑡1

𝑡0

𝑑𝑡 = 𝑉 , 𝑔𝑖𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑢𝑛𝑖𝑡𝑠: [
𝑚³

𝑠𝑒𝑐
∙  𝑠𝑒𝑐] = [𝑚³] 

∫
𝑑𝑚

𝑑𝑡

𝑡1

𝑡0

𝑑𝑡 = ∫ 𝑚̇
𝑡1

𝑡0

𝑑𝑡 = 𝑚 , 𝑔𝑖𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑢𝑛𝑖𝑡𝑠: [
𝑘𝑔

𝑠𝑒𝑐
∙  𝑠𝑒𝑐] = [𝑘𝑔]  

(3.1) 

                                                 

4 Slugs also cause water hammers that stress and cause vibrations on the system, this due to the sudden change 

in the inertia of the mass flow, especially in bends where the inertia of the mass flow exert force towards the 

pipe bend wall in order to change the mass flow direction 



 3 Separation and flow of fluids - Brief theoretical background 

21 

3.3 Balance laws 

The main balance law governing the main physical properties in the calibration of the 

MPFMs is the mass balance of fluid in the system. For a given period of time the mass flow 

in to the system must be equal to the mass flow out of the system, if they are not equal this 

states that there is some collection or accumulation of mass some place in the system, which 

can be gauged through changes in state changes in levels in a tank, or mass-density changes 

due to temperature and pressure changes within the system. Over time the accumulated mass 

flow in to the system must equate to the accumulated mass flow out of the system. 

3.4 Modeling of the dynamic phenomena  

The systems in question are subjected to flashing of hydrocarbon components from a liquid 

state to a gaseous state in the separator, mostly driven by a reduction in pressure or an 

increase in temperature 

3.4.1 Separator modeling; balance laws and phase mass exchange 
dynamics 

Modeling the states inside a phase separator vessel can be very complex, but for the sake of 

the purpose of this thesis the mass balance will be of focus in this thesis. But if only the liquid 

level was to be modelled the liquid volume balance could do this to an often-satisfying 

degree. The mass balance law states the sum of all mass flow influent to the system must be 

equal to the amount of mass leaving the system, if they are not the same there is a change of 

the total mass in the system, as stated in equation 3.2.  

𝑑𝑚

𝑑𝑡
= ∑𝑚̇𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡 − ∑𝑚̇𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡 (3.2) 

By accumulating the mass flowrates in (influent) and out (effluent) of the system, over a long 

enough time, the sum of both of these accumulated values should approach zero. But due to 

dynamics and uncertainties in measurements of the rates influent and effluent of the system, 

in addition to the total mass stored in the system can be potentially changing. But in order to 

ensure that the mass rate in to the system equals the mass rate out of the system. The stored 

mass inside the system needs to be gauged somehow. The separator has sensors measuring 

the liquid oil level, and the liquid interface between oil and water, as well as the pressure. 

And if the levels and pressure inside the separator are stable during the time window in 

question, an assumption that there is no loss or accumulation of mass inside. Thus, the 

statement that the mass rate into the system, equals the mass rate leaving the system, and 

hence give grounds for a comparison between a multiphase stream toward single phase 

streams. there are constant feedback controller controlling the oil water interface, oil level as 



 3 Separation and flow of fluids - Brief theoretical background 

22 

well as the static pressure in the vessel.  This mass rate comparison is also depicted block 

schematically in Figure 6. 

 

 

Influent streams Effluent Streams

System

Given enough  time

 

Figure 6 - Block schematic abstraction of mass balance 

Figure 7 depicts the mass balance and dynamics occurring in the calibration system. Where 

there are three multiphase streams upstream the separator with oil, gas and water mass rates 

from each multiphase stream, and there are single phase streams effluent of the separator. As 

well as a simplified mass-based flashing dynamic, which occur due to change in pressure and 

temperature from the multiphase meter and the separator. In this thesis the applied flashing 

dynamic is simplified to a mass fraction of the oil flashes to gas mass phase. Which is based 

on values from a process simulator, this result is shown in Appendix B. 

Stream C

Stream B

Oil

Gas

Water

Stream A

flashing
condensing

lower dens. Non-polar liquidHigher dens . polar liquid

Topside
Manifold

 

Figure 7 - Mass balance of multiphase streams and separator 

 



 3 Separation and flow of fluids - Brief theoretical background 

23 

3.5 Flashing, PVT and Phase equilibrium 

Every stream has a unique composition changing over time but most essentially for the 

hydrocarbon components in the stream, when there is a reduction in pressure or an increase in 

temperature a fraction of the lighter components turns from a liquid state to a gaseous state. 

Inside the separator, the fluid also has a chance to settle for a short time. The flashing of 

liquid oil is due to a higher pressure and temperature than the bobble point of the specific 

components, turning a fraction of the liquid component into a gaseous state. The liquid will 

continue to flash until the containment of the liquid has equalized the pressure in the 

containment to the specific vapor pressure for the given pressure and temperature. There is 

also an effect which goes the other direction (from gas to liquid), which is condensation of 

gas to liquid droplets, where a fraction of the gas is approaching the components dewpoint. 

These phase changes are approaching the phase equilibrium of the fluid, where the phase 

fractions of the fluid change with pressure and temperature for a given composition. Hence 

every valve, heat-exchanger, pipe bend, and length of pipe causing a pressure or a 

temperature to change and changes the phase equilibrium point of the fluid and thus the phase 

fractions. This is important due to the multiphase meter and a single phase stream are 

separated by pipe and other processing equipment and have different pressures and 

temperature and thusly different phase fractions.  

 



 4 Technical background of hydrocarbon flow metering 

24 

4 Technical background of 
hydrocarbon flow metering 

In the real physical world, a requirement to be able to quantify the extensive and intensive 

variables of both a multiphase stream and separated single phase streams. This chapter will 

dive conceptually into instrumentation and calculations used to gauge these variables, which 

are subsequentially used to perform ownership allocation and calibration. This chapter will 

try to provide information on the technical aspects of both the physical and computer systems 

used in the creation of the data used in this thesis. The chapter will also go in to aspects of the 

calibration and traceability of the measurements to international standards. In essence this 

chapter’s purpose is to get an understanding and appreciation of how continuous 

measurements from instruments are combined into a elegant and purposeful symphony. 

4.1 Instrumentation 

From the definition in section 2 of the measurement regulations from the NPD an Instrument 

is defined as:  

“An assembly consisting of a transducer and one or more sensing elements. The signal 
from an instrument represents a physical condition. A technical device used to measure a 
physical parameter.” [11]  

In essence a instrument is a piece of equipment which measure one or more physical 

parameters. And when this measured physical parameter is used to a fiscal purpose which is 

that there is some form of ownership or monetary transactions based on the measurement 

then the measurement is consider a fiscal measurement. When the measurement effects the 

owners, operators and government the involved parties will naturally require a quality 

assurance, that the measured parameter is relatable to known physical quantities with a given 

uncertainty, this operation to compare a measurement to a known reference is called a 

calibration, where the characteristic uncertainty of the measurement over the measurement 

range of the instrument is established. Sometimes confusion arises when it comes to the 

difference between calibration and adjustment, but calibration is establishing the uncertainty 

and adjustment is when a physical action is made to change the output of the instrument.  

Instruments such as pressure and temperature will not be covered, but their importance in the 

measurement is not to be neglected. Pressure and temperature have a important function 

when it comes to standardizing / normalizing the volume rates to common conditions, and in 

the section 10 of the measurement regulations from the NPD this standard conditions are set 

to be 101,325 kPa and 15 °C [11], and this calculation is performed at each fiscal flow and 

density measurement in order to gain standardized and thus comparable figures. 

4.2 Liquid flow measurement 

Most typical liquid flow meters in general try to their best to measure the mean fluid velocity 

inside the meter body. And by having a known cross-sectional area in the meter body, the 

volumetric flow becomes the product of the area and the mean fluid velocity, this applies to 

almost all of the flow meters used except for the Coriolis meter witch directly calculates the 



 4 Technical background of hydrocarbon flow metering 

25 

mass flow rate. But inside the systems in question inside this thesis the Coriolis meter is not 

used, but it is in regular use as both a process control and measurement applications. The 

main single liquid meters used in this thesis is ultrasonic flow meters (USFM), and Turbine 

meters for the oil stream, and electromagnetic flow meters for the water stream.    

4.2.1 Oil flow measurement 

Some flow meters are more suitable for measuring oil flows more than others, but in general 

the most used single-phase oil flow meters for continues flow measurements are Turbine-, 

ultrasonic- or Coriolis-meters. And due to that hydrocarbon oil is nonpolar some meters are 

not used for this liquid. 

4.2.1.1 Turbine flow meters 

Turbine flow meters uses the kinematics of the fluid particles to rotate a turbine inside the 

pipe, and on fixed locations on the meter body there are place magnetic pickups which 

produce a pulse when a turbine blade rotates past the pickup. Over time this generates a pulse 

train, where the frequency of the pulse train is proportional to the volumetric flow rate. And 

this proportionality is mostly implemented as a fixed calibration factor called the K-factor or 

sometimes the meter factor, with the units [
𝑝𝑙𝑠

𝑚3]. The k-factor is not necessarily fixed for the 

entire flow range the meter is operating on and sometimes there is a calibration curve where 

the k-factor is a function of the frequency of the pulse train or the measured flowrate. 

Diagnostics 

On the turbine meters used for custody transfer it is normal to have two pickups place with a 

fixed angle between each other in order to generate two pulse trains with a fixed phase 

between the pulse trains. And if a turbine blade is damaged or some other issue occur there is 

a diagnostic alarm raised if the phase between the pulse trains is not as it should be, and an 

indication of the direction of flow is also inherent in what pulse train is leading. 

4.2.1.2 Ultrasonic flow meters 

Ultrasonic liquid flow meters use sets of ultrasonic transducers inside the meter body to probe 

the velocity of the media, by measuring the time of flight of the ultrasonic pulse propagating 

through the media in the meter, where the fluid flow inside the pipe increases the time of 

flight if the pulse is traveling downstream or decrease the time of flight if the pulse is 

traveling upstream. And by having multiple sets of these ultrasonic transducers placed in the 

meter body at strategic location a flow velocity profile (flow profile) can be established. And 

by calculating the mean fluid velocity from the flow profile and multiply the velocity with the 

know cross-sectional meter body area, the volumetric flow measurement is established.  

Diagnostics 

The most significant diagnostic or beneficial measurement is that from the time of flight data 

the speed of sound in the media can be calculated. This is especially helpful for gas flow 

applications through ultrasonic flow meters where this speed of sound can be compared with 

the sound speed calculated from the measured or expected composition and conditions 

through the AGA-10 report. The measurement can also potentially be used to infer density 

from an expected composition and the speed of sound measurement provide additional 



 4 Technical background of hydrocarbon flow metering 

26 

correcting data. Additionally, the diagnostics from the physical and the signal processing of 

the raw transducer data such as the gain of the transducers to probe the health of the 

transducers, and the signal to noise ratio, giving a lot of information about the internal health 

of the meter. 

4.2.1.3 Produced water flow measurement 

Measuring the produced water outflow from the separator gives rise to utilize the ions from 

the salts and impurities which gives water its electrical conductance. Electromagnetic flow 

meters are frequently used for measuring produced water. The electromagnetic flow meters 

work through electromagnetic induction, by having magnetic coils around the meter body, to 

create an electromagnetic field around the pipe, electrodes in contact with the fluid on 

opposite sides of the meter body. When the media in the pipe is conductive and moving 

through a magnetic field a voltage is induced in the liquid, through faradays law, which is 

then measured by the voltage difference over the electrodes in the media. 

4.2.2 Calibration and traceability of liquid volume flow meters 

The liquid flow meters discussed in this chapter are all volumetric flow meters, and when 

calibrating and establishing the uncertainty and linearity / characteristic of the flow meter, 

this is historically done in a prover-loop with the ability to displace a fixed volume through 

the meter and comparing the displaced volume with the measured volume. the liquid volume 

flow rate is for oil-metering application is electrically sent as a pulse train, where the 

frequency of the pulse train is proportional to the volume flowrate. And when calibrating a 

meter the calibration factor can be established through counting the pulses on the pulse train 

during the displacement of the fixed or known volume5 the example of using a compact 

prover unit as the displacement reference volume shown in Figure 8. By repeating the fixed 

volume displacement through the meter, the calibration factors is then established if the 

measurements point achieve a sufficient confidence degree calculated through the student-t 

probability density distribution, specified in API-MPMS-4 Proving System. This exercise of 

establishing calibration factors can then be executed at varying conditions, mostly significant 

with varying flowrates, and from this the linearity or non-linearity of the meter is established 

and if a single calibration factor is sufficient for the liquid flow meter or if it requires a 

calibration characteristic, where the calibration factor dependent on flowrate or any other 

measured varying condition. 

The prover loop for most applications is placed inside a flow laboratory, but on fiscal 

metering stations are often fitted with an in-situ prover loop, where the NPD requires the 

calibration / proving to be done every 4th day or if the fluid properties change from last prove. 

[11]. But the meters used on the liquid streams on the Alvheim third party separator are all 

meters and calibrated in a non-bias 3rd party flow laboratory at regular intervals. 

                                                 

5 This fixed or know volume is also known as volume-normal 



 4 Technical background of hydrocarbon flow metering 

27 

Turbine meter

Calibrated 
volume

Compact prover
Volume normal

Puls counter

Start

Stop

K-factor [pls/m3]

liquid

 

Figure 8 – Liquid turbine meter flow calibration with compact prover 

Establishing the calibration of the fixed displaceable volume (prove volume) also needs to be 

able to be checked against a higher order reference, this is done by displacing the volume 

normally with water into a calibrated can (seraphin can), which is purposely built to gauge 

the volume inside the prover. This seraphin can is then calibrated by mass, by filling the can 

with water with a known density. And measuring the mass of water inside the seraphin can, 

the measurement has then changed from a volumetric measurement to a mass measurement, 

and by weighting the mass with a measurement device traceable to the kilogram standard in 

France, a traceable standard for the calibration of volumetric liquid flow meters is complete. 

This traceability chain is depicted in Figure 14. 

4.2.2.1 Auxiliary measurements of intensive variables 

Densitometers  

To get a volumetric flowrate to a mass flowrate the mass density has to be measured, and this 

is done through a density transducer or densitometer which in most traditional cases for 

precise measurement is done through a oscillating tube, which is agitated by electromagnetic 

coils, giving the measurement tube a vibration. The frequency at which this tube is oscillating 

correlates to the mass within the tube system, and the heavier the mass within the tube is the 



 4 Technical background of hydrocarbon flow metering 

28 

lower the frequency at which the tube is oscillating, and thus a density reference is measured 

through a characteristic of time period of oscillations.  

Water cut meter 

Water cut meter is another word for instrument which measures amount of water in oil in 

water / the water in oil fraction if you prefer, and the standard measurement principle used 

here is a microwave based measurement principle, where the characteristic damping of a 

microwave signal propagating through a oil water mix at different microwave frequencies, a 

relative characteristic attenuation over a frequency span, is then effected by the water content 

in the liquid mix6. And for increasing the accuracy the density from a densitometer is also 

used as an input to this measurement. More details of water fraction metering can be found in 

a handbook on the topic from the NFOGM [16] 

4.3 Gas flow measurements 

When it comes to gas flow measurement in recent years, the standard flow meter primarily 

used in new applications today is the ultrasonic flow meter. The ultrasonic flow meter in 

liquid flow measurement chapter is analogous to the one used in gas flow measurement. 

There is one essential difference between liquid and gas applications, which is that the piezo 

electric transducers are installed with direct contact to the gas and not in a separate 

pocket/well which is isolated from the media.  

Other measurement principles where also used such as differential pressure gas flow 

measurement; gas flow measurement through differential pressure over an orifice plate or any 

other reduction of cross-sectional area of the conduit. This reduction in area intern cause a 

change in differential pressure due to an alteration of the kinetics inside the conduit. All this 

is based on the age-old Bernoulli energy balance equation in iso-metric form, which is further 

enhanced and the development into ISO-5167 series for gas flow measurements with a higher 

precision and higher statistical confidence. 

Gas flow meters are calibrated in a similar manner as the liquid meter calibration, a gas flow 

meter can measure the displaced gas, but instead of a volumetric displacement the 

displacement has to be converted to a mass / standard volume displacement. In order to 

calibrate the gas flow meter since gas is compressible, a mass flow comparison has to be 

performed, and instead of having a volumetric displacement standard volume or a mass 

displacement reference is needed for the gas flow calibration, but the methodology is the 

same7.  

                                                 

6 in the same manner that a microwave oven heats up / agitates the water molecules / moisture within the oven. 

7 Calibration of gas flow meters are not frequently done, mainly prior to install or on specific occasions, meters 

are sent to special laboratory’s such as FORCE’s calibration facility in Denmark or EuroLoop in The 

Netherlands, but there is a limited number of facilities providing this service, liquid flow laboratories are more 

frequent. 



 4 Technical background of hydrocarbon flow metering 

29 

4.4 The computer part8 – Flow computer 

On each of the measurement streams its own embedded flow computer is installed. The flow 

computers task is to collect and distribute measurements from instrument, execute sensor 

calculation and accumulating and storing the increments calculated by the flow computer. 

these accumulators in P&ID notation are usually denoted Flow Quantity Indicator (FQI), and 

also in other process context referred to as totalizers. The calculation for each increment is 

done every second, for the single-phase streams and every 10 seconds for the multiphase 

stream computers before the increment is stored inside the flow computers database. Figure 9 

shows a representation of the liquid oil stream, with instruments and a fast loop, and the 

abstract calculation performed by the stream flow computer. The flow computer also works 

as a controller for the supervisory metering system, and can usually control the connected 

line valves through the flow computers I/O. The system specific details of the flow meters 

and their exact internal calculation are in appendix B.  

 

Turbinemeter

PT

TW

TE TE

TT

8" pipe
FE

FTK-factor 

FQIAccumulators

DT

PT

FQI FQI

FI

Flow Computer

FI

Fastloop

Typical 1" pipe / tube

Sample point

TW

TT

TE TE

FI

TE

DI

DE
PT

Calibration 
Caracteristic

K1,K2,K3,K18,K 19, 
P0, T0

Common fastloop 
calulations in

 Flow Computer

 

Figure 9 - Overview of typical and simplified single-phase fluid measurement stream with the 

abstract tasks and calculations of the flow computer 

                                                 

8 The computer part refers to the definitions in the NPD’s measurement regulations [11], but is the control and 

computational processing part of the measurement system. 



 4 Technical background of hydrocarbon flow metering 

30 

4.5 Multiphase flow meters 

When it comes to streams where there are multiple phases and the meter used is an inline 

multiphase meter, which has instruments working closely together to establish the flow of 

each of the phases, and these inline meters are used on the Alvheim installation.   

XT

DT

TE

PT

TT

Tomography

Gamma density

Venturi FT

DX

XE

FI FI FI

FE

DE

Temperatur

Pressure

Oil Water Gas

-GVF
-WLR
-Volume rates
-Mass rates

FTX

Multiphase 
stream

Multiphase meter

 

Figure 10 - Conceptual overview of instruments involved in a multiphase meter 

On the Alvheim platform the multiphase flow meters from MPM, now owned by 

TechnipFMC will be the focus here. But there are many other multiphase meters and 

solutions on the market, more information on multiphase flow meter selection, solutions and 

uncertainty see the handbook from NFOGM on the topic  [14] But for this thesis the focus 

when explaining the multiphase meters will be on the MPM meter from Technip FMC. 

But multiphase meters are a lot more complex than a normal single-phase meter. This due to 

within fraction of a second the fluid stream can turn from a pure liquid stream to a gas stream 

due to slugging slugs of liquid can be followed by gas bobbles covering the entire pipe for 

longer periods of time, and the meter has to constantly interpret the fraction of what is 

flowing through the meter, and use the best suited method for calculating the flowrates of 

each phase. And the MPM meter installed on Alvheim have two mode which it can jump 

between in a fraction of a second, if the fluid stream suddenly becomes a gas stream and can 

operate in both a wet-gas mode and a multiphase mode. Where the MPM meter detects only 

gas and switches to a wet gas measurement mode, or if it detects liquid operates in 

multiphase mode. The MPM flow meters can automatically detect and switch between 

operation modes 



 4 Technical background of hydrocarbon flow metering 

31 

 

 

Figure 11 MPM Meter components [15] 

4.5.1 Density measurement 

In order to measure the mass density of media in the pipe the MPM multiphase flow meter 

uses a nuclear measurement principle, a source of ionizing radiation on one side of the stream 

and a Geiger muller tube on the other side, with a beam of photons / ionizing radiation going 

through the multiphase stream. The more photons counted by the Geiger muller tube the less 

mass the beam of photons has to permeate with a higher degree of being absorbed or 

deflected, and if the photon count on the Geiger muller tube decrees the mass density of the 

flow stream then has a higher mass density. 

4.5.2 Velocity measurement of fluids 

Most multiphase flow meters utilize a venturi flow meter to gauge the kinematic aspect of the 

multiphase meter, and measure a velocity component of the multiphase stream, and together 

with density measurement this can give good data of the velocities of the media in the 

conduit.  



 4 Technical background of hydrocarbon flow metering 

32 

The established standards for using venturi flow meter, are mainly for single phase meters, so 

a special measurement model which has to take all this into account and still get a velocity 

estimate for the gas and liquid phases. 

 

 

Figure 12 - Venturi cone element in a MPM meter [15] 

4.5.3 Tomographic measurement 

Through multi-modal parametric tomographic measure, a volumetric rendering of the cross-

sectional area of the meter body can be measured, which intern can determine the ratio of gas 

and liquid within the meter body. This is done through what MPM called 3D Broadband™. 

This is gauged by multifrequency dielectric measurements in a similar manner as the water 

cut meter in the single phase oil stream the water content is inferred through a characteristic 

attenuation of electromagnetic waves, the MPM meter does this in a multi-modal approach by 

having multiple electrodes to measure the signal attenuation through the media in the pipe, 

and covers a frequency range of 20-3700Mhz. [17], as shown in Figure 13. 



 4 Technical background of hydrocarbon flow metering 

33 

 

Figure 13 – Technip FMC- MPM 3D Broadband™ technology [15]  

4.6 Operations / Maintenance of measurement 
equipment and systems 

Under normal operations buildup of material inside the meter body can occur due to scaling, 

sulphates or asphaltenes this can effect can be take into account when a new calibration is 

performed, which is the biggest issue for the liquid and the multiphase meter, due to the 

abrasive nature of liquids and that the liquid is the dirtier of the two phases and that the liquid 

carry potential contaminants to a higher degree than gas, but in gas streams there are 

potentials for ice and hydrate formation. 

4.7 Uncertainty 

By carrying out a series of measurement points statistical analysis can be done on these 

measurements and as written in the calibration and traceability chapter under liquid flow 

meter some information about the use of small sample statistics through the student-t 

distribution is mentioned.  And this is often a good place to get information about the 

repeatability, precision and uncertainty of the measurements and given a required confidence 

degree / coverage factor the stability of the same measurement can be achieved. 

But when looking at expanded uncertainty of the combined measurement for single and 

multiphase metering the NFOGM have created uncertainty handbooks and programs to 



 4 Technical background of hydrocarbon flow metering 

34 

calculate the uncertainties for both single phase gas and oil as well as a handbook for 

multiphase flow metering covering the topic to a great extent [18], but all uncertainties follow 

the Guide to the expression of uncertainty in measurement (GUM)9  

4.7.1 Traceability 

Traceability is the relationship a measurement has to an established international standard, 

and that each part of the chain from the instrument in duty to the standard has a documented 

relationship to internationally recognized standards. 

Turbine 
meter

Calibrated 
volume

Compact prover
Volume normal Seraphin can

Volume Standard

###.#### kg

Electronic Weight Balance

Traceable 
standard 
weight

Before 20. may 2019

After 20. may 2019

1 kg 
definition 
in France

Kibble / Watt 
Balance

Volumetric 
to mass 

relationship

Volumetric 
relationship

Volumetric 
relationship Mass 

relationship

On site or flow laboratory Norwegian Metrology Service 
(Justervesenet)

WaterdrawProving Weigh
Comparison

Through Plancks 
constant

 

Figure 14 - Traceability map of a turbine flow meter 

Figure 14 shows a traceability map example of a turbine flow meter and how it relates to the 

standards in France, from the 20th May 2019 the references are no longer physical objects but 

natural constants, such as lightspeed in a vacuum for a length, through interferometry. And 

the mass is based on Planck’s constant through watt balance instrument [19] [20]  

4.8 Supervisory metering system 

The metering system has a Supervisory Control and Data Acquisition (SCADA) system 

running as a part of the measurement system which monitors, controls and creates reports of 

the measurement system. This also entails performing calibrations operating the metering 

stations and is done centrally on a main machine or with a redundant pair of machines. Each 

flow computer / embedded device is connected together, and central computer/s and these 

central machines run the programs and services, this central machine also performs as an 

interface to other SCADA systems or as data gateway for collecting or storing real-time or 

historical values on an ERP-level normally through OPC interfaces. 

When looking at the data flow for the data used in this thesis as well as the interconnectivity 

of data across a typical metering system is shown in Figure 15, this shows some crucial 

aspects of data flow from the instrument through infrastructure until it is available for request 

for the processing done by this master thesis. 

                                                 

9The GUM is created by the Joint Committee for Guides in Metrology (JGCM) which Bureau International des 

Poids et Mesures (BIPM) shares. And that the international standard organizations such as ISO and IEC follow. 



 4 Technical background of hydrocarbon flow metering 

35 

4.8.1 Data connectivity and interfaces. 

Previously known as Object Link Embedding (OLE) for process control, but now it is just 

Open Process Control, and is a standard client/server networking protocol to transport data 

between components in process control and monitoring applications. And it is split in to two 

generations, the first generation which have the Data Access (DA), Historical Data Access 

(HAD) and Alarm and Events (AE) and some others which are based on Microsoft 

proprietary Distributed Component Object Model (DCOM), which require a network tunnel 

system for adding encryption. In recent years a newer generation of the OPC standard with 

more open standard based on open binary standard that don’t require proprietary parts such as 

DCOM, which has benefits when it comes to encryption and security and implementation on 

multiple operating systems10 this is called OPC Unified Architecture (UA). But for this thesis 

the old OPC DA is only used, which are in used between the Metering SCADA system and 

the Process control system and the historical value repository PI by OSIsoft. The Cognite 

Data Fusion repository collects the time series sensor data from this PI system. Figure 15 

shows the data flow from both a single-phase stream measurement and a multiphase meter 

through the metering SCADA and the Operational Technology (OT) layer to the Cognite data 

fusion repository.

                                                 

10 For more details regards to these standards see https://opcfoundation.org/ 



 4 Technical background of hydrocarbon flow metering 

36 

FMC CM

Osi soft PI
Collector / 

Interface Server

Stream Flow computer
Embedded controller

FMC FMP207CE

Plantside 
OsiSoft PI server 

Central / onshore 
OsiSoft PI server

AkerBP 
instance

Temperatur sensor
pt-100 element

Temperature Transmitter
Rosemount 3144

HART 
over 4mA fixed

PM Bus

OPC DA

OsiSoft
protocoll

OsiSoft
protocoll

Network 
protocol

End user

Network 
REST API 
Request

Main DCS system
Kongsberg K-Pro

OPC DA

OPC DA

Pressure Transmitter
Rosemount 3051

pulses

Central Control Room

Oil stream instruments

Turbine flow meter
Fauer Herman

Multi phase flow meter
MPM - TechnipFMC

Metering 
Workstation

Metering SCADA Process and vessle 
control system

Multiphase meter stream 

Modbus RTU
over RS485

PM Bus
over Ethernet

Virtual Flow Computer on CM
Emulating an FMC FMP207CE

More stream 
computers

Operations Technology (OT) 
Infrastructure / Process 

information network

Cognite
Data

Fusion

Westermo EDW-100
Serial to Ethernet

Eth
ernet

 

Figure 15 - Data flow for data used in thesis 



 5 Alvheim third party field installation 

37 

5 Alvheim third party field installation 
The chapter goes into detail of a third-party tie-in installation on the Alvheim FPSO, and the 

involved equipment and systems, and the documentation of the measurements system from 

the supplier is in appendix B  

5.1 Alvheim field in general 

Alvheim is a floating production storage and offloading (FPSO) vessel rebuilt from a shuttle 

tanker Odin to the Alvheim FPSO in Haugesund Norway. 

Alvheim was initially developed for the Boa, Kneler and the Kameleon field, but further 

exploration in the area reveled more fields in the area, and that is where the third-party fields 

Bøyla, Vilje and Volund come in to the picture, third party tie-ins to the Alvheim FPSO 

require ownership allocation and separation, and this is where the topside multiphase meters 

on each stream and the third party separator comes into play. Figure 16 shows an overview of 

the metering system with regards to the Alvheim third party MPFM streams and separator, 

for executing single meter calibration. 

 

Figure 16 - Alvheim third party production and MPM's on Metering SCADA 

5.2 Topside MPFM Manifold 

The Topside MPFM Manifold on Alvheim has slots available for 6 MPFM’s and today there 

is installed 3 MPFM meters. Each multiphase meter has its own virtual stream flow 



 5 Alvheim third party field installation 

38 

computer, and communicates between them initially from the meter over Modbus RTU on a 

differential signaling bus (RS485) which is then converted to ethernet and made available for 

the virtual flow computer running on the central metering machine (CM) as shown in Figure 

15. 

 

Figure 17 - Vilje and Volund MPM - MPFMs 

5.3 Third Party Separator 

The Third-party separator is a vessel where gravimetric liquid separation of the well streams 

from the third-party manifold as well as segregating gas from the liquid phase in addition to 

flashing / evaporation of a fraction of the liquid phase goes to gas. There are instruments on 

the levels of the oil and water phase, as well as the pressure and temperature in the separator 

is measured, monitored and controlled. The produced water stream is then measured through 

a electromagnetic flow meter, The oil and gas streams have additional instrumentation and 

will be covered more in sub-chapters. An image of the separator is shown in Figure 18. 



 5 Alvheim third party field installation 

39 

 

Figure 18 - Alvheim 3rd party separator 

5.3.1 Oil stream 

The oil metering on the separators oil outlet consists of two 8” streams, where one of the 

streams can choose to either use a turbine meter or a ultrasonic flow meter (USFM). 

Upstream the flow meter streams there is a inline water cut meter as well as a fast loop side 

stream for density measurement and sampling, this is shown in the simplified P&ID in Figure 

19 and a photograph of one on the oil streams with notation is show in Figure 20.  

 



 5 Alvheim third party field installation 

40 

AT

WCM

DT

FT

TurbinemeterUltrasonic
PT PT

TW

TE TE

TT

FT

FT

Turbinemeter

PT PT

TW

TE TE

TT

Separator oil outlet

Fastloop

12" pipe

1
0

" p
ip

e

10" pipe

8" pipe

8" pipe

1" pipe / tube

1" pipe / tube

Third party separator oil metering streams
Sample point

TW

TT

TE TE

PT

FI

Densitometer

AE

Stream 1

Stream 2

 

Figure 19 - Simplified P&ID over third-party separators oil metering station 

 

Figure 20 - picture of oil stream 1 with explanations 

 



 5 Alvheim third party field installation 

41 

When it comes to the point where volumetric oil flow turns into mass flow the densitometer 

and the other equipment shown in Figure 21 comes into effect on the measurement. This is a 

1” side stream with a representative oil flow through. 

 

Figure 21 - oil stream fast-loop 

5.3.2 Gas Stream 

The gas metering on the separator’s gas outlet consist of two streams in parallel, same as the 

oil metering, but the gas streams have just one flow meter on each run, and both are 

ultrasonic gas flow meters, together with the same standard pressure and temperature 

instruments. This is shown in Figure 22. 



 5 Alvheim third party field installation 

42 

FT

Ultrasonic
PT PT

TW

TE TE

TT

FT

Ultrasonic

PT PT

TW

TE TE

TT

Separator gas outlet

1
2

" p
ip

e

12" pipe

10" pipe

10" pipe

Third party separator gas metering streams

Stream 1

Stream 2
 

Figure 22 - Simplified P&ID over third-party separators gas metering streams 

 

 



 6 Parallel calibration of multiphase flow meters 

43 

6 Parallel calibration of multiphase 
flow meters 

This chapter goes into the essential parts of calibrating multiphase meters, and how a parallel 

calibration algorithm is created, implemented and executed.  

6.1 Digital representation of fluid streams 

In order to perform the calibration methods, the data used for the methods needs to be put in 

the correct context and calculated to fit the reality at any given instance. This is done by 

implementing a digital “twin” / digital representation of each of the streams in question. Both 

the multiphase streams of the MPFM’s as well as the Separators effluent single-phase 

streams. And by developing a digital twin for these fluid streams which can take any arbitrary 

time segment, and perform calculations and accumulate the flowrates in each of the streams, 

a representable and highly adjustable data set is then created, and the calibration methods can 

then elegantly be fitted on top of a collections of these dataset calculated as calculated by the 

digital twin of the fluid streams. Figure 23 and Figure 24 shows the core concepts of the most 

important data within the digital representations, but in reality the digital representations 

stores also the related intensive variables and flowrates and performs the flashing calculations 

and prepare the data for further processing. Appendix C goes into detail of the 

implementation, development and calculations executed by these digital representations and 

how they are set into context.  

Turbinemeter

PT

TW

TE TE

TT

FE

FTK-factor 

FQI

DT

PT

FQI FQI

FI

Oil Flow Computer

FI

Sample point

TW

TT

TE TE

FI

TE

DI

DE
PT

Calibration 
Caracteristic

K1,K2,K3,K18,K 19, 
P0, T0

Digital Separator Stream Twin

FQI

Oil Water Gas

FQI

Ultrasonic

PT

TW

TE TE

TT

FT
PT

FQI

FI

Gas Flow Computer

FI

FE

FT

FE

Electromagnetic

Water Stream Gas StreamOil Stream

Constant Density

Water Flow 
Computer

Std. Dens ity 
from 

compos ition

FQI

FQI

FI

FQI FQI FQI FQI

 

Figure 23 - Concept of Digital twin of separator streams 

 



 6 Parallel calibration of multiphase flow meters 

44 

Digital Multi-phase Stream Twin

FQI

Oil Water Gas

FQI FQI FQI

MPFM PM  /
 Flow Computer

XT

DT

TE

PT

TT

Tomography

Gamma density

Ventri FT

DX

XE

FI FI FI

FE

DE

Temperatur

Pressure

Oil Water Gas

-GVF
-WLR
-Volume rates
-Mass rates

FTX

Multiphase 
stream

FQIFQIFQI

Multi-phase 
meter

 

Figure 24 - Concept of Digital twin of a multiphase stream 

6.2 Traditional calibration method 

This chapter will cover the traditional MPFM vs separator calibration method used on the 

Alvheim FPSO for calibration of Allocation MPFMs with reference to separator 

measurements. And is only calibrating one meter at the time, and the meters on the outlets of 

the separators are the more accurate reference meters. And this Traditional calibration 

method will serve as a reference for the performance of the Parallel calibration method, but 

the Parallel calibration will use the same data but synthesize this into a parallel calibration 

task. The reason why the separator is used as the reference instrument is due to that single-



 6 Parallel calibration of multiphase flow meters 

45 

phase measurements have a much higher accuracy and repeatability and a lower uncertainty 

than the multiphase meter in the multiphase stream. 

6.2.1 Calibration factor calculation 

 Figure 25 depicts the concept of the traditional method for calibrating where the 

effluent and influent accumulation of each phase are compared to each other. 

The calibration factor 𝑘𝑝 for each denoted phase p is calculated by the ratio between the 

accumulated mass flow of a reference measurement and the accumulated mass flow subject 

of the calibration subject, and over time this value as the accumulation of mass in both the 

reference and the subject this ratio practice stabilize / converge to a value which can be used 

as the calibration factor, as shown in equation (6.1). This accumulation is performed on all 

phases at the same time, from both the effluent single-phase reference streams on the 

separator and on the multiphase meter measuring all phases flowing through the meter. Then 

the calculation is performed on each of the phases to establish a calibration factor for each 

phase, during a calibration run11. 

𝑘𝑝 =
∫

𝑑𝑚𝑝,𝑟𝑒𝑓

𝑑𝑡

𝑡1

𝑡0
𝑑𝑡

∫
𝑑𝑚𝑝,𝑠𝑢𝑏

𝑑𝑡

𝑡1

𝑡0
𝑑𝑡

=
𝑚𝑝,𝑟𝑒𝑓.

𝑚𝑝,𝑠𝑢𝑏.
 (6.1) 

                                                 

11 It is also worth noting that the factor is a fraction of mass divided by mass and hence a unitless number, and 

not a response factor turning a measured raw value to another unit like the calibration factor on a turbine meter 

which turns a number of pules into a volumetric quantity, and with the units in the factor 



 6 Parallel calibration of multiphase flow meters 

46 

Oil

Gas

Water

FE

Muliphase meter

FT

FE

FE
FT FT FT

wtr oil gas

Massflows

Massflow

MassflowMassflow

gas

Calibration Subject

FT FQI
gas

Gas
Referance

FQI

y

x
Kf_gas

ReferanceReferance

Subject

FT FQI

FQI

y

x

Kf_oil

Subject

ReferanceReferance

Oil Referance

Water
FQI

Conceptual overview of Traditional 
Calibration of MPFM vs Separator

Excluding: Flashing through PVTSim and Water content In Oil

Water

FQI

FE

Water Referance

Referance Referance

Subject

y

x
Kf_water

Separator

 

 Figure 25 - Conceptual overview of traditional calibration method 



 6 Parallel calibration of multiphase flow meters 

47 

 

Figure 26 - Not acceptable k-factor development through traditional calibration on the 

metering system on Alvheim 

6.2.2 Acceptance criteria for a traditional calibration 

The traditional calibrations accept criteria are qualitative to an extent and by looking at the 

calibration factors over the course of time of the calibration run. If the calibration factor for 

each phase remains constant over a longer period of time is the acceptance criteria of a 

calibration. Figure 26 shows a not acceptable calibration where the oil factor is not 

converging, Figure 27 shows on the other hand an acceptable traditional calibration run. And 

by being able to create / emulate these plots over time will give a good qualitative indication 

of the acceptability and convergence of the calibration run and will be a goal of the parallel 

calibration algorithm, to compare results to something known. 

 



 6 Parallel calibration of multiphase flow meters 

48 

 

Figure 27 – Acceptable k-factor development through traditional calibration on the metering 

system on Alvheim 

6.3 Parallel calibration method 

This chapter will cover the theory, development and implementation of the parallel 

calibration method. 

The general part of a parallel calibration routine / method it requires several different 

timeslots of historical data with varying flow rates in each of the streams named trials. And 

by performing a post calculation on these timeslots of historical data, achieve an apparent 

calibration factor. To achieve varying flow in each of the timeslots is done either by routing 

one of the streams to another separator, or a multiphase stream can be choked with a valve 

and they’re by reducing the flow to a stream during a time period.  

Two solvers have been looked into a linear and non-linear solver, where but the linear solver 

can also use all three runs at the same time, and not only have trials with only two streams on 

each trial as the non-linear solver. Figure 28 shows the dataflow and calculations done for the 

creation of each trial. 

6.3.1 Calibration factor calculation 

From the mass balance stated in 3.4.1 which stated that over enough time, the amount of 

mass entered the system must also leave the system. And that the multiphase mass flow is 

proportional to the single phase mass flow. In Alvheim current setup for the third-party 

installation with the topside multiphase meter streams. Bøyla, Vilje and Volund that are the 

multiphase influent streams, their rate must over time equate the effluent streams on 

separators single phase outlet, as shown phase generically in the equation below (6.2).    



 6 Parallel calibration of multiphase flow meters 

49 

𝑩ø𝒚𝒍𝒂

[(∫
𝑑𝑚𝑝,𝐵ø

𝑑𝑡

𝑡1

𝑡0

𝑑𝑡 ) 𝑘𝑝,𝐵ø]

 
+

𝑽𝒊𝒍𝒋𝒆

[(∫
𝑑𝑚𝑝,𝑉𝑖

𝑑𝑡

𝑡1

𝑡0

𝑑𝑡 ) 𝑘𝑝,𝑉𝑖]

 
+

𝑽𝒐𝒍𝒖𝒏𝒅

[(∫
𝑑𝑚𝑝,𝑉𝑜

𝑑𝑡

𝑡1

𝑡0

𝑑𝑡 ) 𝑘𝑝,𝑉𝑜]
 
 
=

𝟑𝒓𝒅 𝑷𝒂𝒓𝒕𝒚 𝑺𝒆𝒑𝒂𝒓𝒂𝒕𝒐𝒓

[∫
𝑑𝑚𝑝,𝑆𝑒𝑝

𝑑𝑡

𝑡1

𝑡0

𝑑𝑡 ]
  (6.2) 

And by manipulation of the equations a system of equation for each phase can be set up and 

solved to achieve the calculated k factors for each stream and each phase in the multiphase 

streams. 

Meas A
@MPFM

Flash to 
Sep_states

PVT

Gas outlet

Water 
outlet

Acumulate
Mass_phase 
at SepStates

Meas B 
@MPFM

Flash to 
Sep_states

PVT

Acumulate
Mass_phase 
at SepStates

Vol.rate*
dens_water

Oil outlet

Separator state:
Temp, Press

Sable liquid levels

Separator Temp & Press

Acumulate 
Water Mass 

flow

Calculate 
mass rate

Vol.rate*WCM 

Acumulate 
Oil Mass 

flow

Acumulate 
Gas Mass 

flow

PostDataProcessing 
Calculation method

Combine 
into ref data 

set

Combine 
into Trial 
dataset

Data from 
other M_comb 

Runs

Data from 
other M_comb 

runs

Apperaent K_p_meters

Know waterdensity
From Lab sample

Gross 
Volumetric 

rate

[kg/h]

Sm3/h to kg/h

Volumetric 
WaterInOil rate Vol wtr. rate to 

mass rate

[Sm3/h]*[kg/Sm3]= [kg/h]

Multip ly times standard density

[Sm3/h] [kg/h]

[m3/h]

[m3/h]
[kg/h]

[kg/h]

[m3/h]

[kg/h]

[kg/h]

[kg/h]

[kg]

[kg]

[kg]

[kg]

[kg]

Net oil Mass rate 

Mass rates: Gas, Water

Mass rates: Gas, Water

Mass rates: 
Oil, 

GasInOil

Mass rates: 
Oil, 

GasInOil

Accumualted masses:
Oil, Gas, Water

Meas C 
@MPFM

Flash to 
Sep_states

PVT

Acumulate
Mass_phase 
at SepStates[kg/h]Mass rates: Gas, Water

Mass rates: 
Oil, 

GasInOil

Oil mass rate
Accumualted masses:

Oil, Gas, Water

[kg]

 

Figure 28 - Data basis, flow, calculations, and preparation for parallel calibration method 

solver 

6.3.2 Non-linear solver  

Initially there was a non-linear method proposed by Torbjørn Selanger but this was linearized 

and solve as a linear case, a chapter in Appendix D goes into detail of the method and the 

code for a solver, but the non-linear method was not implemented in the Parallel calibration 

algorithm, but it was solved. 

6.3.3 Linear solver  

The linear solver for the parallel calibration method, uses the same number of trials as there 

are parallel multiphase streams. And can be solved for as many phases as there is in the 

stream, it could also be used for single phase calibration. 

6.3.3.1 Defining the specific case for the current Alvheim separator 
configuration 

For the Alvheim third party parallel multiphase calibration method we have from the balance 

law stated (6.3) and by having three separate time window / trial post calculated for historical 

data. We can integrate the flow rates and be left with the accumulated mass pr phase times 

the k factor which sums up to the accumulated mass for the specific phase out form the 

separator. And from these three trial / time windows a system of equations can be set up as 



 6 Parallel calibration of multiphase flow meters 

50 

show in (6.4). The system of equations have a linear relationship and the linear combination 

of the streams can be set up in the matrices and vectors shown in (6.5), which gives the linear 

system shown in (6.6) which can be solved by taking the inverse matrix of the stream trial 

matrix 𝑴𝑝 and dot multiply it times the mass reference vector 𝒎𝑝 which solves the system of 

equations for the unknown calibration factors 𝒌𝑝 for each of the streams for the given phase 

(6.7). This is then repeated for each fluid phase. 

𝑚𝑝,𝐵ø𝑦𝑙𝑎 ∙ 𝑘𝑝,𝐵ø𝑦𝑙𝑎 + 𝑚𝑝,𝑉𝑖𝑙𝑗𝑒 ∙ 𝑘𝑝,𝑉𝑖𝑙𝑗𝑒 + 𝑚𝑝,𝑉𝑜𝑙𝑢𝑛𝑑 ∙ 𝑘𝑝,𝑉𝑜𝑙𝑢𝑛𝑑  =  𝑚𝑝,𝑟𝑒𝑓 (6.3) 

𝑚𝑝,𝐵ø𝑦𝑙𝑎,1 ∙ 𝑘𝑝,𝐵ø𝑦𝑙𝑎 + 𝑚𝑝,𝑉𝑖𝑙𝑗𝑒,1 ∙ 𝑘𝑝,𝑉𝑖𝑙𝑗𝑒 + 𝑚𝑝,𝑉𝑜𝑙𝑢𝑛𝑑,1 ∙ 𝑘𝑝,𝑉𝑜𝑙𝑢𝑛𝑑  =  𝑚𝑝,𝑟𝑒𝑓,1 

𝑚𝑝,𝐵ø𝑦𝑙𝑎,2 ∙ 𝑘𝑝,𝐵ø𝑦𝑙𝑎 + 𝑚𝑝,𝑉𝑖𝑙𝑗𝑒,2 ∙ 𝑘𝑝,𝑉𝑖𝑙𝑗𝑒 + 𝑚𝑝,𝑉𝑜𝑙𝑢𝑛𝑑,2 ∙ 𝑘𝑝,𝑉𝑜𝑙𝑢𝑛𝑑  =  𝑚𝑝,𝑟𝑒𝑓,2 

𝑚𝑝,𝐵ø𝑦𝑙𝑎,3 ∙ 𝑘𝑝,𝐵ø𝑦𝑙𝑎 + 𝑚𝑝,𝑉𝑖𝑙𝑗𝑒,3 ∙ 𝑘𝑝,𝑉𝑖𝑙𝑗𝑒 + 𝑚𝑝,𝑉𝑜𝑙𝑢𝑛𝑑,3 ∙ 𝑘𝑝,𝑉𝑜𝑙𝑢𝑛𝑑  =  𝑚𝑝,𝑟𝑒𝑓,3 

(6.4) 

𝑴𝑝

[

𝑚𝑝,𝐵ø𝑦𝑙𝑎,1 𝑚𝑝,𝑉𝑖𝑙𝑗𝑒,1 𝑚𝑝,𝑉𝑜𝑙𝑢𝑛𝑑,1

𝑚𝑝,𝐵ø𝑦𝑙𝑎,2 𝑚𝑝,𝑉𝑖𝑙𝑗𝑒,2 𝑚𝑝,𝑉𝑜𝑙𝑢𝑛𝑑,2

𝑚𝑝,𝐵ø𝑦𝑙𝑎,3 𝑚𝑝,𝑉𝑖𝑙𝑗𝑒,3 𝑚𝑝,𝑉𝑜𝑙𝑢𝑛𝑑,3

]

𝒌𝑝

[

𝑘𝑝,𝐵ø𝑦𝑙𝑎

𝑘𝑝,𝑉𝑖𝑙𝑗𝑒

𝑘𝑝,𝑉𝑜𝑙𝑢𝑛𝑑

]

 
=

𝒎𝑝

[

𝑚𝑝,𝑟𝑒𝑓,1

𝑚𝑝,𝑟𝑒𝑓,2

𝑚𝑝,𝑟𝑒𝑓,3

]
 (6.5) 

𝑴𝑝𝒌𝑝 = 𝒎𝑝 (6.6) 

𝒌𝑝 = 𝑴−1
𝑝𝒎𝑝 (6.7) 

 

6.3.3.2 Defining the general case 

In the general case with as many multiphase streams collecting in our case into one reference 

separator / meter (parallel reference separators is also an opportunity for this method, just 

sum the same phase outlets) 

But consider S number of multiphase streams, with T number of trials, where S and T are 

equal. and a single reference separator. And construct a matrix 𝑴𝑝 of accumulated masses 

(𝑚𝑝ℎ𝑎𝑠𝑒,𝑠𝑡𝑟𝑒𝑎𝑚,𝑡𝑟𝑖𝑎𝑙) of multiphase stream, phase and trial (6.8). A reference vector 𝒎𝑝 of the 

accumulated phases on the separator’s outlets for each of the trials (6.9). (6.10) shows the 

vector 𝐤p of unknown k-factors in a specific phase for each of the multiphase meters. And by 

solving the linear system shown in (6.11) By taking the inverse of the 𝑴𝑝 and dot 

multiplying it with the corresponding reference vector 𝑚𝑝 the resulting 𝐤𝐩 vector of apparent 

k-factors are found (6.12). And it is the same method for each of the phases. 

 

𝑴𝑝 ∈ ℝ𝑇×𝑆 = [

𝑚𝑝,1,1 𝑚𝑝,2,1 ⋯ 𝑚𝑝,𝑆,1

𝑚𝑝,1,2 𝑚𝑝,2,2 ⋯ 𝑚𝑝,𝑆,2

⋮ ⋮ ⋱ ⋮
𝑚𝑝,1,T 𝑚𝑝,2,T ⋯ 𝑚𝑝,𝑆,T

] (6.8) 

𝒎𝑝 ∈ ℝ𝑇 = [

𝑚𝑝,𝑟𝑒𝑓,1

𝑚𝑝,𝑟𝑒𝑓,2

⋮
𝑚𝑝,𝑟𝑒𝑓,𝑇

] (6.9) 



 6 Parallel calibration of multiphase flow meters 

51 

𝐤p ∈ ℝ𝑆 =

[
 
 
 
𝑘𝑝,1

𝑘𝑝,2

⋮
𝑘𝑝,𝑆]

 
 
 

 (6.10) 

𝑴𝑝𝒌𝑝 = 𝒎𝑝 (6.11) 

𝒌𝑝 = 𝑴𝑝
−1𝒎𝑝 , 𝑤ℎ𝑒𝑛 𝑆 = 𝑇 (6.12) 

6.3.3.3 Trials and the cumulative mass matrix 

In order to perform the method Trial of streams with separate time windows and flow rates 

needs to be created.  And each trial must contain a uniqueness to them either by rerouting a 

multiphase stream to another separator or have a variation in flow, either through well test or 

other effects, or physically created by choking the flowline through a choke valve, to create 

information to the measurement matrix 𝑴𝑝 . In order to solve the system of equation the 

measurement matrix 𝑴𝑝 must be a square nonsingular / invertible matrix and have an 

inverse, and if all the trials building the matrix, must complete in a matrix with a rank T. 

In essence the rank of the cumulative mass matrix must be equal to the number of Streams in 

parallel and hence the number of trials T equation (6.13), this is done by splitting each matrix 

row into different time slots called trials, and by ensuring uniqueness in each trial the matrix 

becomes invertible. And that 𝑴𝑝  does not have linearly dependent rows.  

rank( 𝑴𝑝) = 𝑆 = T (6.13) 

6.4 Parallel calibration algorithm 

The algorithm solves the general case for S number of streams and utilizes the collections of 

trials, which is a list of the object orientation of the streams covered in Appendix C. These 

collections of data from each trial time window is synchronized an used to create the matrices 

and vectors for the method. All these synchronized datasets are assessed as runs, and these 

systems of equations are then solved for each synchronized run. And the resulting k-factors 

for each run contains the development of the k-factors across the different elapsed time 

within the timeslots. When these values are stabilized a subset of the stabilized values are 

used for a statistical analysis to assess the stability / random uncertainty of the calibration, in 

order to assess different k-factors. All this is explained in detail in appendix D on the parallel 

calibration algorithm. But in essence Figure 29 shows the essentials of the method solving 

inside the algorithm, but the part where datapoints are synchronized is left out of the figures, 

but the synchronization algorithm uses NumPy’s core for efficient numerical computation, 

which is also mention in Appendix C and shown in Appendix D. 

 



 6 Parallel calibration of multiphase flow meters 

52 

MPM 1 MPM 2 MPM 3 referance

Oil

MPM1 MPM2 MPM3

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

Gas

MPM1 MPM2 MPM3

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

Water

MPM1 MPM2 MPM3

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

K-factors

Run

N

Trial 1
MPM Stream 1

Oil Gas Water

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

MPM Stream 2

Oil Gas Water

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

Separator Streams

Oil Gas Water

0.0
2.0
4.1
6.4

.

.
10482
10490

0.0
2.0
4.1
6.4

.

.
10482
10490

0.0
2.0
4.1
6.4

.

.
10482
10490C

u
m

u
al

ti
ve

 v
a

lu
e

s
Trial 2

MPM Stream 1

Oil Gas Water

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

MPM Stream 3

Oil Gas Water

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

Separator Streams

Oil Gas Water

0.0
2.0
4.1
6.4

.

.
10482
10490

0.0
2.0
4.1
6.4

.

.
10482
10490

0.0
2.0
4.1
6.4

.

.
10482
10490

Trial 3
MPM Stream 2

Oil Gas Water

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

MPM Stream 3

Oil Gas Water

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

Separator Streams

Oil Gas Water

0.0
2.0
4.1
6.4

.

.
10482
10490

0.0
2.0
4.1
6.4

.

.
10482
10490

0.0
2.0
4.1
6.4

.

.
10482
10490

Trials

Oil

Trial 1

Trial 2

Trial 2

0

0

0

Solve System of equations

Gas Water

Solve System of 
equations

Solve System of 
equations

M m M m

Parallel calibration Algorithm

For each run For each run For each run

 

Figure 29 - Inside the algorithm - filling 𝑴𝑝 Matrix and 𝒎𝑝 vector with a 2x2x2 Trial input 

6.4.1 Result and statistical analysis of the calibration method 

When a parallel calibration is performed on the entire data set to provide the result of the 

calibration, the system can look into when the system has achieved a stable k-factor / 

converged to a stable k-factor, a window of samples of stable k-factor values called a 

statistical basis can be used for a statistical analysis of the basis of stabilized values. If there 

are no stabilized / converged values for a stream and phase the calibration is probably not 

successful. 

The result of the k-factor for each phase and stream can be statistically defined as the mean, 

standard deviation and the number of sampled k-factors in the basis, with the random 

uncertainty of the data set as a numerical integration of the normal distribution over the 

confidence interval, coverage factor of 2, as specified by the measurement regulations [11] 

Implemented in the algorithm the initial run of statistics executes a auto detector of a result 

basis for a statistical analysis, looking into the stability and random uncertainty of the 



 6 Parallel calibration of multiphase flow meters 

53 

resulting k-factor, in order to create a initial basis dataset of k-factors as mention above. The 

basis is detected through peaks in squared differences of a squared sum of errors in the k-

factor basis in a given stream, this is implemented as a preliminary, but a manual oversight of 

the selected statistical basis should be used and recalculated with a specified number of k-

factors. Figure 30 show the result of a detected statistical basis with the k-factor development, 

with a histogram of the sample number with a fitted normal distributions density plot, in 

order to assess the resulting basis and that the values are normally distributed. 

 

Figure 30 - Example of detected statistical basis (red) from k-factor development (gray), 

vertical samplel histogram (green) with a normal distrobution probability densityplot (orange) 

6.4.2 Calibration evaluation 

After the calculation of k-factors and the statistics on the stabilized values, a lot of visual 

tools for displaying the result and evaluation of both the raw and calculated values within the 

algorithm. An augmented matrix plot for different states is implemented, for both the 

flowrate, cumulative values and one for the essential intensive variables and the states within 

the separator. This gives an oversight of all essential values and context of the data within the 

algorithm. The augmented matrix plots a plot where each cell within the matrix contain a plot 

specific to the data within the stream and trial. Figure 31 show one of these augmented matrix 

plots created for ensuring the quality of the data, and in the separator conditions on the first 

trial, states of the oil level in the separator and the water cut in the separators oil stream is not 

optimal to assume constant mass in the system and stable conditions. 



 6 Parallel calibration of multiphase flow meters 

54 

 

Figure 31 - Augmented matrix plot of Process conditions during trials, where the x axis is 

successive raw datapoint during the trial, and therefore no numbers. 

6.4.3 Synthesizing data for comparing traditional calibration towards a 
parallel calibration  

To be able to verify the parallel calibration method the result of a traditional calibration is 

used, but in order to perform a parallel calibration on the same data used in traditional 

calibration the one multiphase meter to one separator has to synthesized into a synthetic 

parallel trial dataset. By synchronizing and summing the separator streams to each other 

based on the elapsed time of the accumulation found in the accumulator class, then this can 

elegantly be used as a single trial. Perform the same summation and create the rest of the 

parallel trials and what is left is a synthetic dataset which can be used on a parallel calibration 

method. 

6.5 Executing parallel calibrations 

The parallel calibration algorithm is created to be executed in a interactive python session, 

such as IPython based environments such as Jupyter Notebook. A flowchart with a Jupyter 

notebook code shows the execution of a parallel calibration in Figure 32. Where the 

automatic trial window finder is used, but one trial is changed to cover a three subject streams 

in one trial, also note that the separator stream is the last stream appended to the list. 



 6 Parallel calibration of multiphase flow meters 

55 

Possibility of 
Reorient Trials

Start

Locate timewindows 
for trials

Create and compute 
Trials

Performe Parralell 
Calibration

Performe Automatic 
Statistical analysis

Satisfying result?

Document and adjust 
multi phase meters

End

Manual 
stat. recalculation 

possible?

Adjust data basis for 
the not satisfing 

streams 

Yes

No

Yes

No

Import Python 
libraries

Yes

No

 

Figure 32 - Flow chart and method execution for a 3x2x2 calibration in an IPython 

environment 

 



 7 Results 

56 

7 Results 
This Chapter will go into the result of the calibration methods implemented and calculated 

both in the Traditional and Parallel method. When comparing the parallel calibration method 

towards a known excepted reference, the method used is then to synthetically combine 

traditional calibration sequences into a synthetic parallel calibration dataset. The parallel 

calibration then solves both the traditional data set and the synthetic and then compares this. 

During the time of this thesis there where two datasets of traditional calibration, one in late 

January and one in March and are covert in Appendix E on the January results and Appendix 

F on the April and some of the results will be shown below. And during the march and April 

test of parallel calibration was executed, giving real values and not just synthetic values as in 

the January 2019. The results from this chapter will be discussed in chapter 8. 

7.1 January calibration 

In January a normal calibration was performed on Alvheim and the resulting k-factor 

development of the January calibration is shown in  Figure 33 for Bøyla, Figure 34 for Vilje 

and Figure 35 for Volund, comparing both developments of the traditional and the synthetic 

parallel dataset. And the numerically compared in Table 7.1 which also includes final values 

from real calibration.  

 

Figure 33 - k-factor development of Traditional vs Synthetic Parallel calibration for Bøyla in 

January 2019 



 7 Results 

57 

 

Figure 34 - k-factor development of Traditional vs Synthetic Parallel calibration for Vilje in 

January 2019 

 

Figure 35- k-factor development of traditional vs synthetic Parallel calibration for Volund in 

January 2019 



 7 Results 

58 

 

Table 7.1: Resulting values of traditional and synthetic parallel calibration and the result form the existing fiscal metering calibration system in January 2019 

January 
Calibration 

Phase 
Current 

metering 
system 

Algorithm 

Traditional 
Synthetic 
parallel 

Bøyla 

Oil 0.97919 0.99874 0.99961 

Gas 1.01439 1.0666 1.06667 

Water 0.93353 0.93887 0.9391 

Vilje 

Oil 0.86164 0.88346 0.88274 

Gas 0.96043 0.9665 0.9665 

Water 1.15805 1.20046 1.20056 

Volund 

Oil 0.98797 1.01642 1.01431 

Gas 0.90674 0.92548 0.92536 

Water 1.04478 1.07209 1.07186 

 

Table 7.2: Comparison between traditional and a synthetic 2x2x2 calibration by the calculated algorithm with differences and deviations 

January Calibration Traditional Synthetic Parallel Differences between Synthetic and Traditional (ref) 

Stream Phase mean 
random 

uncertainty 
[%] 

Standard 
deviation 

sample 
size 

mean 
random 

uncertainty 
[%] 

Standard 
deviation 

sample 
size 

deviation 
on k-
factor 

Deviation 
diff rand. 

uncertainty 
stability 

(St.dev-St.dev) 

Bøyla 

Oil 0.99874 0.99 1.42E-03 996 0.99961 0.54 2.59E-03 1060 8.64E-04 0.09% -0.449 0.001 

Gas 1.06660 1.42 9.92E-04 500 1.06667 1.34 1.05E-03 500 7.00E-05 0.01% -0.079 0.000 

Water 0.93887 1.83 7.69E-04 1000 0.93910 1.15 1.22E-03 1500 2.31E-04 0.02% -0.673 0.000 

Volund 

Oil 1.01642 0.33 4.31E-03 1923 1.01431 0.41 3.40E-03 1947 -2.11E-03 -0.21% 0.088 -0.001 

Gas 0.92548 1.41 9.92E-04 1000 0.92536 1.42 9.92E-04 1000 -1.26E-04 -0.01% 0.001 0.000 

Water 1.07209 0.94 1.49E-03 1394 1.07186 0.83 1.70E-03 1327 -2.28E-04 -0.02% -0.117 0.000 

Vilje 

Oil 0.88346 0.23 6.05E-03 958 0.88274 0.20 7.04E-03 935 -7.20E-04 -0.08% -0.032 0.001 

Gas 0.96650 0.57 2.46E-03 1897 0.96650 0.49 2.86E-03 1897 1.00E-06 0.00% -0.080 0.000 

Water 1.20046 0.78 1.79E-03 1122 1.20056 0.78 1.79E-03 1124 1.04E-04 0.01% 0.000 0.000 



 Symbols 

59 

And compared to the real result from the existing system on Alvheim of the Volund results is 

show in Figure 36.  And when it comes to the calculated uncertainty between a synthetic and 

a traditional calibration Table 7.2 goes int to the differences between the a traditional and a 

synthetic parallel calibration execution. 

 

 

Figure 36 - Result comparison of Volund from January calibration trials, where the real 

value, traditional and a synthetic test was performed 

7.2 April calibration results 

An even better test from late March early April where performed, where first a traditional 

calibration was performed and after this a parallel calibration sequence was executed giving 

both a traditional test, with data for both a traditional run with a synthetic combination  and in 

the days after the traditional calibration the parallel calibration could be performed keeping 

the traditional calibration as a benchmark for comparison. And then in late April a new 

parallel calibration was performed. Figure 37, Figure 38 and Figure 39 shows the results as 

point plots for each multiphase stream and is shown numerically in Table 7.3 

 

  

0,88

0,9

0,92

0,94

0,96

0,98

1

1,02

1,04

1,06

1,08

1,1

k-
fa

ct
o

r

Phase

Resuling comparison - Volund january results
Current metering system Traditional Synthetic  parallel

Oil Gas WaterOil Gas Water



 Symbols 

60 

Table 7.3: Resulting values of actual, and the algorithms ,traditional, synthetic parallel and parallel calibration in 

March / April and late April 2019 

Calibration Algorithm 

Time: March / April 2019 27/3 to 29/3 30/3 to 3/4 30/4 to 1/5 

Stream Phase 
Current 
system Traditional 

Synthetic 
parallel 

Parallel 
2x2x2 

Parallel 
3x2x2 

1mnd later 
3x2x2 

Bøyla 

Oil 1.56405 1.59178 1.59117 1.55913 1.62318 1.51129 

Gas 0.90507 0.97910 0.97763 0.98940 1.05450 1.06952 

Water 1.07492 1.09826 1.09789 1.08120 1.00231 1.02029 

Vilje 

Oil 0.82050 0.86202 0.86305 0.78272 0.83145 1.11121 

Gas 0.97801 1.01513 1.01680 0.98864 1.06908 1.08579 

Water 1.13873 1.19756 1.19935 1.24515 1.14677 1.01351 

Volund 

Oil 1.14429 1.15180 1.15164 1.07059 1.03411 1.02004 

Gas 0.90674 0.94987 0.95168 0.97845 0.91330 0.96824 

Water 1.04478 0.98520 0.98450 0.98896 1.08478 0.99176 

 

 

Figure 37 - Result comparison of Bøyla during March/April calibrations 

 

 

 

0,8

0,9

1

1,1

1,2

1,3

1,4

1,5

1,6

1,7

k-
fa

ct
o

r

Phase

Resulting comparison - Bøyla march/april results
Current system Traditional Synthetic  parallel Parallel 2x2x2 Parallel 3x2x2 1mnd later 3x2x2

Oil Gas WaterOil Gas Water



 Symbols 

61 

 

Figure 38 - Result comparison of Volund during March/April calibrations 

 

 

Figure 39 - Result comparison of Vilje during March/April calibrations 

0,8

0,85

0,9

0,95

1

1,05

1,1

1,15

1,2

k-
fa

ct
o

r

Phase

Resulting comparison - Volund march/april results
Current system Traditional Synthetic  parallel Parallel 2x2x2 Parallel 3x2x2 1mnd later 3x2x2

Oil Gas WaterOil Gas Water

0,7

0,8

0,9

1

1,1

1,2

1,3

k-
fa

ct
o

r

Phase

Resulting comparison - Vilje march/april results

Current system Traditional Synthetic  parallel Parallel 2x2x2 Parallel 3x2x2 1mnd later 3x2x2

Oil Gas WaterOil Gas Water



 Symbols 

62 

7.3 Financial gains of using this algorithm 

The primary gains of using the parallel calibration over the traditional method is the reduction 

in production deferrals which is a consequence of the use of the traditional method.  

86.0%

88.0%

90.0%

92.0%

94.0%

96.0%

98.0%

100.0%

0 1 2 3 4 5 6 7 8 9 10

Se
p

ar
at

o
r 

ca
p

ac
it

y 
u

ti
liz

ai
o

n
 o

n
 m

o
n

th
ly

 b
as

is

Number of streams connected to separator

Separator capacity utilization under parallel and traditional calibration
15% of the capacity can be rerouted to other separation unit, and each line have equal capacity 

utilication

Parallel calibration

Traditional calibration

Gain in capacity utilization of separator 
pr numer of streams stream

 

Figure 40 – Qualitative aspects of separator capacity utilization under parallel and traditional 

calibration 

The reduction of capacity utilization of a separator is highly individualized for every single 

input stream, and there can be significant differences between the streams, but Figure 30 

shows a qualitative assessment of the reduction of utilization of the separator, under the 

assessment that every calibration trial takes 12hours for both traditional and parallel 

calibration and that 15% of the capacity of the separator can be rerouted to another separation 

unit and that every month is 30 days. But the main concept that with the use of parallel 

calibration the more multiphase streams are connected to the separator the lower production 

deferral will be, which is the opposite of the traditional method where the more lines are 

connected the higher the production deferrals. In reality the choice of which production lines 

to reroute and which to perform the calibration on can be chosen in order to not affect the 

critical producers or if there are some fields with reservoirs sensitive changes to the field, in 

order to operate the connected licenses in a best possible way. And during the Alvheim late 

march early April 2019 test the production deferrals during traditional calibration where 

9500bbl and deferrals during parallel calibration was 310bbl for the late march early April 

test, and 6200bbl deferrals vs 50bb in the late April calibration which are a significant 

reduction in production deferrals12, which is better than what is expected from the qualitative 

graph in Figure 40. 

                                                 

12 Deferral calculations where based on a “Best day performance” use-case developed inside Aker BP ASA 



 Symbols 

63 

8 Discussion 
This chapter will discuss the content of this thesis and give thoughts of what is achieved both 

in the results created by the algorithm, but more importantly on the development and 

implementation of the method in the algorithm created, the way forward in improving the 

method.  

8.1 Development 

The development of the algorithm is built on layer by layer of abstract function, from the 

accumulator, which is implemented in stream objects where each stream accumulates each 

phase. These stream objects are then collected into collection of trials of the same time 

window. A collection of these trials, which are then used as the basis for a parallel calibration 

routine, that use the stored and aggregated data in each trial and subsequent stream. And 

when everything is object oriented all data is readily available for any type of data analysis. 

Since I am both a user, customer and developer, the software development cycle closed in on 

itself and turned into a rapid evolutionary development method. With regards to the unit 

testing of the data in most of the python scripts created, if the script is run by itself as main, 

then a unit testing algorithm is executed in order to check both the methods and the algorithm 

as a whole, to ensure all methods are working as intended, and to simplify both the 

development and debugging of the software. 

By object orientation of classes and algorithm the resulting system has great usability, and 

transparency both for the execution of the algorithm and further data analysis and 

development. Many of the methods used in the developed algorithm are solved elegantly and 

efficiently, but there is always further use of the NumPy library where more efficient changes 

can be written in the codebase. There is also the opportunity of multithreading when 

executing larger operations encapsulated in object instances for example during the creation 

of the digital representation of the streams. Where all trials can be calculated in parallel. but 

the algorithm performs sufficiently for the execution for the purpose of parallel calibration, 

The operation of synchronizing data of the different streams and trials is solved very 

elegantly and uses the efficiency of the NumPy library to find the closest datapoints to 

calculate against. 

8.1.1 Non-available historical datapoints 

Datapoints of densities for oil, gas and water is missing for the data repository. But pure net 

oil in mass rates are available from the metering system. But the mass flow of gas and water 

on the separator are calculated through a constant density. where the gas stream has a 

constant standard density. But as it is, the line oil stream density can be inferred from looking 

at the volumetric oil stream, water cut as well as the pure oil mass stream. But when this 

codebase is further developed, densities and other rates on the multiphase meters such as 

calculations of GOR and GVF can be included in the multiphase streams, which are meant to 

be placed through the flow weighted average algorithm and reported with the resulting values 

from the algorithm. In order to gauge the k-factor as a function of both the GOR and GVF, 

but this is to be implemented later, but is of a high relevance for a achieving representative k-

factor and provide essential information on the dependencies of the phase fraction as well as 

important with respect to the uncertainty of the measurement at different phase fractional 

flows. 



 Symbols 

64 

8.1.2 Historical logging of each flow computer increments 

Instead of logging values and compressing data in PI, each increment calculated by the flow 

computer should be losslessly stored and made available in the data fusion repository or to be 

executed on the metering SCADA level, for more precise and better data continuity for 

calculations. To have a constant time between each datapoint also opens other opportunities 

and a basis for implementation, more elegant analysis and establishment of a lot better 

calibration characteristics. 

8.1.3 Negligence of physical properties 

There is a lot of physical properties neglected in the implementation in order to achieve a 

workable implementation and to execute and test the parallel calibration methods, this is 

neglecting the 

• water moisture in the gas (the fraction of H2O molecules in the gas) this thesis has 

not looked into the significance of this. 

• Oil in water stream of the separator is not looked into. 

• Injected chemicals into the streams between the topside MPFM and Test Separator, 

since the amount injected during the calculation are neglected during normal 

calibration. 

• The waters streams in both the oil and the water outlet of the separators are in pure 

volumetric line conditions, and there are no calculations done to standardize the 

volumes to standard conditions. 

• On the separator gas stream a constant standard gas density is implemented, and there 

should be looked into a calculation of the density of the gas based on either the 

predicted composition from the PVT model and or calculated through both the 

velocity of sound from the ultrasonic gas flow meter and the oil density, with regards 

to the expected standard gas density at the pressure and temperature conditions at 

each moment.  

8.2 Parallel calibration 

The parallel calibration method can be used on both single-phase calibration and on 

multiphase calibration. For any good calibration of flow meters stable conditions is 

important. If conditions are not stable, then a good calibration is hard to achieve. And when it 

comes to performing a calibration with the use of the algorithm created in this thesis, is very 

simple, as shown in Figure 32. The algorithm gives also great flexibility in both choosing the 

time window, and provide visual diagnostic insight into the data inside the algorithm. One of 

which is the developmental k-factor. Instead of just accumulating and solving the for one 

instance at the end of the dataset, the algorithms solves for the k-factors across the trial 

windows, and through this can provide similar acceptance criteria as is used in the method 

today. The augmented matrix plotting gives great visual insight into all the data fed into the 

algorithm, where the conditions as well as the data integrity is shown clearly. And the 

codebase is ready to have further more intensive properties, when the data is available  in the 

data repository, such as density’s and volumetric phase fractions, and with the flow weighed 

averaging in the accumulator the data will be representable for the entire calibration and be 

helpful in establishing how the calibration on each meter is effected by phase fractions. 



 Symbols 

65 

8.2.1 Trial quality, size and order. 

To be able to minimize the length of the trials, but still have significant data to get a 

representable result, is something to look further into and can further reduce deferred 

production during a trial, where one of the higher flowing streams are deferred or rerouted. 

Look into how smaller variations of flowrates in each trial can be without the matrix going 

singular. An see if well tests and other normal downtime can be used in the creation and 

finding potential trial windows. 

When creating a trial, for the implementation now it is important to have the combination of 

streams consistent, so the streams com in the correct order, but an auto-sorter method will be 

implemented into the algorithm on a later stage.  

8.3 Traditional vs Parallel calibration 

When looking at the difference between traditional and parallel calibration, the reduction in 

production deferrals are a significant benefit for the parallel calibration method, but there are 

other factors as well to take into consideration; Such as that during a parallel calibration a 

more nominal production is occurring, such that that the calibration is performed closer to 

normal operation conditions, and less pressure and temperature difference between the 

multiphase meter and the separator, the flowrates out of the separator are higher which can be 

beneficial for the uncertainty of the measurement. But with the Parallel calibration there is no 

longer a one to one relationship of the measurement, which can cause uncertainty and makes 

the calibration less intuitive and breaks with the established calibration norms that it is based 

on. But then again there are single phase system of master duty meter calibrations where the 

master meter are precise meters connected in parallel which work as the reference, this is of 

course the same here since both the oil and gas streams have two streams each. But on the 

duty meter side having several on calibration at once is thought provoking.  

8.4 The achieved result 

Looking at the January result there is a static deviation which can be a product of the constant 

gas and water density, flashing calculation, or the time window or due to the difference in the 

raw data point resolution. But when looking at how the algorithm produced both the 

traditional result and the synthetic parallel, they overlap extraordinarily well which gives 

great confidence to the method and algorithm.  

Looking at the March and April results there was one trial of the traditional calibration trial 

which had not the best process integrity due to the variation of the oil levels in the separator 

during the trial, that can be a source of uncertainty this is also shown in Figure 31, but both 

the start and the end where stopped on approximately the same level. Additionally, there 

where some non-continuities in the k-factor development that is not investigated to their full 

extent. But for the synthetic and the traditional result they overlap well for this result as well.   

And when it comes to the recalibration in late April the results are as expected, but with a 

slight change to the calibration on the Vilje stream. 

But for both the January and the later test there is a difference of the time windows used 

between the actual system on Alvheim and the algorithm which can also be a source of the 

difference, and also the effect of the flashing calculation, due to when a triple stream or dual 

stream trial is online there is a smaller pressure and temperature difference between the 

multiphase meter and the separator. But the algorithm performs satisfactorily. 



 Symbols 

66 

But looking at the results of the created traditional data set and the synthetic parallel dataset 

which both are based on the same data, the results are satisfying, that the parallel calibration 

method performs to the same or better than a traditional calibration does, when the trials is a 

combination of 2 streams, but when even more streams are in one of the trials . And it is the 

calibration method and algorithm which has been the main point of this thesis, that has the 

simplified flash implemented.  But when a better flashing algorithm is also implemented the 

lower difference between the multiphase meter and the separator conditions should provide 

less flashing and the flow meters on the separators are operating closer to their points of 

higher accuracy and in general the calibration is executed closer to the normal operating 

conditions, than during normal calibration where there are greater pressure and temperature 

differences between the multiphase meter and separator, together with lower flowrates 

through the separator. 

8.5 Uncertainty 

When it comes to quantifying the extended uncertainty of the method in general, this requires 

a competence I do not currently have, since this is a linear combination of several 

accumulated values in a matrix, but if the values accumulated on the single phase system are 

according to the NPD’s regulation, and with regards to these single phase uncertainty, the 

result of the random uncertainty of the k-factors are calculated as a part of the result basis set 

for each phase and stream. And assuming the data is normally distributed as both shown in 

the dual histogram and k-factor development plot and the violin plot the uncertainty is 

established from this with respect to the measurement systems single-phase uncertainty.  

8.5.1 Traditional vs Synthetic parallel calibration 

Comparing the uncertainty between traditional and parallel by looking at differences in the 

January 2019 calibration, the uncertainty between a traditional and parallel calibration 

executed by the algorithm, shows a very small difference in random uncertainty of the result 

and the k-factors produced are very similar as shown in table 7.2, this gives confidence in the 

parallel calibration method. But it is important to root this result on a synthetic combination 

and underlies the assumption that the systems are linear. Proof that the systems are in fact 

linear comes from the April results where the traditional result is compared to the 2x2x2 

parallel calibration executed, where the best result was on the Bøyla stream show in Figure 

37.  

8.5.2 Calibrating closer to normal operating conditions 

Lower pressure and temperature differences between the multiphase meter and the separator 

during parallel calibration due to higher use of the capacity of the separator, this lower 

difference in the process condition lessens the effect of the flashing, and the uncertainty it 

entails. But more importantly the flowrates through the separator is higher and as such the 

single phase measurements can be operated with a flowrate better suited to the turndown13 of 

the meter. 

                                                 

13 Turndown / effective range is a dimensioning figure of the operational area of a flow meter. And is the 

fraction of the maximum flow divided by the minimum flow of the meter can measure within specified 

uncertainty 



 Symbols 

67 

8.5.3 Numerical uncertainty in the parallel calibration method 

From the result of the comparison of the traditional and the synthetic calibration the resulting 

values, both due to the discreet numerical integration of varying time delta, as well as the 

method takes in combinations of several streams at the same time. 

8.5.4 In calculation of flashing 

Until a good flashing algorithm is implemented into the data creation of the multiphase 

streams to do a proper flash of hydrocarbon components within the stream, there will be a 

systematic error of the precision and offset the k-factors calculated, but by implementing a 

well working either through commercially available application or as an algorithm 

implemented within the stream through a petrochemical model or a table lookup of simulated 

data similar, and to also have flashing algorithm which is unique for each stream, since each 

stream have its own composition based, and by having the measured or inferred density’s 

from both the multiphase and the single phase measurement correcting each other can 

provide additional features for this type of data analysis. 

8.5.5 Accumulation quality 

The raw datapoints of mass flow rates accumulated has a varying time between each 

datapoint and having a sufficient density of datapoint for the is worth documenting, this can 

be done by plotting a histogram of the time difference between each datapoint accumulator, 

and due to data compression algorithm on the OSI soft PI system if the values remain stable 

over longer periods a new datapoint may not be available for a longer time period. But by the 

use of the augmented matrix plotter a histogram of the time difference between each 

datapoint can be documented and plotted with a logarithmic y scale to visualize the spread for 

the time differences between the data points.  

8.6 Further work and development 

There is also of more work which can be used with respect to the post calculation of behavior 

multiphase flow streams, but this is just the beginning of using data science and to use the 

data availability which are available now through repositories such as Data Fusion by 

Cognite, this thesis is simply the tip of the iceberg.  

8.6.1 Automatic multi trial combination 

There are T! (Factorial) number of combinations, and the parallel calibration method can be 

done with all these different trial combinations. So for the 3 stream calibration unique trial 

combinations can be executed and matched towards each other on order to increase the 

quality. 

8.6.2 Multi-dimensional multiphase meter calibration characteristic 

To give each phase just a scalar factor for the calibration can be a crude method of calibrating 

complex instruments there could be done a lot of work looking into creating a multi-

dimensional calibration characteristic for the multiphase meters, where there are more 

dependent variables. It is also experienced that the uncertainty of the multiphase meters are 

dependent on the velocities, flow scheme phase fractions in the streams, as covered in earlier 



 Symbols 

68 

chapters. And to take this into account and give a deeper understanding of the meters can 

additionally reduce the uncertainty with regards to the meters in question.  

8.6.3 Increment database in flow computer to CDP 

When it comes to the database which stores the increments in each accumulation all the 

increments for each second would be great if this was opened up to CDP, and with a 

datapoint for each second would open up opportunities to do more in-depth calibration as 

well as being able to verify and parallel calculate rates and do better data analysis with a 

constant iteration time. 

8.6.4 Sliding time-window approach 

The result of the calibration with a sliding window approach would be interesting to see the 

result, this will also give more consideration to the flow weighted average of the different 

fractions at any time during the sliding time window. 

8.6.5 Visualizing the k-factor over runs 

To be able to create the k-factor development over the run time, there are a couple 

approaches to this, the method can scan through all runs at the same time, giving the plots 

such as the result of the synthetic and their by mimic the tradition calibration, or all but one 

trial set can be held constant on a value acceptable accumulated value and vary one trial data. 

Or there can be performed a multi-dimensional calibration creating an 𝑇 × 𝑆  dimensional 

matrix of k-factors which can be visualized in selected ways. But for this thesis the main 

method used is the simultaneous scan over every trial at the same time to mimic the tradition 

result, to have a comparable reference. But there are some further developments that can 

potentially provide some deeper insight.  

8.6.6 Soft-sensor of multiphase meters 

The use of this algorithm and methodology can be used to create an estimator of the k-factor 

through a moving trial window with respect to previous trial. And thus, have a constant 

calculation of k-factors, and if this where to change a new parallel calibration rerouting 

procedure could be executed and give new k-factors. 

8.6.7 Calculate separator streams to multiphase conditions 

In the implemented method, the multiphase meters are flashed to the separator streams. But to 

look into how the single phase separator streams can be back calculated into multiphase 

meter conditions should provide additional insight, the implementation now has the 

comparison done at separator conditions, and it is the multiphase meters which are of interest 

in the calibration. 

8.6.8 Petrochemical calculations program development 

There are many commercially available programs and modeling tools available, but in the 

spirit of data liberation, open source libraries with regards to flow calculations and flashing 

and PVT algorithms is of great interest both for applications and for educational and research 

purposes, which this algorithm can benefit from. 



 Symbols 

69 

8.6.8.1 Flashing and PVT calculation library for python 

Develop Flashing and PVT calculation library for python, to be run inside the multiphase 

streams with given composition and pressure and temp deltas between stream and separator. 

In order to perform a flash to separator conditions.  

Or more advances a compositional calculator based on well test and expected decline curve 

from GOR to be flashed to multiphase meter conditions, and further flashed to separator 

condition, further corrected against the measured oil density and the calculated gas density 

where the differences is taken into account to correct the flashing algorithm. The gas density 

has a possible inference method based on the velocity of sound from the ultrasonic flow 

meter.  

8.6.8.2 Soft-sensor for gas density based on VOS, Temperature pressure and 
assumed composition 

Create an open source soft sensor for density estimation for gas flowrates based on velocity 

of sound.  Velocity of sound is easily gotten through ultrasonic flow meters, which are 

frequently used on hydrocarbon gas streams in both wet- and dry-gas application. These 

ultrasonic flow meters in addition to the fluid velocity and profile. Also give out the velocity 

of sound through the gas media, and the velocity of sound together with temperature and 

pressure and an initial guess of the composition can be used to infer the composition and 

through the composition the standard density of the gas. 

8.6.9 Digital twin giving further insight than planned 

When development of the algorithm, the approach of creating a numerical digital 

representation of the streams in the calibration system has revealed further insight and 

opportunities than just the parallel calibration. When the code is structured in a physical 

object-oriented way, it enabled newer insight into checking the state of the k-factors by using 

the same trial vectors in another way to ensure that the mass balance of the system is intact 

and their by alternative insight into. And this gives then a “free” soft sensor of the health of 

the k-factors for the MPFMs in question. 

Developing the software and calculations used inside the digital twin is also a very good 

method of familiarizing yourself with the system and the data you are working with, 

development of this kind of software for training purposes should provide benefits for 

engineers and technicians working with the system to gain a more in-depth understanding as 

well as opening up for more creative problem-solving and data analysis. 

8.6.9.1 Calibration by difference 

During the development of the parallel calibration algorithm a new multiphase meter on the 

Bøyla flow line was installed, it was change from a separate brand to a MPM Multi phase 

meter, during the initial flows on the meter there where processes issues that prevented a 

normal calibration to be performed, but the k factors for the other streams (Vilje and Volund 

stream) was established and stable and with the use of the single trial calculations of the 

streams the apparent k-factor for the new Bøyla MPFM was established with little to no 

change in the code. By rearranging the equation from (6.2) to the equation (8.1).  

𝑘𝑝,𝐵ø𝑦𝑙𝑎 = 
(𝑚𝑝,𝑟𝑒𝑓 − [𝑚𝑝,𝑉𝑖𝑙𝑗𝑒 ∙ 𝑘𝑝,𝑉𝑖𝑙𝑗𝑒 + 𝑚𝑝,𝑉𝑜𝑙𝑢𝑛𝑑 ∙ 𝑘𝑝,𝑉𝑜𝑙𝑢𝑛𝑑])

𝑚𝑝,𝐵ø𝑦𝑙𝑎
 (8.1) 



 Symbols 

70 

8.7 Proposal for new structure for parallel calibration 

Although this algorithm has been tested with 3 multiphase inlet streams the mathematics are 

the same with more that 3 streams, this will also entail more trial combinations, but all 

information indicate that it is a possible solution for the future, if a production hub is 

connected to many fields. But to have a smaller separator for a one to one relationship is also 

an opportunity, but to use bigger main separators for proper separation of the liquid phases 

can be beneficial. But a proposal is shown in Figure 41 if the parallel calibration method is 

used. 

Oil

Water

Oil

Water

Gas processing

MM

M

Produced 
water 

treatment

2. stage separator

M
MPFM

M
MPFM

M
MPFM

M
MPFM

Inline 
separator 

unit

Liquid 

Gas

Calibration header

Production 
Header

1. stage separator

Gas processing

3rd party streams

Oil to 
storage / export

-Centripedal
-Kinetic

 

Figure 41 - New structure for parallel calibration concept 

 



 Symbols 

71 

9 Conclusion 
The use of data science on industrial data in the manner done in this thesis shows the great 

opportunities which digitalization can achieve through liberation and contextualization of data. 

The algorithm developed here can be of great benefit when it comes to the use of existing 

processing and transport infrastructure through the third-party access focus in the maturing 

parts of the Norwegian continental shelf. I feel this is just the tip of the iceberg of additional 

benefits and insight through data science on historical and real-time data streaming from the 

asset intensive industries.  

This thesis provides details about the purpose and technical aspects of sensors and equipment, 

used in both single and multiphase allocation measurements of oil and gas. An algorithm 

solving a parallel calibration of multiphase meters has been developed, with implemented 

quality assurance aspects of the data used and calculated, addressing both the process 

conditions, data integrity and the random uncertainty of the result. The calibration uses real 

data from Aker BP-operated Alvheim and executes both actual and synthetic calibrations. The 

result of several calibrations is discussed in detail. Including the methods and their compared 

results and uncertainties. The assumptions of the method concerning the mass balance of the 

system, and the proportionality between single and multiphase, seem to hold its ground 

empirically. When it comes to statistical basis and assumption that stabilized values are 

normally distributed, this seems also to hold for the calibration where a stable result is achieved. 

Future work and development of the method and algorithm are also discussed in detail.  

The effects of using this algorithm compared to the traditional provide a significant reduction 

in production deferrals, to the point where the deferrals are almost non-noticeable from normal 

production, which has a significant economic effect. And the result from the calibrations 

performed in the start and end of April 2019 had a reduction of above 15000bbl of oil. With a 

assumed realized oil price of 70 USD/bbl14 and an exchange rate of 8.7 USD/NOK15 equates 

to above 9 million Norwegian Krones over the course of one month. An additional benefit is 

that the code developed during this thesis provide the opportunity to analyze the health of the 

multiphase meters, and gives grounds for a more condition based monitoring of the multiphase 

meters and potentially increasing the time between calibrations, or by increasing the accuracy 

by addressing the need for a calibration at an earlier stage. With the future plans on Alvheim 

to potentially tie back more fields, then this calibration method has an even bigger potential in 

reduction in production deferrals. The algorithm is implemented with this in focus and solves 

a general case, with as many streams as the user can physically have installed, meaning the 

algorithm is scalable. The code is also highly portable and can run on a metering SCADA level 

with a minimal amount of extra code during implementation. 

A new algorithm has been created in this thesis with a new way of looking at utilization of 

stored and streaming industrial data. And I’m quite proud of what has been achieved in this 

thesis, in the last 4 months. And with a fulltime job at the same time as I’ve created the 

algorithm and written this thesis shows the power of digitalization. 

 

 

                                                 

14 In April 2019 the Brent Oil Spot price was around 70 USD/bbl.  

15 the exchange rate of US dollar to Norwegian kroner 12/05-2019 



 References 

72 

References 
 

[1]  A. B. ASA, "Aker BP ASA," Aker BP ASA, [Online]. Available: 

https://www.akerbp.com/. [Accessed 11 05 2019]. 

[2]  A. ASA, "Aker ASA," Aker ASA, [Online]. Available: https://www.akerasa.com/. 

[Accessed 11 05 2019]. 

[3]  C. AS, "Cognite," [Online]. Available: https://cognite.com/. [Accessed 11 05 2019]. 

[4]  A. B. ASA, "Alvheim," [Online]. Available: 

https://www.akerbp.com/produksjon/alvheim/. [Accessed 11 05 2019]. 

[5]  M. o. P. a. E. a. N. P. Directorate, "EXPLORATION POLICY - NEW DISCOVERIES 

– EFFECTIVE USE OF INFRASTRUCTURE," 29 04 2019. [Online]. Available: 

https://www.norskpetroleum.no/en/exploration/exploration-policy/#effective-use-of-

infrastructure. 

[6]  P. S. Foundation, "Python Software Foundation," Python Software Foundation, 

[Online]. Available: https://www.python.org/. [Accessed 11 05 2019]. 

[7]  M. o. p. a. E. a. N. P. Directorate, "norways petroleum history," 29 04 2019. [Online]. 

Available: https://www.norskpetroleum.no/en/framework/norways-petroleum-history. 

[8]  N. government, "Norway’s oil history in 5 minutes," 29 04 2019. [Online]. Available: 

https://www.regjeringen.no/en/topics/energy/oil-and-gas/norways-oil-history-in-5-

minutes/id440538/. 

[9]  T. N. P. Directorate, "About us," 19 04 2019. [Online]. Available: 

https://www.npd.no/en/About-us/. 

[10]  M. R. B. CURTIS H. WHITSON, PHASE BEHAVIOR, Richardson, Texas: Society of 

Petroleum Engineers Inc and U. Trondheim, NTH., 2000.  

[11]  N. P. Directorate, "The measurment regulation / Måleforskriften - Regulations relating 

to measurment of petroleum for fiscal purposes and for calculation of CO2-tax," 2001. 

[12]  M. o. P. a. Energy, "Regulations relating to the use of facilities use by others," 2016. 

[Online]. Available: https://www.npd.no/en/regulations/regulations/facilities-use-by-

others/. [Accessed 03 05 2019]. 

[13]  S. H. Gustasven, "Expansion of test facility for flow measurement on drilling fluid - 

Appendix AA - Basic concepts of fluid dynamics and rheology," Telemark University 

College; Faculty of Technology, Porsgrunn, 2015. 

[14]  S. Corneliussen, , J.-P. Couput, E. Dahl, E. Dykesteen, K.-E. Frøysa, E. Malde, H. 

Moestue, P. O. Moksnes, L. Scheers and H. Tunheim, HANDBOOK OF 

MULTIPHASE FLOW METERING - ISBN 82-91341-89-3, Oslo: The Norwegian 



 References 

73 

Society for Oil and Gas Measurement, The Norwegian Society of Chartered Technical 

and Scientific Professionals, 2005.  

[15]  TechnipFMC, "MPM – White Paper 00 - How The MPM Meter Works," TechnipFMC, 

2017. 

[16]  E. Dahl, E. Dykesteen, E. Jacobsen, E. Malde, F. Flåten, H. Tunheim, M. Brandt, R. 

Albrechtsen, O. Albrechtsen, O. Vikingstad, S. E. Corneliussen and T. Hjorteland, 

Handbook of Water Fraction Metering, Oslo: Norwegian Society for Oil and Gas 

Measurement, 2004.  

[17]  Ø. L. B. Arnstein Wee, "In-Situ Measurement of Fluid Properties and Integrity 

Verification for Multiphase and Wet Gas Metering Applications," North Sea Flow 

Measurement Workshop, 2010. 

[18]  N. s. f. o. a. g. measurment, "Handbooks and uncertainty programs," [Online]. 

Available: https://nfogm.no/handbooks-and-uncertainty-programs/. [Accessed 29 04 

2019]. 

[19]  N. i. o. S. a. technology, "SI redefinition - Kilogram: The Kibble Balance," [Online]. 

Available: https://www.nist.gov/si-redefinition/kilogram-kibble-balance. [Accessed 30 

04 2019]. 

[20]  Justervesenet, "Det nye SI-systemet trer i kraft 20. mai 2019," [Online]. Available: 

https://www.justervesenet.no/det-nye-si-systemet-trer-i-kraft-pa-verdens-metrologidag-

20-mai-2019/. [Accessed 19 04 2019]. 

 

 

 



 Appendices 

74 

Appendices 
 

Appendix A < Task Description, WBS and GANTT> 

Appendix B <Non-public documents> 

Appendix C <Digital Representation of fluid streams>  

Appendix D <Parallel calibrations algorithm>  

Appendix E <Calibration execution and result January>  

Appendix F <Calibration execution and result April>  

 

 

 

 

 



 1 Appendix A – Task Description, WBS and GANTT 

1 Appendix A – Task Description, 
WBS and GANTT 

 



 1 Appendix A – Task Description, WBS and GANTT 

Contents 
 

1 Appendix A – Task Description, WBS and GANTT ..........................................  

2 Thesis Task .........................................................................................................  

3 WBS......................................................................................................................  

4 GANTT ..................................................................................................................  

 

  



 2 Thesis Task 

2 Thesis Task 





 3 WBS 

3 WBS 



Appendix <A>
Master Thesis – Stig Harald Gustavsen

Measurment 
princples

Calibration 
method

Theory and 
introduction 

Program the 
algorithm

Multi phase meters

Production , 
Equipment and 

Systems

Test the algorithm 
on Received data

Discuss and 
develop a real 

implementation of 
the system

Economics and 
benefits for the 

method

Separator measurment

-Separator conditions
-Oil Stream measurments
-Gas Stream measurments
-Water Stram measurments

-Density
-Tomography
-Phase Fractions
-Sensors

Acumulation 
and cumulative 
measurments

Test Method

Report

-Running 3 uniq tests
-Solve by post-process data 
collected from 3 uniq stream 
combinations of data gathering

Dicussion

Measured 
Condition and 

changes

Differnet conditions 
at MPFM and 

Separator

How to change the 
conditions from MPFM 
conditions to Separator 

conditions

 Thesis M.Sc
«Parralell calibration of MPFM with 

separator measurments as refreance»

- Purpose
- Numeric  methods

Uncertanty

Benefit of topside 
MPFM for Allocation

Invoved process 
equipment

-Separator
-Valves, Headers
-Chemical injection

-Oil and Gas in general
-Field ownership
-Fiscal and Allocation measurments
-Why Parralell calibration

Mathematical 
derivation of 

Method

- Derive the equations 
of the proposed method

-Fluid Behavior in general
-Mass fraction from oil to gas 
due to separator flashing
-Adress Pressure, Volume 
temperatur changes (PVT)

Discuss 
implementation

Discuss the dataset 
used

-Vary sample size Calibration or 
Verification

Discuss the result

Work Breakdown Structure

Machinlearning 
opertunities

Futher work

Write about 
everything in the 

WBS

Conclution

Compair to 
traditional 
calibration



 4 GANTT 

4 GANTT 
 

 

 

 

 

 

 



Januar Mars April

WBS / GANT

Mathematical 
derivation

Develop algorithm Test method on data

Test 

Measurment conditions and changes

Writing the Thesis 

Master Thesis 2018  
«Parralell calibration of MPFM with separator measurments as refreance»

Theory

Application

Academic / Byrocratic

Task category

Economic benefits of proposing this 
method

Master Thesis
Appendix <B>

Stig Harald Gustavsen

Februar Mai

Presentation

Deadline for 
submitting 

the final topic

14 may 
submission

UncertantyMeasurment principles

Acumulation and 
cumulative 

measurments

Discussion

Thesis report finalizationDeliver final thesis topic



  Appendix C – Digital Representation of fluid streams 

1 

 

1 Appendix C – Digital 
Representation of fluid streams 

 



  Appendix C – Digital Representation of fluid streams 

2 

 

Contents 
The content of this appendix will go into the technical details about the software development 

of this thesis and go into detail implementations of the digital twins of streams and the 

calculations used to create these digital representations of the state’s important and to prepare 

and prepare and have all data needed for further processing in the calibration algorithm 

created in this thesis. But first the raw data from the sensors through the Cognite Data Fusion 

repository needs to be processed and prepared for further use. First it will describe the 

accumulation which occurs on every single-phase stream rate and the go into the details 

concerning the multi-phase and separator streams, and the calculations performed inside these 

instantiated objects. 

 

1 Appendix C – Digital Representation of fluid streams ................................... 1 

2 Software development ...................................................................................... 3 

2.1 Python framework ................................................................................................................... 3 
2.1.1 Code and calculation execution efficiency .................................................................. 3 

2.2 Cognite Data Fusion ............................................................................................................... 3 
2.2.1 Datapoints, timestamps and time series data .............................................................. 4 

2.3 Applied calculations ............................................................................................................... 4 
2.3.1 Calculating towards the closes datapoint .................................................................... 4 

2.4 Unit testing .............................................................................................................................. 4 

3 Accumulator ...................................................................................................... 5 

3.1.1 The flow weighted average (FWA) ................................................................................. 6 

4 Streams .............................................................................................................. 7 

4.1 Multi-phase streams ............................................................................................................... 7 
4.2 Separators Streams ................................................................................................................ 8 
4.3 Trial creation and object orientation ................................................................................... 10 
4.4 Datapoints toolbox ............................................................................................................... 12 
4.5 Trial time window locator ..................................................................................................... 12 

5 Source code – Accumulator ........................................................................... 14 

6 Source code – Streams .................................................................................. 18 

7 Source code – Datapoint toolbox .................................................................. 22 

8 Source code – Time Window locator ............................................................. 25 

 

  



  Software development 

3 

 

2 Software development 
In general, the development of the software methodology of the software in this thesis has 

been in a evolutionary method. And has started from the lowest functional abstraction which 

in this case is the accumulator. The general-purpose accumulator was created, and then this 

was used as a crucial building block of the stream’s classes. And then the streams 

abstractions were used as a comprehensive and object-oriented data basis for the data analysis 

and calculations carried out in the parallel calibration algorithm. This Appendix will go into 

details.  

2.1 Python framework 

The entire codebase developed for this thesis in the python language, with sensor / timeseries 

datapoints from the Cognite python SDK1  Data manipulations and calculations where done 

with Pandas2, NumPy and the non-linear solver also used Scipy3.  

2.1.1 Code and calculation execution efficiency 

Pure Python is a dynamically typed programming language, where the entire execution 

framework is working on a high abstraction layer, which makes it easy to type compared to 

the compiled language, but being a dynamically typed language comes with a cost in 

execution time and the computational resource usage, where the memory allocation is 

distributed over the entire working memory of the computer, this causes higher strain on the 

computer when looping through data to when it comes to executing calculations. There are 

frameworks used which tries to reduce the resource needed for calculations, by taking the 

calculation down to a lower computational level, this is where the python library NumPy 

comes in. The calculation core of the NumPy library is written in C; with efficient memory 

allocation and execution reducing the calculation time of, C is a compiled language, with the 

calculation execution running close to the hardware with efficient memory allocation, and the 

ability to vectorize the data into NumPy vectors and or matrices, and using techniques for 

linear algebra to execute code to a much higher degree of efficiency than the dynamically 

typed language Python. The core of NumPy is also implemented into Pandas library used to 

develop the algorithms, by simplifying data manipulations and present the resulting values 

for further processing or display. But back to computational efficiency, there is though cases 

where the loops and algorithms cannot be vectorizes where the efficiency of the algorithms is 

crucial and a potential for the use of Numba and JIT4.  

2.2 Cognite Data Fusion 

Aker BP ASA uses a data repository from Cognite AS called Cognite Data Fusion, for a lot 

of their digitalization projects, and the CDF is a data repository containing the real-time and 

                                                 

1 Source code for Cognite Python SDK at: https://github.com/cognitedata/cognite-sdk-python 

2 More information about the data analysis tool pandas on https://pandas.pydata.org/ 

3 Information about NumPy and SciPy can be found in https://docs.scipy.org/doc/ 

4 Numba with the JIT compiler which can aid in reduction of execution time. And it is also great to be able to 

execute the algorithm in real-time, but Numba and JIT has not been used but still mentioned due to possible 

future use. http://numba.pydata.org/ 



  Software development 

4 

 

historical datapoints from the majority of the sensors and aggregate data used to develop the 

both the traditional method as well as the parallel calibration method. The data form CDF is 

received through their Python SDK, which is open source and available on the package 

manager for Python packages PIP, and the source code for the SDK is available on a Public 

GitHub. 

2.2.1 Datapoints, timestamps and time series data 

The application uses the Cognite Data Fusion as a single source for the timeseries data points 

used for all the calculations. Data Fusion gets the timeseries datapoints form the OsiSoft 

Process Information (PI) server, and PI has compression algorithm activated on the tags used 

in this thesis, which only stores new datapoints if it changes more than a certain amount, 

which intern causes the time between the datapoints received to vary. 

The timeseries data can be received form the Data Fusion repository in both as raw datapoints 

or as an aggregated for of datapoint such as the average, min or max value during a time 

granularity. But the raw datapoints can vary with the timestamps. And in AkerBP’s case it is 

the PI by OSIsoft system that work as the repository that Data Fusion collects it timeseries 

data from. But if an aggregate function which are simpler to work with, where timestamps are 

indexed toward each other through a granularity property for simpler operations on the data. 

But the data operations in this thesis will not be working with the aggregate time series, but 

on the raw datapoints from the Data Fusion where each value comes with a unique timestamp 

for that specific value, and other operations has to be done to find the closest other datapoint 

in order to perform a real-time calculation, but all calculations where done on “real” raw 

datapoints with a varying time between each sample.  

2.3 Applied calculations 

When it comes to applying calculations where the timestamps are not necessarily the same, 

and the operations of synchronizing timestamps of the data. Calculations on the Oil stream 

and water in oil stream are calculated on the same timescale, and the water outlet is 

calculated on their own term and united on the aggregate accumulated level, this is to 

simplify the level of the data, because it is a more elegant solution to synchronize the 

aggregated data, and not implement the calculation on the accumulators increment level. 

2.3.1 Calculating towards the closes datapoint 

The way it finds the closes data point to a given timestamp is by detecting slope change in the 

following function where there are two datapoint series the main with n datapoints and 

timestamps the other with m timestamps.  

2.4 Unit testing 

When it comes to testing and unit-testing of the software the main functions as a standard has 

implemented a simple testing procedure at the end of the related code segment, which is 

executed if the only the related code is executed as main. 



  Accumulator 

5 

 

3 Accumulator 
The main function of all the different phase streams is the individual accumulation of flow 

rates for each given phase, in both multi-phase streams and in separator streams. The 

principle of accumulation of flow and why is described in the main thesis but in this appendix 

will dive into the actual implementation and code where this is performed. The accumulator 

has been structured and object oriented in order to perform the same code on each of the 

phases, so if the integration method used in the algorithm has to change there is only one 

place this needs to change.  But this core feature of the digital representation of the streams 

within a time window is also executed in python through Pandas and NumPy libraries, and all 

the values for each of the timesteps between each datapoint, and each increment are all stored 

an available for any purpose. But in general the accumulator takes in a pandas data frame of 

timestamps and raw datapoint values form the Cognite data fusion repository and first creates 

a row of  time deltas between each of the timestamps, the timestamps for each the datapoints 

are in a Unix timestamp format in milliseconds resolution, so to get the time deltas (dt / ∆𝑡𝑛) 

in second, the time differences are multiplied by 1000, in order to get the values in seconds. 

The raw values in to the accumulator needs to be in rates pr hour, and the accumulator then 

creats an pr second rate (PrSecRate / 𝑚̇𝑛) where the raw flow rate value in pr hour is divided 

by a 3600.  This pr second rate (𝑚̇𝑛) and time delta (dt /∆𝑡𝑛 ) is coped to a normal NumPy 

array and forms the data used for in the numerical integration.  

𝑚𝑛 = ∑[𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑛] 

𝑇

𝑛=1

= ∑ [
𝑚̇𝑛−1 + 𝑚̇𝑛

2
∙ ∆𝑡𝑛] 

𝑇

𝑛=1

= ∑ [
𝑚̇𝑛−1 + 𝑚̇𝑛

2
∙ {𝑡𝑛 − 𝑡𝑛−1}]

𝑇

𝑛=1

 (3.1) 

The numerical integration implemented in the accumulator class is the trapezoidal method, 

shown in equation (1.1), the reason why use the trapezoidal method is that through a simple 

trick removes numerical voids occurring between each datapoint which is by taking the mean 

of two datapoints and using this as mean value as a trapezoid between the data points, when 

there is assumed that there is an analog decline or increase between each value, as 

qualitatively described in Figure 1. 

 

 

Figure 1 – Qualitative description of increments between midpoint and trapezoidal numerical 

integration method  

All values calculated by the numerical integration method together with increments, time 

deltas, and the elapsed time of the accumulation, which is the cumulative sum of the time 

deltas are then collected into a the same data frame and stored to the instantiated object, 



  Accumulator 

6 

 

Figure 2 shows a portion of such a data frame . It is also worth noticing that later in the more 

abstract stream classes some accumulators are added together, and this operation is 

synchronized through the elapsed time of the accumulator and is also used in the creation of a 

synthetic data set for comparison between traditional and parallel calibration. 

 

 

Figure 2 – The head of Pandas Data frame of an implemented Accumulator object. 

3.1.1 The flow weighted average (FWA) 

The accumulator class also have implemented a flow weighted average algorithm for creating 

flow weighted average representations of the intensive variables for the system. This is used 

when there are intensive variable or any other property that change with the process 

conditions, and in order to have a representative value of such a variable for a batch within 

the accumulator the value has to be weighted and averaged across the timespan of the 

measurement. Which is done by the formulas described beneath, where (3.2) is the analytical 

case, and (3.3) is in the discrete form and implementable. But in essence the flow weighting 

is done through multiplying the variable of interest 𝑥𝑖(𝑡) is the index i of the value in 

question such as the fraction of a component, and t is the time at which the measurement is 

done and the other figures are the mass flowrates, and thus it is the mass-flow weighted 

average calculated for the specific variable𝑥𝑖 during the time window T. 

𝐹𝑊𝐴 = 𝑥̅𝑖 =
∫

𝑇
{
𝑑𝑚(𝑡)

𝑑𝑡
𝑥𝑖(𝑡)𝑑𝑡}

∫
𝑇

{
𝑑𝑚(𝑡)

𝑑𝑡
𝑑𝑡}

 (3.2) 

𝐹𝑊𝐴 = x̅𝑛
𝑖 =

∑ {𝑚̇𝑛x𝑛
𝑖 Δ𝑡𝑛}𝑇

𝑛=𝑜

∑ {𝑚̇𝑛Δt𝑛}𝑇
𝑛=𝑜

 (3.3) 



  Streams 

7 

 

4 Streams 
When it comes to the fitting of the raw data to a data set the correct tags and calculations are 

needed which can be unique for each implementation of the algorithm. But for the time being 

on the Alvheim field, from the information which is available in the Cognite data fusion 

repository, and with more information and better flashing algorithms the only place needed to 

do any changes to the flashing algorithm or performing any other calculations are done within 

these derived streams classes.  

4.1 Multi-phase streams 

By having an abstract understanding of the functions of the different equipment involved in 

the execution of multiphase meter calibration an important abstraction is to see where 

physical functions are used more than once. And a multiphase meter is something which can 

occur many times in the system in question.  

Digital Multi-phase Stream Twin

FQI

Oil Water Gas

FQI FQI FQI

MPFM PM  /
 Flow Computer

XT

DT

TE

PT

TT

Tomography

Gamma density

Ventri FT

DX

XE

FI FI FI

FE

DE

Temperatur

Pressure

Oil Water Gas

-GVF
-WLR
-Volume rates
-Mass rates

FTX

Multiphase 
stream

FQIFQIFQI

Multi-phase 
meter

 

Figure 3 - Simplified conceptualization of the data within the multi-phase stream digital twin 



  Streams 

8 

 

When it comes to the creation of a multiphase stream object in the constructor of the class the 

following operations are performed as shown in Figure 4; the first operation is to get the 

datapoints form CDP, these are in the unit tons/h, which is divided by 1000 to get the rates 

into kg pr hour, and from this point both the gas and water mass rates are accumulated. But 

the oil has a simplified flash calculation where a mass fraction of the oil is split form the oil 

mass stream, and called gas in oil (gio), this gas is then accumulated and added to the 

accumulated gas, to form the gas at separator conditions. The rest of the oil mass rate after 

the gas portion is removed is accumulated just as the other phases. Figure 5 shows a table 

from a process simulator simulating flashing with different pressures at multi-phase meter 

and separator conditions, the rest of the results are in the appendix of collection of non-public 

documents. 

MPFM Mass rate Gas  
[Tonn/h]?

Gas oultet stream 
[Kg/h]Multiply times 1000 

Tonn/h to kg/h

Accumulate gas from 
gass-mass-stream [kg]

MPFM Mass rate Oil  
[Tonn/h]?

Oil oultet stream 
[Kg/h]

Multiply times 1000 
Tonn/h to kg/h

Accumulated Oil 
from MPFM [kg]

at Separator 
Conditions

Simplified Flash
(Gas in Oil) 

2wht% of oil 
becomes gas

Gas in oil
[kg/h]

0.02*OilRate

(1-0.02)*OilRate

Accumulate Gas in oil 
from GiO-mass-

stream [kg]

Syncronize and Add 
Accumulated Gas and 

GiO streams

MPFM Mass rate 
Water  [Tonn/h]?

Water oultet stream 
[Kg/h]Multiply times 1000 

Tonn/h to kg/h

Accumulated water 
form MPFM [kg]

Accumulated 
gas MPFM [kg]
At Separator 
Conditions

Get MPFM stream to 
separator conditions

Acumulate oil in 
MPFM Stream [kg]

Acumulate water in 
MPFM Stream [kg]

 

Figure 4 - Multi phase stream calculation flow 

 

Figure 5 - Flashing pressure sensitivity 

4.2 Separators Streams 

The multiphase stream object considers the influent streams, but the single-phase effluent 

streams are also a crucial part of the data required to perform a calibration.  



  Streams 

9 

 

Turbinemeter

PT

TW

TE TE

TT

FE

FTK-factor 

FQI

DT

PT

FQI FQI

FI

Oil Flow Computer

FI

Sample point

TW

TT

TE TE

FI

TE

DI

DE
PT

Calibration 
Caracteristic

K1,K2,K3,K18,K 19, 
P0, T0

Digital Separator Stream Twin

FQI

Oil Water Gas

FQI

Ultrasonic

PT

TW

TE TE

TT

FT
PT

FQI

FI

Gas Flow Computer

FI

FE

FT

FE

Electromagnetic

Water Stream Gas StreamOil Stream

Constant Density

Water Flow 
Computer

Std. Dens ity 
from 

compos ition

FQI

FQI

FI

FQI FQI FQI FQI

 

Figure 6 – Simplified conceptualization of the data within the Separator stream digital twin 

The separator streams from the data located form the data fusion repository is the standard 

volumetric flow of gas, the volumetric and mass flow of oil, the volumetric water in oil 

fraction (water cut) and the volume flow of produced water, at the time of the creation of this 

method only these values are available, and to be able to convert the volumetric gas flow in to 

a mass flow an standard density of the gas has to be assumed based. And there is also an 

addition of the water in the oil stream (wio) this is found through the volumetric flow of oil 

multiplied by the measured volumetric water cut at each instance. Which forms the 

volumetric water in oil stream this intern like the volumetric water stream is multiplied with a 

constant density based on laboratory values. These two water streams are accumulated by 

them self, and added together afterwards. But luckily the available oil mass stream of pure oil 

is available, and the only conversion done is a multiplication of a thousand go change the unit 

from ton/hour to kg/hour 

 



  Streams 

10 

 

Volumetric Oil 
outlet stream 

[m³/h]

Water cut
[vol%]

Oil stream [m³/h]

Water from oil stream 
[m³/h]

OilFlow*(1-wc)

OilFlow*(wc)

Water from oil stream 
[kg/h]

Multipy times constant water density

Accumulate water 
from oil stream [kg]

water oultet stream 
[m³/h]

Accumulate water 
from oil stream [kg]

Water from oil stream 
[kg/h]

Multipy times constant density

Syncronize and add 
cumulative 

waterstreams 

Accumulated 
waterstream [kg]

Gas outlet stream
Std.vol-rate
  [KSm³/h]?

Gas oultet stream 
[Kg/h]?

Assume constant density
Since density is not available

0.920 kg/Sm³

Accumulate gas from 
gass-mass-stream [kg]

Pure oil stream
[ton/h]

Pure oil stream
[kg/h]

Multipy times 1000 
to get kg not tonnes

Accumulate oil mass 
streams [kg]

Volumetric OilInOil rates not 
used but availbale inside the 

Separator stream object

Find closest

Accumulated oil mass 
streams [kg]

Accumulated gas 
mass streams [kg]

Calculated by central 
machine (CM) in Metering 

system

Calculated by central 
machine (CM) in Metering 

system

Calculated by central 
machine (CM) in Metering 

system

 

Figure 7 - Separator stream calculation flow 

 

4.3 Trial creation and object orientation 

A overview of the classes created is shown in the class diagram in Figure 8, and a typical 

instantiation of objects form the classes is shown in the object diagram in Figure 9. And the 

most essential data set in a structure of a trial is shown in Figure 10. 

Stream

- OilMass
- GasMass
- WtrMass

MultiphaseStream SeparatorStream

Accumulator

FWA

 

 

 

 



  Streams 

11 

 

 

 

 

 

 

 

Figure 8 - Class diagram 

 

 

Bøyla:
MultiphaseStream:Stream

Separator: 
SeparatorStream:Stream

OilMass:Accumulator

GasMass:Accumulator

WtrMass:Accumulator

Vilje:
MultiphaseStream:Stream

Volund:
MultiphaseStream:Stream

OilMass:Accumulator

GasMass:Accumulator

WtrMass:Accumulator

OilMass:Accumulator

GasMass:Accumulator

WtrMass:Accumulator

OilMass:Accumulator

GasMass:Accumulator

WtrMass:Accumulator

Streams:List[]

Last Indexed stream is the refreance 
stream (SeparatorStream)

 

Figure 9 – Typical use of a list of instantiated stream objects in a Object diagram 

 

 

 



  Streams 

12 

 

Trial
Vilje

Oil Gas Water

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

Volund

Oil Gas Water

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

Separator Streams

Oil Gas Water

0.0
2.0
4.1
6.4

.

.
10482
10490

0.0
2.0
4.1
6.4

.

.
10482
10490

0.0
2.0
4.1
6.4

.

.
10482
10490C

u
m

u
al

ti
ve

 v
a

lu
e

s

 

Figure 10 - Example of how cumulative values are set up within a list of streams 

 

4.4 Datapoints toolbox 

In the development and testing of code, some of the methods of a more static nature towards 

calculations of values, indexing / synchronizing datapoints where made and set into its own 

python file5 called Datapoints toolbox and contain more general-purpose static methods used 

by the classes, and also contain code towards the initial testing and creating own traditional 

calibration method. 

4.5 Trial time window locator 

There is also a Trial time windows locator which has as an input a search area which is the 

days where a calibration was performed, then it gets the datapoints from the limit-switches on 

valves that redirects flow either to the third party separator or to the Alvheim inlet separator. 

And through basic operations on the received dataframe a time windows for each of the 

located streams are returned.   

                                                 

5 Python files have .py as their file extension. 



  Streams 

13 

 

Source code 
Following this document is source code related to content of this appendix 

Source code – Accumulator 

Source code – Streams 

Source code – Datapoint toolbox 

  



  Source code – Accumulator 

14 

 

5 Source code – Accumulator 
 

1. # -*- coding: utf-8 -*-   
2. """  
3. Created on Sun Feb 17 18:00:07 2019  
4.   
5. @author: Stig  
6. """   
7.    
8. import numpy as np   
9. import pandas as pd   
10. from DatapointsToolbox import *    
11.    
12.    
13. class Accumulator:   
14.     """  
15.     This is a acumulator of datapoints gotten from the CDP, it also assumes the rate to a

ccumulate is in pr/hour rates.  
16.       
17.     The acumulator has an object inside called data which is a pandas dataframe, and it i

s not a derived class of the dataframe. though it whould be more elegant and better
 to work with..  

18.       
19.       
20.     """   
21.        
22.     def __init__(self,df,**IntVars):   
23.         """   
24.         the param df is the return object of CogniteClient.datapoints.get_datapoints('tag

').to_pandas()  
25.         spesifically - list(stable.datapoints.DatapointsResponse).to_pandas()  
26.       
27.         This Performce manly the acumulation process, and adds a 'cumulative' column whic

h acumulates the data.  
28.           
29.         ATM it converts a pr Hour rate.  
30.           
31.         """   
32.         #df = datapoints_pd_cdp   
33.         df['dt'] = df['timestamp'].diff()/1000 # create dt collumn and converted to sec   
34.         df.dropna(inplace=True)  #Inplace = True, withuth it it copys the df, memory effi

cient and stability. Also prompting warnings   
35.            
36.         """ Trapezoidal method """   
37.         dt = df['dt'].values   
38.         df['PrSecRate'] = (df['value']/60)/60 #Creates a Per secondt rate   
39.         x = df['PrSecRate'].values   
40.                   
41.         cumulative = np.zeros(len(x))   
42.         increments = np.zeros(len(x))   
43.         increments[0] = x[0]*dt[0] #This value is not used in the accumulation but it kee

ps the incremental values consistent and has not a zeros at the start   
44.         for i in range(1,len(x)):   
45.             #Trapezoidal increments - The area under the "curve" section   
46.             increments[i]=((x[i-1]+x[i])/2)*dt[i]   
47.             #Summing the increments - Summing the areas of all the curve sections   
48.             cumulative[i] = cumulative[i-1]+((x[i-1]+x[i])/2)*dt[i]   
49.            
50.              #Trapezoidal method   
51.         """ End Trapezoidal method"""   
52.            
53.            



  Source code – Accumulator 

15 

 

54.            
55. #        df['incr'] = df['value']/(60*60)*df['dt'] #Rate from pr hour to pr sec, and mult

ipise times dt   
56. #   
57. #        cumulative = np.zeros(len(df))   
58. #           
59. #        #Acumulating increments    
60. #        cumulative[0] = df.loc[1,'incr']   
61. #        for i in range(1,len(cumulative)):   
62. #            cumulative[i] = cumulative[i-

1] + df.loc[i+1,'incr'] #DF is indexed from 1 np array from 1.   
63. #           
64. #        #Increas accuracy by implementing the trapeziodal method?   
65. #           
66. #        df_cumulative = pd.DataFrame(cumulative,columns=['cumulative'])   
67. #        df_cumulative.index = df_cumulative.index + 1 #   
68. #        df = pd.concat([df,df_cumulative],axis=1)    
69. #           
70.    
71.         df['incr'] = increments   
72.         df['cumulative'] = cumulative   
73.            
74.         df = df.reset_index()   
75.         df = df.drop('index',axis=1) #reset so index starts at 0   
76.            
77.         df['datetime'] = pd.to_datetime(df['timestamp'], unit='ms') # Create a datetime c

olumn of timestamp   
78.         df['elapsed'] = df['dt'].cumsum() #Elapsed seconds since start of accumulation   
79.            
80.         self.data = df   
81.            
82.         #Adding the flow weighted average values   
83.         if(len(IntVars)!=0):   
84.             for IntVarName, IntVar in IntVars.items(): #Split the following key value par

i. the first in the tuple is the name of the key, the second is the value   
85.                 FWA(IntVar,IntVarName)   
86.                
87.                
88.    
89.    
90.     def df(self):   
91.         #A simple method returning the dataframe to simplify development.   
92.         return self.data   
93.        
94.     def FWA(self, IntVar, IntVarUnitName):   
95.         """  
96.         This methdo adds a Extensive variable and creates a represenatble flow weighted a

verage value for the start to the elapsed value.  
97.           
98.         It acheves this by first finding the closes datapoint between the acumulated rate

 variable then calculates the extensive variable towards that rate  
99.           
100.         """   
101.         ClosesIndex = Vfindlowestindex(self.data,IntVar)   
102.         IntVariable = IntVar['value'].values   
103.         incr = self.data['incr'].values   
104.         cumulative = self.data['cumulative'].values   
105.         FWA = np.zeros(len(incr))   
106.         FWA[0] =IntVariable[0]   
107.         for i in range(1,len(FWA)):   
108.             FWA[i] = FWA[i-

1]+(incr[i]*IntVariable[ClosesIndex[i]]) #Buildning the numerator of the FWA   
109.            
110.         FWA = np.divide(FWA,cumulative) #Deviding the numerator by the denomenator witch 

is the cumulative untill a point.   
111.            



  Source code – Accumulator 

16 

 

112.         self.data[IntVarUnitName] = FWA   
113.            
114.        
115.     def findIndexToAdd(Main,Added):   
116.         """  
117.         Function used when syncronicing the elapstime between two streams to be added to 

eachother  
118.         The first Acumulator added becomes the main witch the other timestamps are syncro

nized to.  
119.         returns a np.array addedIndexes to the added.  
120.       
121.         """   
122.         AddedIndex = np.zeros(len(Main)).astype(int)   
123.            
124.         MainElapsed = Main['elapsed'].values#.astype(int)   
125.         AddedElapsed = Added['elapsed'].values#.astype(int)   
126.         #Find the closest elapsed time, to add acumulated at spesific time.   
127.            
128.         for i in range(1,len(AddedIndex)):   
129.                
130.             DT = np.zeros(len(AddedElapsed))   
131.             for j in range(len(AddedElapsed)):   
132.                 DT[j] = abs(AddedElapsed[j]-MainElapsed[i])   
133.             res = np.where(DT == min(DT))   
134.             AddedIndex[i] = int(max(res[0]))   
135.            
136.         return AddedIndex   
137.    
138.     def AddStreams(Main,ToBeAdded):   
139.         """  
140.         Adding to accumulator streams by syncronizing elapsed times and adds one to anoth

er  
141.         returns a np array of the syncronzed and added cumulative streams  
142.         """   
143.         TBAIndecies = findIndexToAdd(Main,ToBeAdded)   
144.         MainCumulative = Main['cumulative'].values   
145.         ToBeAddedToMain = ToBeAdded['cumulative'].values   
146.        
147.         for i in range(len(TBAIndecies-1)):   
148.             MainCumulative[i] = MainCumulative[i] + ToBeAddedToMain[TBAIndecies[i]]   
149.            
150.         return MainCumulative   
151.        
152.     def AddStream(self,Accumulator):   
153.         self.data['cumulative'] = AddStreams(self.data,Accumulator)   
154.            
155.            
156.    
157.    
158. # "STATIC FUNCTIONS"   ??   
159.    
160. def findIndexToAdd(Main,Added):   
161.     """  
162.     Function used when syncronicing the elapstime between two streams to be added to each

other  
163.     The first Acumulator added becomes the main witch the other timestamps are syncronize

d to.  
164.     returns a np.array addedIndexes to the added.  
165.   
166.     """   
167.     AddedIndex = np.zeros(len(Main)).astype(int)   
168.        
169.     MainElapsed = Main['elapsed'].values#.astype(int)   
170.     AddedElapsed = Added['elapsed'].values#.astype(int)   
171.     #Find the closest elapsed time, to add acumulated at spesific time.   
172.        



  Source code – Accumulator 

17 

 

173.     for i in range(1,len(AddedIndex)):   
174.            
175.         DT = np.zeros(len(AddedElapsed))   
176.         for j in range(len(AddedElapsed)):   
177.             DT[j] = abs(AddedElapsed[j]-MainElapsed[i])   
178.         res = np.where(DT == min(DT))   
179.         AddedIndex[i] = int(max(res[0]))   
180.        
181.     return AddedIndex   
182.    
183. def AddStreams(Main,ToBeAdded):   
184.     """  
185.     Adding to accumulator streams by syncronizing elapsed times and adds one to another  
186.     returns a np array of the syncronzed and added cumulative streams  
187.     """   
188.     TBAIndecies = findIndexToAdd(Main,ToBeAdded)   
189.     MainCumulative = Main['cumulative'].values   
190.     ToBeAddedToMain = ToBeAdded['cumulative'].values   
191.    
192.     for i in range(len(TBAIndecies-1)):   
193.         MainCumulative[i] = MainCumulative[i] + ToBeAddedToMain[TBAIndecies[i]]   
194.        
195.     return MainCumulative   
196.    
197.    
198. if (__name__ == '__main__'):   
199.     import matplotlib.pyplot as plt   
200.        
201.     #Unit testing of Accumulator   
202.     hours = 4   
203.     t = np.linspace(0,1000,1001)*1000   
204.     tr = np.copy(t)   
205.     for i in range(len(tr)):   
206.         tr[i] = tr[i]+i*10000+(np.random.rand()-0.5)*5000   
207.     div = 5*(np.random.rand(len(t))-0.5) #Give values som randoms to accumulate   
208.     X = np.zeros(len(t))   
209.     X[0] = 150   
210.     for i in range(1,len(t)):   
211.         X[i]=X[i-1]+div[i]   
212.        
213.     plt.plot(X)   
214.     plt.show()   
215.     df = pd.DataFrame({'timestamp':tr,'value':X})   
216.     Test = Accumulator(df)   
217.     plt.plot(Test.data['cumulative'])   
218.     plt.show()   
219.     print(Test.data.head(20))   
220.        
221.     print('---- Unit test --- of accumulator')   
222.     X = np.ones(len(t))*60*60   
223.        
224.     plt.plot(X)   
225.     plt.show()   
226.     df_check = pd.DataFrame({'timestamp':t,'value':X})   
227.     UnitTest = Accumulator(df_check)   
228.     plt.plot(UnitTest.data['cumulative'])   
229.     print(UnitTest.data['cumulative'].tail(20))   

 

 



  Source code – Streams 

18 

 

6 Source code – Streams 
 

1. # -*- coding: utf-8 -*-   
2. """  
3. Created on Sun Feb 17 18:00:07 2019  
4.   
5. @author: Stig  
6. """   
7.    
8. import numpy as np   
9. import pandas as pd   
10. from DatapointsToolbox import *    
11.    
12.    
13. class Accumulator:   
14.     """  
15.     This is a acumulator of datapoints gotten from the CDP, it also assumes the rate to 

accumulate is in pr/hour rates.  
16.       
17.     The acumulator has an object inside called data which is a pandas dataframe, and it 

is not a derived class of the dataframe. though it whould be more elegant and bette
r to work with..  

18.       
19.       
20.     """   
21.        
22.     def __init__(self,df,**IntVars):   
23.         """   
24.         the param df is the return object of CogniteClient.datapoints.get_datapoints('ta

g').to_pandas()  
25.         spesifically - list(stable.datapoints.DatapointsResponse).to_pandas()  
26.       
27.         This Performce manly the acumulation process, and adds a 'cumulative' column whi

ch acumulates the data.  
28.           
29.         ATM it converts a pr Hour rate.  
30.           
31.         """   
32.         #df = datapoints_pd_cdp   
33.         df['dt'] = df['timestamp'].diff()/1000 # create dt collumn and converted to sec 

  
34.         df.dropna(inplace=True)  #Inplace = True, withuth it it copys the df, memory eff

icient and stability. Also prompting warnings   
35.            
36.         """ Trapezoidal method """   
37.         dt = df['dt'].values   
38.         df['PrSecRate'] = (df['value']/60)/60 #Creates a Per secondt rate   
39.         x = df['PrSecRate'].values   
40.                   
41.         cumulative = np.zeros(len(x))   
42.         increments = np.zeros(len(x))   
43.         increments[0] = x[0]*dt[0] #This value is not used in the accumulation but it ke

eps the incremental values consistent and has not a zeros at the start   
44.         for i in range(1,len(x)):   
45.             #Trapezoidal increments - The area under the "curve" section   
46.             increments[i]=((x[i-1]+x[i])/2)*dt[i]   
47.             #Summing the increments - Summing the areas of all the curve sections   
48.             cumulative[i] = cumulative[i-1]+((x[i-1]+x[i])/2)*dt[i]   
49.            
50.              #Trapezoidal method   
51.         """ End Trapezoidal method"""   
52.            



  Source code – Streams 

19 

 

53.            
54.            
55. #        df['incr'] = df['value']/(60*60)*df['dt'] #Rate from pr hour to pr sec, and mul

tipise times dt   
56. #   
57. #        cumulative = np.zeros(len(df))   
58. #           
59. #        #Acumulating increments    
60. #        cumulative[0] = df.loc[1,'incr']   
61. #        for i in range(1,len(cumulative)):   
62. #            cumulative[i] = cumulative[i-

1] + df.loc[i+1,'incr'] #DF is indexed from 1 np array from 1.   
63. #           
64. #        #Increas accuracy by implementing the trapeziodal method?   
65. #           
66. #        df_cumulative = pd.DataFrame(cumulative,columns=['cumulative'])   
67. #        df_cumulative.index = df_cumulative.index + 1 #   
68. #        df = pd.concat([df,df_cumulative],axis=1)    
69. #           
70.    
71.         df['incr'] = increments   
72.         df['cumulative'] = cumulative   
73.            
74.         df = df.reset_index()   
75.         df = df.drop('index',axis=1) #reset so index starts at 0   
76.            
77.         df['datetime'] = pd.to_datetime(df['timestamp'], unit='ms') # Create a datetime 

column of timestamp   
78.         df['elapsed'] = df['dt'].cumsum() #Elapsed seconds since start of accumulation   
79.            
80.         self.data = df   
81.            
82.         #Adding the flow weighted average values   
83.         if(len(IntVars)!=0):   
84.             for IntVarName, IntVar in IntVars.items(): #Split the following key value pa

ri. the first in the tuple is the name of the key, the second is the value   
85.                 FWA(IntVar,IntVarName)   
86.                
87.                
88.    
89.    
90.     def df(self):   
91.         #A simple method returning the dataframe to simplify development.   
92.         return self.data   
93.        
94.     def FWA(self, IntVar, IntVarUnitName):   
95.         """  
96.         This methdo adds a Extensive variable and creates a represenatble flow weighted 

average value for the start to the elapsed value.  
97.           
98.         It acheves this by first finding the closes datapoint between the acumulated rat

e variable then calculates the extensive variable towards that rate  
99.           
100.         """   
101.         ClosesIndex = Vfindlowestindex(self.data,IntVar)   
102.         IntVariable = IntVar['value'].values   
103.         incr = self.data['incr'].values   
104.         cumulative = self.data['cumulative'].values   
105.         FWA = np.zeros(len(incr))   
106.         FWA[0] =IntVariable[0]   
107.         for i in range(1,len(FWA)):   
108.             FWA[i] = FWA[i-

1]+(incr[i]*IntVariable[ClosesIndex[i]]) #Buildning the numerator of the FWA   
109.            
110.         FWA = np.divide(FWA,cumulative) #Deviding the numerator by the denomenator witch

 is the cumulative untill a point.   



  Source code – Streams 

20 

 

111.            
112.         self.data[IntVarUnitName] = FWA   
113.            
114.        
115.     def findIndexToAdd(Main,Added):   
116.         """  
117.         Function used when syncronicing the elapstime between two streams to be added to

 eachother  
118.         The first Acumulator added becomes the main witch the other timestamps are syncr

onized to.  
119.         returns a np.array addedIndexes to the added.  
120.       
121.         """   
122.         AddedIndex = np.zeros(len(Main)).astype(int)   
123.            
124.         MainElapsed = Main['elapsed'].values#.astype(int)   
125.         AddedElapsed = Added['elapsed'].values#.astype(int)   
126.         #Find the closest elapsed time, to add acumulated at spesific time.   
127.            
128.         for i in range(1,len(AddedIndex)):   
129.                
130.             DT = np.zeros(len(AddedElapsed))   
131.             for j in range(len(AddedElapsed)):   
132.                 DT[j] = abs(AddedElapsed[j]-MainElapsed[i])   
133.             res = np.where(DT == min(DT))   
134.             AddedIndex[i] = int(max(res[0]))   
135.            
136.         return AddedIndex   
137.    
138.     def AddStreams(Main,ToBeAdded):   
139.         """  
140.         Adding to accumulator streams by syncronizing elapsed times and adds one to anot

her  
141.         returns a np array of the syncronzed and added cumulative streams  
142.         """   
143.         TBAIndecies = findIndexToAdd(Main,ToBeAdded)   
144.         MainCumulative = Main['cumulative'].values   
145.         ToBeAddedToMain = ToBeAdded['cumulative'].values   
146.        
147.         for i in range(len(TBAIndecies-1)):   
148.             MainCumulative[i] = MainCumulative[i] + ToBeAddedToMain[TBAIndecies[i]]   
149.            
150.         return MainCumulative   
151.        
152.     def AddStream(self,Accumulator):   
153.         self.data['cumulative'] = AddStreams(self.data,Accumulator)   
154.            
155.            
156.    
157.    
158. # "STATIC FUNCTIONS"   ??   
159.    
160. def findIndexToAdd(Main,Added):   
161.     """  
162.     Function used when syncronicing the elapstime between two streams to be added to eac

hother  
163.     The first Acumulator added becomes the main witch the other timestamps are syncroniz

ed to.  
164.     returns a np.array addedIndexes to the added.  
165.   
166.     """   
167.     AddedIndex = np.zeros(len(Main)).astype(int)   
168.        
169.     MainElapsed = Main['elapsed'].values#.astype(int)   
170.     AddedElapsed = Added['elapsed'].values#.astype(int)   
171.     #Find the closest elapsed time, to add acumulated at spesific time.   



  Source code – Streams 

21 

 

172.        
173.     for i in range(1,len(AddedIndex)):   
174.            
175.         DT = np.zeros(len(AddedElapsed))   
176.         for j in range(len(AddedElapsed)):   
177.             DT[j] = abs(AddedElapsed[j]-MainElapsed[i])   
178.         res = np.where(DT == min(DT))   
179.         AddedIndex[i] = int(max(res[0]))   
180.        
181.     return AddedIndex   
182.    
183. def AddStreams(Main,ToBeAdded):   
184.     """  
185.     Adding to accumulator streams by syncronizing elapsed times and adds one to another  
186.     returns a np array of the syncronzed and added cumulative streams  
187.     """   
188.     TBAIndecies = findIndexToAdd(Main,ToBeAdded)   
189.     MainCumulative = Main['cumulative'].values   
190.     ToBeAddedToMain = ToBeAdded['cumulative'].values   
191.    
192.     for i in range(len(TBAIndecies-1)):   
193.         MainCumulative[i] = MainCumulative[i] + ToBeAddedToMain[TBAIndecies[i]]   
194.        
195.     return MainCumulative   
196.    
197.    
198. if (__name__ == '__main__'):   
199.     import matplotlib.pyplot as plt   
200.        
201.     #Unit testing of Accumulator   
202.     hours = 4   
203.     t = np.linspace(0,1000,1001)*1000   
204.     tr = np.copy(t)   
205.     for i in range(len(tr)):   
206.         tr[i] = tr[i]+i*10000+(np.random.rand()-0.5)*5000   
207.     div = 5*(np.random.rand(len(t))-0.5) #Give values som randoms to accumulate   
208.     X = np.zeros(len(t))   
209.     X[0] = 150   
210.     for i in range(1,len(t)):   
211.         X[i]=X[i-1]+div[i]   
212.        
213.     plt.plot(X)   
214.     plt.show()   
215.     df = pd.DataFrame({'timestamp':tr,'value':X})   
216.     Test = Accumulator(df)   
217.     plt.plot(Test.data['cumulative'])   
218.     plt.show()   
219.     print(Test.data.head(20))   
220.        
221.     print('---- Unit test --- of accumulator')   
222.     X = np.ones(len(t))*60*60   
223.        
224.     plt.plot(X)   
225.     plt.show()   
226.     df_check = pd.DataFrame({'timestamp':t,'value':X})   
227.     UnitTest = Accumulator(df_check)   
228.     plt.plot(UnitTest.data['cumulative'])   
229.     print(UnitTest.data['cumulative'].tail(20))   

 

  



  Source code – Datapoint toolbox 

22 

 

7 Source code – Datapoint toolbox 
1. # -*- coding: utf-8 -*-   
2. """  
3. Created on Thu Feb 28 19:39:54 2019  
4.   
5. @author: stig  
6. """   
7. import numpy as np   
8. import pandas as pd   
9. from datetime import datetime   
10. from datetime import timedelta   
11.    
12. def findlowestindex(biggest_df,smallest_df):   
13.     lowestindex = np.zeros(len(biggest_df))  #By lowest index the, meas that the in

dex covertion with the least time between.   
14.     lowestArr = np.zeros(len(biggest_df))   
15.    
16.     j_high = 0   
17.     for i in range(len(biggest_df)):   
18.         lowest = np.inf #High initial start value   
19.         j_ref = np.inf #High initial start valyue   
20.         rise = False    
21.    
22.         for j in range(len(smallest_df)):   
23.             if(j_high==0):    
24.                 jq = j   
25.             else:   
26.                 jq = j_high+j #effiecient excecution of the algorithm, no need to l

oop the entire array in each inner loop.   
27.             if(jq>=len(smallest_df)-1): # Out of datapoints, out of datapoint-

timestamps   
28.                 break   
29.                
30.    
31.             DT = abs(smallest_df.loc[jq,'timestamp']-

biggest_df.loc[i,'timestamp'])   
32.    
33.             if(DT<lowest):   
34.                 lowest = DT   
35.             else:   
36.                 rise = True   
37.             if(j_ref >= lowest) and rise:   
38.                 lowestindex[i] = jq-1   
39.                 lowestArr[i] = lowest   
40.                 break #Found closest for this index i iteration.   
41.             J_ref = DT   
42.    
43.         j_high = lowestindex[i]   
44.    
45.     #check last idexes if timestamp out of range with respect to the other   
46.     if(lowestindex[len(lowestindex)-

1] == 0): #Indicate need by seeing if last index has value 0.   
47.         for i in range(1,len(lowestindex)): #loops through entire array, to ensure 

no bugs from odd division of index etc.   
48.             if(lowestindex[i]<lowestindex[i-

1]): #checks to se that each index is same or higher value   
49.                 lowestindex[i] = lowestindex[i-

1]   # if not set to same value as before.   
50.    
51.     return lowestindex   
52.    
53. def Vfindlowestindex(biggest_df,smallest_df):   



  Source code – Datapoint toolbox 

23 

 

54.     lowestindex = np.zeros(len(biggest_df))  #By lowest index the, meas that the in
dex covertion with the least time between.   

55.     lowestArr = np.zeros(len(biggest_df))   
56.     biggest = biggest_df['timestamp'].values.astype(int)   
57.     smallest = smallest_df['timestamp'].values.astype(int)   
58.        
59.    
60.     j_high = 0   
61.     for i in range(len(biggest)):   
62.         lowest = np.inf #High initial start value   
63.         j_ref = np.inf #High initial start valyue   
64.         rise = False    
65.    
66.         for j in range(len(smallest)):   
67.             if(j_high==0):    
68.                 jq = j   
69.             else:   
70.                 jq = j_high+j #effiecient excecution of the algorithm, no need to l

oop the entire array in each inner loop.   
71.             if(jq>=len(smallest)-1): # Out of datapoints, out of datapoint-

timestamps   
72.                 break   
73.                
74.             jq= int(jq)   
75.    
76.             DT = abs(smallest[jq]-biggest[i])   
77.    
78.             if(DT<lowest):   
79.                 lowest = DT   
80.             else:   
81.                 rise = True   
82.             if(j_ref >= lowest) and rise:   
83.                 lowestindex[i] = jq-1   
84.                 lowestArr[i] = lowest   
85.                 break #Found closest for this index i iteration.   
86.             j_ref = DT   
87.    
88.         j_high = lowestindex[i]   
89.    
90.     #check last idexes if timestamp out of range with respect to the other   
91.     if(lowestindex[len(lowestindex)-

1] == 0): #Indicate need by seeing if last index has value 0.   
92.         for i in range(1,len(lowestindex)): #loops through entire array, to ensure 

no bugs from odd division of index etc.   
93.             if(lowestindex[i]<lowestindex[i-

1]): #checks to se that each index is same or higher value   
94.                 lowestindex[i] = lowestindex[i-

1]   # if not set to same value as before.   
95.    
96.     return lowestindex   
97.    
98. def find_nearest(array, value):   
99.     array = np.asarray(array)   
100.     idx = (np.abs(array - value)).argmin()   
101.     return idx   
102.    
103. def findIndexToAdd(Main,Added):   
104.     AddedIndex = np.zeros(len(Main)).astype(int)   
105.        
106.     MainElapsed = Main['elapsed'].values#.astype(int)   
107.     AddedElapsed = Added['elapsed'].values#.astype(int)   
108.     #Find the closest elapsed time, to add acumulated at spesific time.   
109.        
110.     for i in range(1,len(AddedIndex)):   
111.            
112.         DT = np.zeros(len(AddedElapsed))   



  Source code – Datapoint toolbox 

24 

 

113.         for j in range(len(AddedElapsed)):   
114.             DT[j] = abs(AddedElapsed[j]-MainElapsed[i])   
115.         res = np.where(DT == min(DT))   
116.         AddedIndex[i] = int(max(res[0]))   
117.        
118.     return AddedIndex   
119.    
120. def AddStreams(Main,ToBeAdded):   
121.     """  
122.     Adding to accumulator streams by syncronizing elapsed times and adds one to ano

ther  
123.     returns a np array of the syncronzed and added cumulative streams  
124.     """   
125.     TBAIndecies = findIndexToAdd(Main,ToBeAdded)   
126.     MainCumulative = Main['cumulative'].values   
127.     ToBeAddedToMain = ToBeAdded['cumulative'].values   
128.    
129.     for i in range(len(TBAIndecies-1)):   
130.         MainCumulative[i] = MainCumulative[i] + ToBeAddedToMain[TBAIndecies[i]]   
131.        
132.     return MainCumulative   
133.    
134.    
135. def SyncTimestamp(smallest_df, largest_df):     
136.     #Converting ms timestamps to pr 10 sec "[desisec]", and converts them to intege

r, som now it is find the closes matchin   
137.     outer = (smallest_df['timestamp'].values/10000).astype(int)    
138.     inner = (largest_df['timestamp'].values/10000).astype(int)   
139.     start = 1   
140.     pairs = []   
141.     for i in range(start,len(outer)-1):   
142.         highest = 0   
143.        
144.         for j in range(start,len(inner)-1):   
145.             if(j+highest > len(inner)-1):   
146.                 break   
147.             else:   
148.                 inner_index = j+highest   
149.    
150.             if(inner[inner_index]==outer[i]):   
151.                 pairs.append((i,j))   
152.                 highest = j   
153.     return pairs   
154.    
155. def K_Trad(Subject, Referance):   
156.     """  
157.     returns a touple of two np.arrays (elapsed , k_factors) where elapsed is the ac

cumulation time and k_factors     
158.     """   
159.     #Klist = []   
160.        
161.     Matchindexes = SyncTimestamp(Subject,Referance)   
162.     k_factors = np.zeros(len(Matchindexes))   
163.     elapsed = np.zeros(len(Matchindexes))   
164.     cnt = 0   
165.     for pair in Matchindexes:   
166.         i,j = pair   
167.         Sub = Subject.loc[i,'cumulative']   
168.         Ref = Referance.loc[j,'cumulative']   
169.         k_factors[cnt] = Ref/Sub   
170.         elapsed[cnt] = Subject.loc[i,'elapsed']/60   
171.         cnt = cnt + 1   
172.         #Klist.append((timestamp,K_factor))   
173.     return (elapsed,k_factors)   



  Source code – Time Window locator 

25 

 

8 Source code – Time Window locator 
Printed 05/05-2019 

1. # -*- coding: utf-8 -*-   
2. """  
3. Created on Sat Apr  6 21:31:19 2019  
4.   
5. @author: stig  
6. """   
7.    
8. import pandas as pd   
9. from datetime import datetime   
10.    
11. def FindTrialWindows(start,end,cdp, AddMin = 20,RemMin = 120):   
12.     #3rd party heade manifold valves   
13.     Bøyla = '16HV0210/XGH/PRIM'   
14.     Vilje = '16HV0510/XGH/PRIM'   
15.     Volund  = '16HV0610/XGH/PRIM'   
16.        
17.     #inlet separator valves to ensure the multi phase steram is not flow to both the inlet se

parator and the 3.rd party separator at the same time.   
18.        
19.     BøylaInlet = '16HV0220/BCH/PRIM'   
20.     ViljeInlet = '16HV0520/BCH/PRIM'   
21.     VolundInlet = '16HV0620/BCH/PRIM'   
22.        
23.     ts_name = ['Bøyla', 'Vilje', 'Volund','BøylaInlet','ViljeInlet','VolundInlet']   
24.     ts = [Bøyla, Vilje, Volund,BøylaInlet,ViljeInlet,VolundInlet]   
25.            
26.        
27.     #Hent ventil posisjons data fra Cognite over headerventiler til 3rd party separatoren.   
28.     df = cdp.datapoints.get_datapoints_frame(time_series=ts,aggregates=["step"], granularity=

"30second", start=start, end=end)   
29.        
30.        
31.        
32.     df['datetime'] = pd.to_datetime(df['timestamp'], unit='ms')   
33.        
34.     #renaming the 3. party inlet header valves   
35.     df.rename(columns = {'16HV0210/XGH/PRIM|stepinterpolation' : ts_name[0], '16HV0510/XGH/PR

IM|stepinterpolation': ts_name[1],'16HV0610/XGH/PRIM|stepinterpolation':ts_name[2]}
, inplace = True)   

36.        
37.     #Remainming the main inlet separator header valves   
38.     df.rename(columns = {'16HV0220/BCH/PRIM|stepinterpolation' : ts_name[3], '16HV0520/BCH/PR

IM|stepinterpolation': ts_name[4],'16HV0620/BCH/PRIM|stepinterpolation':ts_name[5]}
, inplace = True)   

39.    
40.    
41.        
42.     df.interpolate(inplace = True) #Fyller ut NAN'er   
43.     df['Paralell'] = df[ts_name[0]]+df[ts_name[1]]+df[ts_name[2]] == 2.0  #Finner tider den s

om er til Paralell kalibrering.    
44.        
45.        
46.     #Finner tiderne som det er utført parralell kalibrering samt sjekker at linjene ikke står

 til alvheim main inlet separator, at løpa flower kun til 3.part sep.   
47.    
48.     VilVol_ParTimes = df[df['Paralell']&df['Volund']&df['Vilje']&(df['ViljeInlet']+df['Volund

Inlet']==0.0)]['timestamp']     
49.     BøVol_ParTimes = df[df['Paralell']&df['Bøyla']&df['Volund']&(df['BøylaInlet']+df['VolundI

nlet']==0.0)]['timestamp']   



  Source code – Time Window locator 

26 

 

50.     BøVil_ParTimes = df[df['Paralell']&df['Bøyla']&df['Vilje']&(df['BøylaInlet']+df['ViljeInl
et']==0.0)]['timestamp']   

51.    
52.     # legg til forriggling på at headeren til Alvheim inlet separator også ikke er open, slik

 at en strøm strømmer både til 3.part separator og inlet separator   
53.          
54.    
55.     #Add timedelta   
56.     from datetime import timedelta   
57.        
58.     #adding stabilization time after calibration set in moteon   
59.        
60.     if(len(VilVol_ParTimes)==0):   
61.         print("No Vilje Vound Window found")   
62.         ViVoWindow="No Time Window found"   
63.     else:   
64.         ViVoWindow = (datetime.fromtimestamp(min(VilVol_ParTimes)/1000.0) + timedelta(minutes

=AddMin) ,datetime.fromtimestamp(max(VilVol_ParTimes)/1000.0)-
timedelta(minutes=RemMin))   

65.     if(len(BøVol_ParTimes)==0):   
66.         print("No Bøyla Volund Window found")   
67.         BøVoWindow = "No Time Window found"   
68.     else:   
69.         BøVoWindow = (datetime.fromtimestamp(min(BøVol_ParTimes)/1000.0) + timedelta(minutes=

AddMin) ,datetime.fromtimestamp(max(BøVol_ParTimes)/1000.0)-
timedelta(minutes=RemMin))   

70.        
71.     if(len(BøVil_ParTimes)==0):   
72.         print("No Bøyla Vilje Window found")   
73.         BøViWindow = "No Time Window found"   
74.     else:   
75.         BøViWindow = (datetime.fromtimestamp(min(BøVil_ParTimes)/1000.0) + timedelta(minutes=

AddMin) ,datetime.fromtimestamp(max(BøVil_ParTimes)/1000.0)-
timedelta(minutes=RemMin))   

76.        
77.     return (ViVoWindow,BøVoWindow,BøViWindow)   
78.    
79.    
80. if (__name__ == '__main__'):   
81.     #Unit testing of Accumulator   
82.     print('test not implemented')   



 1 Appendix D – Parallel Calibration Algorithm 

1 

 

1 Appendix D – Parallel Calibration 
Algorithm 

 



 1 Appendix D – Parallel Calibration Algorithm 

2 

 

Contents 
In the main thesis the method used to calculate the calibration factors is established, but when 

it comes to the implementation of this method in to an algorithm, and also displaying and 

plotting the results and performs a statistical analysis on the resulting calibration factors.  

This Appendix will go into detail about the inner working and synchronization of data as well 

as the plots and results created and used in this thesis. 

 

1 Appendix D – Parallel Calibration Algorithm .................................................. 1 

Contents ................................................................................................................... 2 

2 Development of the algorithm ......................................................................... 3 

2.1 Scale and synchronize data points ....................................................................................... 3 
2.2 Create the Mp matrix ............................................................................................................... 5 

2.2.1 Create Mp Frame ............................................................................................................. 5 
2.2.2 Fill Mp Frame ................................................................................................................... 5 
2.2.3 Special Case: Traditional through the Parallel Calibration algorithm ....................... 7 

2.3 Solving the general case ........................................................................................................ 7 
2.4 Simplifying execution through object orientation ............................................................... 9 
2.5 Asses the quality of a parallel calibration ............................................................................ 9 
2.6 Store values and recalling the result .................................................................................. 13 

3 Statistical analysis .......................................................................................... 14 

3.1 Initial autodetection of statistical basis ............................................................................. 14 
3.2 Calculating random uncertainty of result .......................................................................... 14 

4 Non-linear solver ............................................................................................. 15 

Source Code ............................................................................................................ 18 

5 Source Code – Parallel calibration ................................................................ 19 

6 Source Code - Calibration Statistics ............................................................. 40 

 

  



 2 Development of the algorithm 

3 

 

2 Development of the algorithm 
The input to the algorithm is a python list object of Trials, where the Trials are also python 

list of streams objects as discussed in the previous appendix on the Digital Twins, and in the 

solving of this algorithm the data layout and calculations done based on values from the 

digital copies which are used to perform a parallel calibration.  

 

Parallel Calibration Algorithm

Oil

MPM1 MPM2 MPM3

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

Gas

MPM1 MPM2 MPM3

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

Water

MPM1 MPM2 MPM3

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

K-factors

Run

N

Trial 1
MPM Stream 1

Oil Gas Water

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

MPM Stream 2

Oil Gas Water

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

Separator Streams

Oil Gas Water

0.0
2.0
4.1
6.4

.

.
10482
10490

0.0
2.0
4.1
6.4

.

.
10482
10490

0.0
2.0
4.1
6.4

.

.
10482
10490C

u
m

u
al

ti
ve

 v
a

lu
e

s

Trial 2
MPM Stream 1

Oil Gas Water

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

MPM Stream 3

Oil Gas Water

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

Separator Streams

Oil Gas Water

0.0
2.0
4.1
6.4

.

.
10482
10490

0.0
2.0
4.1
6.4

.

.
10482
10490

0.0
2.0
4.1
6.4

.

.
10482
10490

Trial 3
MPM Stream 2

Oil Gas Water

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

MPM Stream 3

Oil Gas Water

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

Separator Streams

Oil Gas Water

0.0
2.0
4.1
6.4

.

.
10482
10490

0.0
2.0
4.1
6.4

.

.
10482
10490

0.0
2.0
4.1
6.4

.

.
10482
10490

Trials

 

Figure 1 - Input and output of the k-factor calculation within the parallel calibration 

algorithm, with a 2x2x2 trial configuration. 

2.1 Scale and synchronize data points 

Each phase in each stream in each trial has their own number of datapoints and when it 

comes to synchronizing the data points of the cumulative values in each phase stream. This is 

done by first finding the stream with the lowest number of datapoints in the stream within the 

time window of the specific trial, this is set as the reference number of runs for the trial. Then 

each other stream in a give phase is synchronized by finding the closes datapoint to reference 

datapoint trial and is executed efficiently through elegant use of the NumPy library, as shown 

in  Figure 2. 

 

 



 2 Development of the algorithm 

4 

 

 

Trial 1
MPM Stream 1

Oil

0.0
1.0
2.1
3.4

.

.
5242
5245

Trials

Synchronize trial phase

Oil

0.0
1.0
2.1
3.4

.

.
5242
5245

Oil

0.0
1.0
2.1
3.4

.

.
5242
5245

Oil

0.0
2.0
4.1
6.4

.

.
10482
10490

1
5

13
19
.
.

23018
23025

Gas

0.0
1.0
2.1
3.4

.

.
5242
5245

1
5

13
19
.
.

23018
23025

Water

0.0
1.0
2.1
3.4

.

.
5242
5245

1
5

13
19
.
.

23018
23025

MPM Stream 2

Oil

0.0
1.0
2.1
3.4

.

.
5242
5245

1
5

13
19
.
.

23018
23025

Gas

0.0
1.0
2.1
3.4

.

.
5242
5245

1
5

13
19
.
.

23018
23025

Water

0.0
1.0
2.1
3.4

.

.
5242
5245

1
5

13
19
.
.

23018
23025

Separator Stream

Oil

0.0
1.0
2.1
3.4

.

.
5242
5245

1
5

13
19
.
.

23018
23025

Gas

0.0
1.0
2.1
3.4

.

.
5242
5245

1
5

13
19
.
.

23018
23025

Water

0.0
1.0
2.1
3.4

.

.
5242
5245

1
5

13
19
.
.

23018
23025

Oil

0.0
1.0
2.1
3.4

.

.
5242
5245

1
5

13
19
.
.

23018
23025

Elapsed time 
of trial

Cumulative 
value Trial 2

MPM Stream 1

Oil

0.0
1.0
2.1
3.4

.

.
5242
5245

1
5

13
19
.
.

23018
23025

Gas

0.0
1.0
2.1
3.4

.

.
5242
5245

1
5

13
19
.
.

23018
23025

Water

0.0
1.0
2.1
3.4

.

.
5242
5245

1
5

13
19
.
.

23018
23025

MPM Stream 2

Oil

0.0
1.0
2.1
3.4

.

.
5242
5245

1
5

13
19
.
.

23018
23025

Gas

0.0
1.0
2.1
3.4

.

.
5242
5245

1
5

13
19
.
.

23018
23025

Water

0.0
1.0
2.1
3.4

.

.
5242
5245

1
5

13
19
.
.

23018
23025

Separator Stream

Oil

0.0
1.0
2.1
3.4

.

.
5242
5245

1
5

13
19
.
.

23018
23025

Gas

0.0
1.0
2.1
3.4

.

.
5242
5245

1
5

13
19
.
.

23018
23025

Water

0.0
1.0
2.1
3.4

.

.
5242
5245

1
5

13
19
.
.

23018
23025

Trial 3
MPM Stream 1

Oil

0.0
1.0
2.1
3.4

.

.
5242
5245

1
5

13
19
.
.

23018
23025

Gas

0.0
1.0
2.1
3.4

.

.
5242
5245

1
5

13
19
.
.

23018
23025

Water

0.0
1.0
2.1
3.4

.

.
5242
5245

1
5

13
19
.
.

23018
23025

MPM Stream 2

Oil

0.0
1.0
2.1
3.4

.

.
5242
5245

1
5

13
19
.
.

23018
23025

Gas

0.0
1.0
2.1
3.4

.

.
5242
5245

1
5

13
19
.
.

23018
23025

Water

0.0
1.0
2.1
3.4

.

.
5242
5245

1
5

13
19
.
.

23018
23025

Separator Stream

Oil

0.0
1.0
2.1
3.4

.

.
5242
5245

1
5

13
19
.
.

23018
23025

Gas

0.0
1.0
2.1
3.4

.

.
5242
5245

1
5

13
19
.
.

23018
23025

Water

0.0
1.0
2.1
3.4

.

.
5242
5245

1
5

13
19
.
.

23018
23025

Finds the length of the 
dataset with least number 

of values and creates 

1
2
3
4
.
.

3502
3503

0
0
0
0
.
.
0
0

0
0
0
0
.
.
0
0

0
0
0
0
.
.
0
0

0
0
0
0
.
.
0
0

0
0
0
0
.
.
0
0

Finds the column index of the 
smallest stream, and makes it 

the reference index 1
2
3
4
.
.

3502
3503

1
3
4
6
.
.

4030
4035

2
8

10
16
.
.

8004
8005

Combine cumulative rates into a 
synchronized dataset, by 
synchronizing on indices

Collect elapsed times

Matrix of empty indices

Matrix of synchronized 
indices

Matrix of reference index 
and empty indices

1
5

13
19
.
.

23018
23025

1
5

13
19
.
.

23018
23025

1
5

13
19
.
.

23018
23025

Collection of 
elapsed times

Loop through each column 
and find the closed elapsed 
time between the reference 

index and the current column

Collect Cumulative Values

0.0
2.1
4.5
6.8

.

.
4802
4809

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
3.0
6.8

10.8
.
.

10473
10479

NumPy 

Syncronized Oil phase in trial 1

Synchronize  
Gas

Synchronize  
Water 

Synchronize  
Oil 

Synchronize  
Gas 

Syncronize 
Water in 

Trial 1

Synchronize  
Water 

Synchronize  
Oil 

Synchronize  
Gas 

Synchronize  
Water 

Trial 1 Trial 2 Trial 3

Collection of 
cumulative values 

 

Figure 2 - Figure of the algorithm flow of synchronization of a specific trial phase as the preprocessing before parallel calibration



 2 Development of the algorithm 

5 

 

 

2.2 Create the 𝑴𝒑 matrix 

A gold of the parallel calibration is to try to recreate the same developmental k-factors across 

“time” that the traditional method uses. but when the data comes from T number of different 

time slots with different elapsed time within the time windows, to look at the x-axis as across 

time is not necessarily correct which is why the plots don’t have time as the x-axis but runs. 

But in order to create a developmental k-factor across the synchronized trial runs, the 

structure of the 𝑴𝑝 has to be determined, and then later filled with values across the elapsed 

runs and subsequentially solved to achieve the resulting k-factors. 

2.2.1 Create 𝑴𝑝 Frame 

By looping through all streams in all the trials the algorithm finds through clever lookup of 

the name of each stream, a frame matrix can be created which can later be filled by values. 

This initial frame is a binary valued matrix in ℝ𝑇×𝑆 Dimensions, where a one represents a 

value to be filled and 0 represents that this stream was not online during this trial. 

2.2.2 Fill 𝑴𝑝 Frame 

When the 𝑴𝑝 frame has been established a copy of this frame with float valued cells and this 

is then to be filled with values for each run and solved. As shown in Figure 3. 

 

 



 2 Development of the algorithm 

6 

 

MPM 1 MPM 2 MPM 3 referance

Oil

MPM1 MPM2 MPM3

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

Gas

MPM1 MPM2 MPM3

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

Water

MPM1 MPM2 MPM3

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

K-factors

Run

N

Trial 1
MPM Stream 1

Oil Gas Water

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

MPM Stream 2

Oil Gas Water

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

Separator Streams

Oil Gas Water

0.0
2.0
4.1
6.4

.

.
10482
10490

0.0
2.0
4.1
6.4

.

.
10482
10490

0.0
2.0
4.1
6.4

.

.
10482
10490C

u
m

u
al

ti
ve

 v
a

lu
e

s

Trial 2
MPM Stream 1

Oil Gas Water

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

MPM Stream 3

Oil Gas Water

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

Separator Streams

Oil Gas Water

0.0
2.0
4.1
6.4

.

.
10482
10490

0.0
2.0
4.1
6.4

.

.
10482
10490

0.0
2.0
4.1
6.4

.

.
10482
10490

Trial 3
MPM Stream 2

Oil Gas Water

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

MPM Stream 3

Oil Gas Water

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

Separator Streams

Oil Gas Water

0.0
2.0
4.1
6.4

.

.
10482
10490

0.0
2.0
4.1
6.4

.

.
10482
10490

0.0
2.0
4.1
6.4

.

.
10482
10490

Trials

Oil

Trial 1

Trial 2

Trial 2

0

0

0

Solve System of equations

Gas Water

Solve System of 
equations

Solve System of 
equations

M m M m

Parallel calibration Algorithm

For each run For each run For each run

 

Figure 3 - Inside the algorithm - filling 𝑴𝑝 Matrix and 𝒎𝑝 vector with a 2x2x2 Trial input 



 2 Development of the algorithm 

7 

 

2.2.3 Special Case: Traditional through the Parallel Calibration algorithm 

One special case worth mentioning is that if the trial streams given into the parallel 

calibration algorithm are based purely on a traditional calibration which mean that the only 

one multiphase stream is entering the separator during a trial.  the resulting 𝑀𝑝 matrix is a 

diagonal matrix as shown in equation (2.1) and the invers of a diagonal matrix is the 

reciprocal of each line on the diagonal as shown in (2.2). 

𝑴𝑝 ∈ ℝ𝑇×𝑆 =

[
 
 
 
𝑚𝑝,1,1 0 ⋯ 0

0 𝑚𝑝,2,2 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑚𝑝,𝑆,T]

 
 
 

 (2.1) 

 

𝑴𝑝
−1 =

[
 
 
 
 
 
 
 

1

𝑚𝑝,1,1
0 ⋯ 0

0
1

𝑚𝑝,2,2
⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
1

𝑚𝑝,𝑆,T]
 
 
 
 
 
 
 

 (2.2) 

 

𝑴𝑝
−1𝒎𝑝 =

[
 
 
 
 
 
 
 

1

𝑚𝑝,1,1
0 ⋯ 0

0
1

𝑚𝑝,2,2
⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
1

𝑚𝑝,𝑆,T]
 
 
 
 
 
 
 

[

𝑚𝑝,𝑟𝑒𝑓,1

𝑚𝑝,𝑟𝑒𝑓,2

⋮
𝑚𝑝,𝑟𝑒𝑓,𝑇

] =

[
 
 
 
 
 
 
 {

𝑚𝑝,𝑟𝑒𝑓,1

𝑚𝑝,1,1
}

{
𝑚𝑝,𝑟𝑒𝑓,2

𝑚𝑝,2,2
}

⋮

{
𝑚𝑝,𝑟𝑒𝑓,𝑇

𝑚𝑝,𝑆,T
}
]
 
 
 
 
 
 
 

=

[
 
 
 
𝑘𝑝,1

𝑘𝑝,2

⋮
𝑘𝑝,𝑆]

 
 
 

= 𝐤p (2.3) 

In solving the system of equation then show that the values received in the 𝐤pvector equation 

(2.3) are then the same as the values during a traditional calibration. 

2.3 Solving the general case 

The implementation of the algorithm is developed not to solve a specific case, but the general 

case with S number of streams, as shown in Figure 4.



 2 Development of the algorithm 

8 

 

Parallel Calibration Algorithm

Gas

MPM-1 MPM-2 MPM-S

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

K-factors

Run

N

C
u

m
u

al
ti

ve
 v

a
lu

e
s

Trial T
MPM Stream 1

Oil Gas Water

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

Separator Streams

Oil Gas Water

0.0
2.0
4.1
6.4

.

.
10482
10490

0.0
2.0
4.1
6.4

.

.
10482
10490

0.0
2.0
4.1
6.4

.

.
10482
10490

Trials

Oil

MPM-1 MPM-2 MPM-S

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

Water

MPM-1 MPM-2 MPM-S

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

1.5
1.2
1.3
1.0
1.1
1.8

.

.

.

.

.

.
1.12
1.11
1.11

Trials

MPM Stream S

Oil Gas Water

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

Trial 1
MPM Stream 1

Oil Gas Water

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

Separator Streams

Oil Gas Water

0.0
2.0
4.1
6.4

.

.
10482
10490

0.0
2.0
4.1
6.4

.

.
10482
10490

0.0
2.0
4.1
6.4

.

.
10482
10490

MPM Stream S

Oil Gas Water

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

Trial 2
MPM Stream 2

Oil Gas Water

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

Separator Streams

Oil Gas Water

0.0
2.0
4.1
6.4

.

.
10482
10490

0.0
2.0
4.1
6.4

.

.
10482
10490

0.0
2.0
4.1
6.4

.

.
10482
10490

MPM Stream S

Oil Gas Water

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

0.0
1.0
2.1
3.4

.

.
5242
5245

 

Figure 4 - Data input and output of a general case with S number of streams 



  Development of the algorithm 

9 

 

2.4 Simplifying execution through object orientation 

The parallel calibration method is object oriented in order to simplify the execution of the 

method and structures the code to a much greater extent, this is to both simplify the storage of 

the raw data and the creation of a calibration report / data basis. Makes the assessment of the 

quality of the calibration easier to execute with functions already implemented. As well as all 

the values from all the trials and the values calculated within the calibration is available 

within the instantiated parallel calibration object. 

2.5 Asses the quality of a parallel calibration  

The algorithm contains a structured data source of both aggregated and raw datapoints for the 

plotting of both the result development, and the conditions during the trial data was created. 

And a substantial amount of code within the parallel calibration source code is on concerning 

the control and check the quality / resulting values form the algorithm, as well as inspecting 

the values within the trials, to ensure that both the input and the output from the algorithm 

works with and generates representative values to the reality. 

But within the parallel calibration object there are the following plots available 

• Plot of k-factor development -Figure 5 

• Plot of cumulative values in augmented matrix form, which is the raw data which 

goes into the system of equations - Figure 6 

• Plot of the main raw datapoints of the mass flowrates in each phase, which is the raw 

data collected by each stream object in each trial, and displayed in the augmented 

matrix form plots - Figure 7 

• Plot of the essential states of the separators and the intensive variables in the streams 

shown in Figure 8. 

• Histogram over the time between each datapoint, where the y axis is in log base 10 in 

order to look into the data quality entering the accumulators, it returns 3 figures one 

for each phase. Figure 9 show an example of this in the oil phase. 

After a statistical analysis there is also two more essential plot available which are;  

• A plot containing the calculation basis, with a vertically oriented plot of both a 

histogram with the number of samples in the x-axis shared with the probability 

density distribution based on the shown basis. As shown in Figure 10. 

• Violin plot of the resulting k-factors for each stream and phase shown in Figure 11 

But all data for any further is stored within this calibration object and is available for any data 

analysis. 

 



  Development of the algorithm 

10 

 

 

Figure 5 - Plot of resulting k-factor development 

 

Figure 6 - Plot of the cumulative values in augmented matrix form for a 2x2x2 calibartion 



  Development of the algorithm 

11 

 

 

Figure 7 - Plot of phase flowrates in augmented Matrix form for a 3x2x2 calibration. 

 

Figure 8 - Plot of intensive variables and relevant states in augmented matrix from for a 

3x2x2 calibration 



  Development of the algorithm 

12 

 

 

Figure 9 - Histogram Plot of time between each flow rate datapoint, where the y-axis is 

logarithmically displayed, in augmented matrix form, for a oil parallel calibration 

 

Figure 10 - K-factor basis values for statistical analysis in the left plot and in the right plot a 

horizontal histogram shared with a normal distribution’s probability density plot based on the 

mean and standard deviation of the basis shown. 



  Development of the algorithm 

13 

 

 

Figure 11 - Violin plot of each streams k-factors for each phase, based on the statistical basis, 

form a calibration performed in late April 2019 

2.6 Store values and recalling the result 

When it comes to the storing of results the calibration object instantiated by the parallel 

calibration class can be serialized through the python library pickle and stored in flatform1 

which can later be recalled and analyzed if needed, additionally all numerical values used are 

stored in pandas data frames which have inbuilt exporting functions to formats such as .csv 
2and others. Other documentations can also be automatically created by due to limited time 

an automatic report, typically pdf report is not automatically created, but the Jupyter 

notebook and or other python interpreters should. 

                                                 

1 Flat form refers to that the objects in working memory are store to a file in a file system which can later be 

recovered into the same object. 

2 .csv – file format where columns are separated by a delimiter typically comma ‘,’ or colon ‘;’ rows are 

separated by end-line character. 



  Statistical analysis 

14 

 

3 Statistical analysis 
When the method has calculated the K-factors from a collection of trials, each of the k-factors 

should converge to a stable value, and on a subset of the stabilized k-factors can form a basis 

data set. This statistical basis dataset can then be used to perform a statistical analysis, on the 

random uncertainty of the values as well provide a window into the distribution. Assuming 

this dataset is normally distributed the random uncertainty can be by assessing the normal 

distribution. A coverage factor of two is used in order to specify the confidence level of the 

statistical analysis. If the k-factors do not converge and stabilize the dataset of trials used are 

not good, and new trials needs to be chosen. 

3.1 Initial autodetection of statistical basis 

The initial part of a statically basis, has implemented a method trying to determine this 

statistical basis by itself, and it does so by first calculating the sum squared errors (SSE) over 

a subset between 5 and 90% of the k-factors calculated as shown in equation (3.1).  

𝑆𝑆𝐸𝑛 = ∑ (𝑘𝑓𝑖 − 𝑘𝑓̅̅̅̅
0.05∙𝑛,𝑛)

2
, 𝑤ℎ𝑒𝑟𝑒 

𝑛

𝑖=0.05

𝑘𝑓̅̅̅̅
0.05∙𝑛,𝑛 =

1

𝑛
∑ 𝑘𝑓𝑖

𝑛

𝑖=0.05∙𝑛

 (3.1) 

This sub dataset of the sum of the squared errors are then differentiated and squared resulting 

in a dataset with peaks called the DSSE dataset, this represent changes within the k-factor 

development (3.2). And a peak detection method form signal library of SciPy called 

“find_peaks” is used with a preset limit, for what a peak could be.  This peak detection limit 

is also a constant of the standard deviation of the dataset used, in order to get a peak within 

the unique nature of each k-factor development. 

𝐷𝑆𝑆𝐸𝑛 = (𝑆𝑆𝐸𝑛−1 − 𝑆𝑆𝐸𝑛)2 (3.2) 

The result of this algorithm is shown in the left plot in Figure 10. 

3.2 Calculating random uncertainty of result 

Within either the auto detected basis or manually set basis set. A calculation of the random 

uncertainty is done by assuming the values within the basis are normally distributed, and a 

numerical integration of the normal distribution’s probability density function is performed, 

with a coverage factor of 2, which is the level of confidence specified in the measurement 

regulations of the NPD. The numerical integration is done through the trapezoidal method 

which is the same as the accumulators in the stream classes. The vectorization of the normal 

distribution is separated into 10000 numerical datapoint within the confidence interval. As 

shown analytically in equation (3.3), where 𝜇 is the mean and 𝜎 is the standard deviation of 

the statistical basis calculated through the NumPy library. 

𝑝(𝑥|𝜇, 𝜎) = ∫ [
1

√2𝜋𝜎2
𝑒

−
(𝑥−𝜇)2

2𝜎2 ] 𝑑𝑥

𝜇+2𝜎

𝜇−2𝜎

 (3.3) 

All this is shown and displayed if a unit test of the Calibration Statistics code, on a randomly 

generated dataset. 

 



  Non-linear solver 

15 

 

4 Non-linear solver 
Also worth mentioning was a non-linear solver proposed by Torbjørn Selanger which was the 

initial method developed and planned worth mentioning which a solver was also developed 

but not implemented into the algorithm, and as the linear solver it solves for one phase at the 

time, and the following method solves for one phase.  

But the non-linear method is based on being able to perform the trial on two and two lines in 

three trials, and each multiphase meter stream is denoted A, B and C and the separator is 

denoted ref. And equation (4.1) shows the apparent multi stream k-factor for stream A and B, 

for a trial. What is also worth noticing here is that the k is the reciprocal of the used k-factor.  

𝑘𝐴𝐵 = 
∫ 𝑚̇𝐴 𝑑𝑡 + ∫ 𝑚̇𝐵 𝑑𝑡

∫ 𝑚̇𝑟𝑒𝑓 𝑑𝑡
=  

𝑚𝐴 + 𝑚𝐵

𝑚𝑟𝑒𝑓
 (4.1) 

 

And from the balance laws governing the system 𝑚𝑟𝑒𝑓 contain the information of the actual / 

real / reference sum of the measured which is called 𝑚̃𝐴and  𝑚̃𝐵, as shown in equation (4.2) 

which is inserted into equation (4.3) 

 𝑚𝑟𝑒𝑓 = 𝑚̃𝐴 + 𝑚̃𝐵 (4.2) 

 

𝑘𝐴𝐵 = 
𝑚𝐴 + 𝑚𝐵

𝑚𝑟𝑒𝑓
=

𝑚𝐴

𝑚̃𝐴 + 𝑚̃𝐵
+

𝑚𝐵

𝑚̃𝐴 + 𝑚̃𝐵
  (4.3) 

And through algebraic manipulation of (4.3) the reciprocal specific k-factor for each stream 

has appeared in equation (4.4) 

 

𝑘𝐴𝐵 =
1

𝑚̃𝐴
𝑚𝐴

+
𝑚̃𝐵
𝑚𝐴

+
1

𝑚̃𝐵
𝑚𝐵

+
𝑚̃𝐴
𝑚𝐵

 =  
1

1
𝐾𝐴

+
𝑚̃𝐵
𝑚𝐴

+
1

1
𝐾𝐵

+
𝑚̃𝐴
𝑚𝐵

 
(4.4) 

And further through algebraic manipulations the specific k-factor for a meter can be 

calculated through equation (4.5). but it still contains some of the intrinsic values of 𝑚𝑟𝑒𝑓 

𝐾𝐴 =
1

(𝑘𝐴𝐵 −
1

1
𝐾𝐵

+
𝑚̃𝐴

𝑚𝐵

)

−1

+
𝑚̃𝐵
𝑚𝐴

 

(4.5) 

These 𝑚𝑟𝑒𝑓 with the tilde mark, are basically the corrected values of the multiphase meter. 

And the values are realized through the value the method is supposed to solve for. 

𝑚𝑟𝑒𝑓 = 𝑚̃𝐴 + 𝑚̃𝐵 = 𝑚𝐴𝑘𝐴 + 𝑚𝐵𝑘𝐵  →
𝑚𝐴

𝑘𝐴
= 𝑚̃𝐴 ,

𝑚𝐵

𝑘𝐵
= 𝑚̃𝐵   (4.6) 

And by using the measured values in (4.6) and inserting them into (4.5) 



  Non-linear solver 

16 

 

𝐾𝐴 =
1

(

 
 

𝑘𝐴𝐵 −
1

1
𝐾𝐵

+
(
𝑚𝐴
𝑘𝐴

)

𝑚𝐵 )

 
 

−1

+
(𝑚𝑟𝑒𝑓 − 𝑚̃𝐴)

𝑚𝐴

=
1

(𝑘𝐴𝐵 −
1

1
𝐾𝐵

+
1
𝑘𝐴

𝑚𝐴
𝑚𝐵

)

−1

+
𝑚𝑟𝑒𝑓

𝑚𝐴
−

1
𝐾𝐴

 

(4.7) 

And through the final manipulation of the variables an equation with just a single unknown / 

non measured variable has been achieved as shown in equation (4.7) 

But for the order the measured values going into the method are turned into parameters for 

the non-linear solver equation 4.8 shows the parameters used in each function. 

 𝛼𝐴𝐵 = 𝑘𝐴𝐵 = 
𝑚𝐴+𝑚𝐵

𝑚𝑟𝑒𝑓
 = 

∫ 𝑚̇𝐴𝑑𝑡+ ∫ 𝑚̇𝐵𝑑𝑡

∫ 𝑚̇𝑟𝑒𝑓𝑑𝑡
 

𝛽𝐴𝐵 = =  
𝑚𝐴

𝑚𝐵
=

∫ 𝑚̇𝐴 𝑑𝑡

∫ 𝑚̇𝐵 𝑑𝑡
  

𝛾𝐴𝐵 =
𝑚𝑟𝑒𝑓

𝑚𝐴

=
∫ 𝑚̇𝑟𝑒𝑓 𝑑𝑡

∫ 𝑚̇𝐴 𝑑𝑡
  

(4.8) 

 

Then the final equation for an instance is solved all three combinations of values, where the 

k-factor is the only unknow as shown for one instance in equation (4.9). 

𝐾𝐴 =
1

( 𝛼𝐴𝐵 −
1

1
𝐾𝐵

+
1
𝑘𝐴

𝛽𝐴𝐵

)

−1

+ 𝛾𝐴𝐵 −
1
𝐾𝐴

 

(4.9) 

An implementation of the solver in python compared to the linear method compared to each 

other is shown in Figure 12. But the 𝐾𝐴 in this method is the reciprocal of the actual k-factor. 

And by setting all the function to equal zeros a non-linear root solver can be used, and Python 

framework has a library called SciPy’s3 which has a popular optimize library that have root 

solving / optimizations algorithms implemented and available for the use to solve the non-

linear solver. 

 

                                                 

3See SciPy’s documentation of the method https://docs.scipy.org/doc/scipy/reference/optimize.html, but it is 

numerically based optimization algorithm, if this is of interest also see Newtons-Raphson method and Secant 

method 

https://docs.scipy.org/doc/scipy/reference/optimize.html


  Non-linear solver 

17 

 

 

Figure 12 - Implementation of the non-linear solver, compared to the result to the linear 

method, and the results achieve are the same 

 



  Non-linear solver 

18 

 

Source Code 
 

Source Code – Parallel calibration 

Source Code – Calibration Statistics 

 

  



  Source Code – Parallel calibration 

19 

 

5 Source Code – Parallel calibration 
Printed 12/05-2019 

1. # -*- coding: utf-8 -*-   
2. """  
3. Created on for Stig Harald Gustavsens Master Thesis - 2019  
4.   
5. @author: stig  
6. """   
7. #Adding standard use libraries   
8.    
9. import numpy as np   
10. import pandas as pd   
11. import matplotlib.pyplot as plt   
12. import matplotlib.dates as mdates   
13. import seaborn as sns   
14.    
15. from datetime import datetime   
16. from datetime import timedelta   
17.    
18. import os  #For file handeling and saving   
19. import copy   
20.    
21. from Streams import *   
22. from DatapointsToolbox import *   
23. from CalibrationStatistics import *   
24.    
25.    
26.    
27. """  
28.   
29. ------------ Parralell Calibration Methods -------------------------  
30.   
31. """   
32.    
33.    
34. def find_nearest(array, value):   
35.     """ This method uses the powers of numpy and takes an array and find and returns t

he index of the closes value given as a parameter """   
36.     array = np.asarray(array)   
37.     idx = (np.abs(array - value)).argmin()   
38.     return idx   
39.    
40. def SyncPhase(elapsed):   
41.     """  
42.     This method gets a list of the elapsed times for the a phase form each of the stre

ams and   
43.     syncronizes the elapsed time of the streams towards the stream with the smallest n

umber of data points,  
44.     and fills this into a matrix of values of the inedcis witch correspond to each of 

the syncronized timestamp  
45.     """   
46.     #find the lowest index.   
47.     Smallest = np.inf   
48.     cnt= 0   
49.     for times in elapsed:   
50.         if (len(times)<Smallest):   
51.             smallest = len(times)   
52.             SmallestStream = cnt   
53.         cnt = cnt+1   
54.    
55.     #Find the smallest difference between elapsedtime   
56.     cnt2 = 0   



  Source Code – Parallel calibration 

20 

 

57.     for times in elapsed:   
58.         if(len(times)==smallest):   
59.             v = np.arange(0,smallest)  #Creates  vectors for the indexes   
60.         else:   
61.             v = np.zeros(smallest)   
62.            
63.         if(cnt2>=1):   
64.             v = np.vstack((last,v))   
65.            
66.         last = v   
67.         cnt2 = cnt2+1   
68.    
69.     indecies = v#.transpose()   
70.        
71.     Melapsed = elapsed[SmallestStream]   
72.        
73.     cnt3 = 0   
74.     for stream in elapsed:   
75.         if(len(stream) == len(Melapsed)): #Jump over the referance stream   
76.             continue   
77.         else:   
78.             for i in range(len(Melapsed)):   
79.                 indecies[cnt3,i] = find_nearest(stream,Melapsed[i])   
80.            
81.         cnt3 = cnt3+1   
82.        
83.     return indecies.transpose()   
84.    
85.    
86. def SyncTrial(Streams):   
87.     """  
88.     This Method goes systematically through all the Phases and get the syncronized ind

ex values from the SyncPhase for each of the phases  
89.       
90.     """   
91.        
92.     Oilelapsed = []   
93.     Gaselapsed = []   
94.     Wtrelapsed = []   
95.    
96.     #Vectorize elapsed time   
97.     for stream in Streams:   
98.         Oilelapsed.append(stream.OilMass.data['elapsed'].values)   
99.         Gaselapsed.append(stream.GasMass.data['elapsed'].values)   
100.         Wtrelapsed.append(stream.WtrMass.data['elapsed'].values)   
101.    
102.     SyncdOil = SyncPhase(Oilelapsed)   
103.     SyncdGas = SyncPhase(Gaselapsed)   
104.     SyncdWtr = SyncPhase(Wtrelapsed)   
105.        
106.     return(SyncdOil,SyncdGas,SyncdWtr)   
107.    
108.    
109. def GetRuns(SyncedPhases, Streams):   
110.     """  
111.     This Uses the Syncronized phases of each of the streams and build up the tiral Mat

rices for each of the phases  
112.     And returns The a touple of Each Phase in the streams, to create the values for th

e streams in a given paralell calibration Trial.  
113.     """   
114.        
115.     (SyOil,SyGas,SyWtr) = SyncedPhases   
116.        
117.     Orun = np.zeros(SyOil.shape)   
118.     for i in range(len(Orun[:,1])):   
119.         j = 0   



  Source Code – Parallel calibration 

21 

 

120.         for stream in Streams:   
121.             Orun[i,j] = stream.OilMass.data.loc[SyOil[i,j],'cumulative']   
122.             j = j+1   
123.        
124.     Grun = np.zeros(SyGas.shape)   
125.     for i in range(len(SyGas[:,1])):   
126.         j = 0   
127.         for stream in Streams:   
128.             Grun[i,j] = stream.GasMass.data.loc[SyGas[i,j],'cumulative']   
129.             j = j+1   
130.        
131.     Wrun = np.zeros(SyWtr.shape)   
132.     for i in range(len(SyWtr[:,1])):   
133.         j = 0   
134.         for stream in Streams:   
135.             Wrun[i,j] = stream.WtrMass.data.loc[SyWtr[i,j],'cumulative']   
136.             j = j+1   
137.        
138.     return (Orun,Grun,Wrun)   
139.    
140. def ParralellTrial(Streams):   
141.     """ This method performes a generation of a paralell trial data where the"""   
142.     TrialMatrixes = GetRuns(SyncTrial(Streams),Streams)   
143.     return(TrialMatrixes)   
144.    
145.    
146.    
147. def GetElapsed(SyncedPhases, Streams):    
148.     """Returns a parralell calibration elapsed times for each data point, mainly to sy

ncronize data when plotting and correctly placing the x-axis"""   
149.     (SyOil,SyGas,SyWtr) = SyncedPhases   
150.        
151.     Orun = np.zeros(SyOil.shape)   
152.     for i in range(len(Orun[:,1])):   
153.         j = 0   
154.         for stream in Streams:   
155.             Orun[i,j] = stream.OilMass.data.loc[SyOil[i,j],'elapsed']   
156.             j = j+1   
157.        
158.     Grun = np.zeros(SyGas.shape)   
159.     for i in range(len(SyGas[:,1])):   
160.         j = 0   
161.         for stream in Streams:   
162.             Grun[i,j] = stream.GasMass.data.loc[SyGas[i,j],'elapsed']   
163.             j = j+1   
164.        
165.     Wrun = np.zeros(SyWtr.shape)   
166.     for i in range(len(SyWtr[:,1])):   
167.         j = 0   
168.         for stream in Streams:   
169.             Wrun[i,j] = stream.WtrMass.data.loc[SyWtr[i,j],'elapsed']   
170.             j = j+1   
171.        
172.     return (Orun,Grun,Wrun)   
173.    
174.       
175. def ParralellTrialElapsed(Streams): #Returs a tuple of elapsed times for each datapoin

t in a parralell calibration.   
176.     TrialElapsedMatrixes = GetElapsed(SyncTrial(Streams),Streams)   
177.     return(TrialElapsedMatrixes)   
178.    
179. """  """   
180.    
181. def LinearSolver(A,B,C,ref):   
182.    
183.     TheMatrix = np.vstack((A,B,C))   



  Source Code – Parallel calibration 

22 

 

184.     TheMatrixInverse = np.linalg.inv(TheMatrix) #May become singular and non-
invertable?   

185.     K = np.dot(TheMatrixInverse, ref)   
186.     return K   
187. """  
188.   
189.   
190. Under her kommer det som skal pakkes inn i egen Parralell kalibrerings klasse.  
191.   
192.   
193. """   
194. def FindStreamNames(TrialStreams):   
195.     """  
196.     A small method wich goes trough a set of Trial streams and separates out all the s

treams in each trial and collect all the names of the streams  
197.     """   
198.     StreamNames = []   
199.     for Trial in TrialStreams:   
200.         for Stream in Trial:   
201.             if Stream.name not in StreamNames:   
202.                 StreamNames.append(Stream.name)        
203.        
204.     StreamNames.remove('Third Party Separator')   
205.     return StreamNames   
206.        
207. def BuildMFrame(TrialStreams):   
208.     """  
209.     This method finds all the stream names and checks the streams inside the list of a

lle the TrialStreams and the order to and  
210.     and arranges and creates a M matrix from of zeros and ones in order to know witch 

values to be filled later.   
211.     where 0 remain zero and ones will be filled with cumulative values for the solver.

  
212.       
213.     """   
214.     StreamNames = FindStreamNames(TrialStreams)   
215.     first = True   
216.     for Trial in TrialStreams:   
217.         #Checker = StreamNames   
218.         row = np.zeros(len(StreamNames))   
219.            
220.         for Stream in Trial:   
221.             if(Stream.name == "Third Party Separator"): #Skips the refreance measurmen

t since this measurment goes to the lowercase m vector (refreance vector)   
222.                 continue   
223.             StreamIndex = StreamNames.index(Stream.name)   
224.             row[StreamIndex] = 1   
225.                
226.         if(first):   
227.             M_frame = row   
228.    
229.         else:   
230.             M_frame = np.vstack((M_frame,row))   
231.         first = False   
232.    
233.     return M_frame   
234.    
235. def GetM_m(Frame, PTrial, phase):   
236.     """  
237.     Creats a list of tuples of M matrix and m vectors witch can be inserted into the p

arralell calibration solver.  
238.     """   
239.     Mm = []   
240.     for i in range(0, min(len(trial[phase]) for trial in PTrial)):   
241.         #Do the thing   
242.             



  Source Code – Parallel calibration 

23 

 

243.         M = Frame.astype(float)  #Copys the frame and sets values as float variables i
nto the M matrix where the ones will be filled and the zeros will remain zero   

244.         m = np.zeros(len(Frame)) #Creates a m vector for the separator accumulated val
ues for the given trial instance.   

245.         for j in range(len(Frame)):   
246.                
247.             cnt = 0           
248.             for k in range(len(Frame[j])):   
249.                 if (Frame[j,k] == 0):  #If the value is zero meas the stream has not b

een flowing towards the separator this stream   
250.                     continue    
251.                 else:   
252.                     M[j,k] = PTrial[j][phase][i][cnt] #Sets the give accumulated value

 for the spesific stream into the M matrix   
253.                     cnt = cnt + 1 # A count whitch takes care of the correct placement

 in the M matrix as well as inn the m vector   
254.             m[j] = PTrial[j][phase][i][cnt]  #Fills the referance accumulated from the

 separator into m vector   
255.         Mm.append((M,m))   
256.     return Mm   
257.    
258.    
259. def Solver(Mm): #Linear solver the parameter is a touple of M matrix and m vector   
260.     """  
261.     Solves the system of equation to get the kalibration values   
262.     """   
263.     TheMatrix, m = Mm #Tuple unpacking of matrix and vector   
264.     TheMatrixInverse = np.linalg.inv(TheMatrix) #May become singular and non-

invertable?   
265.     K = np.dot(TheMatrixInverse, m)   
266.     return K   
267.    
268. def ParralellCalibrate(TrialStreams):   
269.     """  
270.     A general solver witch get a list of TrialStreams and continues on to solve parral

ell calibration for the spesific instance.  
271.     """   
272.     Trials = []   
273.     for TrialStream in TrialStreams:    
274.         Trials.append(ParralellTrial(TrialStream)) #Syncronicing timestamps and locati

ng data.   
275.        
276.     Frame = BuildMFrame(TrialStreams) #Buids the M frame for the    
277.        
278.     Kfactors = []   
279.     for phase in range(3): # 3 phases Oil, Gas and Water in that order.   
280.         Mm = GetM_m(Frame,Trials,phase) #Gets a touple of the M matrix and m phase    
281.         first = True   
282.         for i in range(1,len(Mm)):   
283.             try:   
284.                 K_i = Solver(Mm[i])   
285.             except:   
286.                 print("Singular matrix at "+str(i)+"iteration")   
287.                 continue   
288.                
289.             if(first):   
290.                 K = K_i   
291.             else:   
292.                 K = np.vstack((K,K_i))   
293.             first = False   
294.                
295.         Kfactors.append(K)   
296.     return Kfactors   
297.        
298. """  
299.   



  Source Code – Parallel calibration 

24 

 

300. Ferdig med parralell kalibrering metoden  
301.   
302.   
303. """   
304. class ParralellCalibration:        
305.     """   
306.       
307.     This is a Class to create an istance of a Calibration object, in order to simplify

 the reporting and documentation of the method as well as further analysis of data.  
308.       
309.     """   
310.     def __init__(self,TrialStreams):   
311.            
312.         #Static Values   
313.         self.phases = ["Oil","Gas","Water"]   
314.         self.Colors = ['#000000','#DF0071','#00A030','#EE7900','#777777',' #000028','#

B9B9B9','#E6E6E6']   
315.         self.DateCalculated = datetime.now()   
316.            
317.         #Perform Parralell Calibration   
318.         self.StreamNames = FindStreamNames(TrialStreams)   
319.         self.TrialStreams = TrialStreams   
320.            
321.         #   
322.         # Add order Streams in trial funksjon here! so that the streams come in the co

rrect order for the algorithm   
323.         #   
324.            
325.         self.Elapsed = []   
326.         for TrialStream in TrialStreams:    
327.             self.Elapsed.append(ParralellTrialElapsed(TrialStream)) #Getting timestamp

s of Elapsed time   
328.         self.Kfaktors = ParralellCalibrate(TrialStreams)   
329.         self.frame = BuildMFrame(TrialStreams) #Buids the M frame for the   
330.            
331.         #Storeing the final k-factor - just the last instance.   
332.         self.lastKfactors = []   
333.         for i in range(len(self.StreamNames)):   
334.             self.lastKfactors.append(np.array([self.Kfaktors[0][len(self.Kfaktors[0])-

1,i],self.Kfaktors[1][len(self.Kfaktors[1])-
1,i],self.Kfaktors[2][len(self.Kfaktors[2])-1,i]]))   

335.            
336.            
337.         #Parralell calibration excecuted.   
338.                
339.     def Plot(self,save=False):   
340.         for i in range(len(self.StreamNames)):   
341.             plt.plot(self.Kfaktors[0][50:,i], label ='Oil', color='#DF0071')   
342.             plt.plot(self.Kfaktors[1][50:,i], label = 'Gas', color='#00A030')   
343.             plt.plot(self.Kfaktors[2][50:,i], label ='Water',color='#EE7900')   
344.             plt.xlabel('Runs')   
345.             plt.ylabel('K-factor')   
346.             plt.title(self.StreamNames[i]+' calibration')   
347.             plt.legend()   
348.             plt.grid()   
349.             plt.show()   
350.             plt.clf()#Clares all the axis in the figure for a new iteration of plottin

g   
351.             if(save):   
352.                 plt.savefig(self.StreamNames[i]+"_Kfactors.png")   
353.             plt.show()    
354.                
355.        
356.     def PlotStreams(self,save=False,figuresize=(15,10)):   
357.         """  



  Source Code – Parallel calibration 

25 

 

358.         This Method Plots the Flowrates in the matrix for for each of the trial includ
ing the separator  

359.         """   
360.         for phase in range(len(self.phases)): #For Each Phase   
361.             SquareMatrixSize = len(self.Elapsed)   
362.             fig, ax = plt.subplots(SquareMatrixSize,SquareMatrixSize+1,figsize=figures

ize)   
363.                
364.             fig.suptitle(self.phases[phase]+" Parralell calibration mass flow rate dat

a",fontsize=15)   
365.             for i in range(SquareMatrixSize):  # For each Trial    
366.                 cnt = 0   
367.                 for j in range(SquareMatrixSize+1): # For each column in axis matrix  

  
368.                     try:   
369.                         #Plotting the Separator values   
370.                         if(type(self.TrialStreams[i][cnt]) == SeparatorStreams):   
371.                             if(i==0): #Sets the name of the stream at the top.   
372.                                 ax[i,SquareMatrixSize].set_title(self.TrialStreams[i][

cnt].name)   
373.                                
374.                             #Checks the phase and plots accordingly   
375.                             if(self.phases[phase]=="Oil" and self.TrialStreams[i][cnt]

.name == 'Third Party Separator'):   
376.                                 ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].

OilMass.data['value'],color=self.Colors[phase])   
377.                                    
378.                             if(self.phases[phase]=="Gas" and self.TrialStreams[i][cnt]

.name == 'Third Party Separator'):   
379.                                 ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].

GasMass.data['value'],color=self.Colors[phase])   
380.                                    
381.                             if(self.phases[phase]=="Water"and self.TrialStreams[i][cnt

].name == 'Third Party Separator'):     
382.                                 ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].

WtrMass.data['value'],color=self.Colors[phase])   
383.                                
384.                             cnt= cnt+1   
385.                             continue   
386.                        
387.                        
388.                                           
389.                         if(j<SquareMatrixSize): #If within the MPFM Streams and not in

 the separators   
390.                             if(i==0):   
391.                                 ax[0,j].set_title(self.StreamNames[j])   
392.                             if(self.frame[i,j]==0): #If it is Zero then no need to plo

t, and jumt to next axsis with incrementing the trial, because the trial has no been p
lotted   

393.                                 ax[i,j].set_xticklabels([]) #removing the x ticks on x
axis   

394.                                 ax[i,j].set_yticklabels([]) #removing the y ticks on y
axis   

395.                                 continue   
396.                             else:   
397.                                 TheStreamIndex = self.StreamNames.index(self.TrialStre

ams[i][cnt].name)   
398.                                 #TrialStreams[i][j].OilMass.data['cumulative']   
399.                                 if(self.phases[phase]=="Oil"):   
400.                                     ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt

].OilMass.data['value'],color=self.Colors[phase])   
401.                                 if(self.phases[phase]=="Gas"):   
402.                                     ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt

].GasMass.data['value'],color=self.Colors[phase])   
403.                                 if(self.phases[phase]=="Water"):     



  Source Code – Parallel calibration 

26 

 

404.                                     ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt
].WtrMass.data['value'],color=self.Colors[phase])   

405.                         cnt = cnt+1   
406.                    
407.                     except IndexError:   
408.                         cnt = cnt+1   
409.                         continue   
410.             if(save):   
411.                 fig.savefig(title+".png")   
412.             fig.show()    
413.    
414.     def PlotCumulativeMatrix(self,save=False,figuresize=(12,8)):   
415.         """  
416.         This Method Plots the Flowrates in the matrix for for each of the trial includ

ing the separator  
417.         """   
418.         for phase in range(len(self.phases)): #For Each Phase   
419.             SquareMatrixSize = len(self.Elapsed)   
420.             fig, ax = plt.subplots(SquareMatrixSize,SquareMatrixSize+1,figsize=figures

ize)   
421.                
422.             fig.suptitle(self.phases[phase]+" Parralell calibration mass flow rate dat

a",fontsize=15)   
423.             for i in range(SquareMatrixSize): #For each Trial    
424.                 cnt = 0   
425.                 for j in range(SquareMatrixSize+1): #For each Stream in Trial / column

 in axis matrix   
426.                     try:   
427.                         #Plotting the Separator values   
428.                         if(type(self.TrialStreams[i][cnt]) == SeparatorStreams):   
429.                             if(i==0): #Sets the name of the stream at the top.   
430.                                 ax[i,SquareMatrixSize].set_title(self.TrialStreams[i][

cnt].name)   
431.                                
432.                             #Checks the phase and plots accordingly   
433.                             if(self.phases[phase]=="Oil" and self.TrialStreams[i][cnt]

.name == 'Third Party Separator'):   
434.                                 ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].

OilMass.data['cumulative'],color=self.Colors[phase])   
435.                                    
436.                             if(self.phases[phase]=="Gas" and self.TrialStreams[i][cnt]

.name == 'Third Party Separator'):   
437.                                 ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].

GasMass.data['cumulative'],color=self.Colors[phase])   
438.                                    
439.                             if(self.phases[phase]=="Water"and self.TrialStreams[i][cnt

].name == 'Third Party Separator'):     
440.                                 ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].

WtrMass.data['cumulative'],color=self.Colors[phase])   
441.                                
442.                             cnt= cnt+1   
443.                             continue   
444.                        
445.                        
446.                         if(j<SquareMatrixSize): #If within the MPFM Streams and not in

 the separators   
447.                             if(i==0):   
448.                                 ax[i,j].set_title(self.StreamNames[j])   
449.                             if(self.frame[i,j]==0): #If it is Zero then no need to plo

t, and jumt to next axsis with incrementing the trial, because the trial has no been p
lotted   

450.                                 ax[i,j].set_xticklabels([]) #removing the x ticks on x
axis   

451.                                 ax[i,j].set_yticklabels([]) #removing the y ticks on y
axis   

452.                                 continue   



  Source Code – Parallel calibration 

27 

 

453.                             else:   
454.                                 TheStreamIndex = self.StreamNames.index(self.TrialStre

ams[i][cnt].name)   
455.                                 #TrialStreams[i][j].OilMass.data['cumulative']   
456.                                 if(self.phases[phase]=="Oil"):   
457.                                     ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt

].OilMass.data['cumulative'],color=self.Colors[phase])   
458.                                 if(self.phases[phase]=="Gas"):   
459.                                     ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt

].GasMass.data['cumulative'],color=self.Colors[phase])   
460.                                 if(self.phases[phase]=="Water"):     
461.                                     ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt

].WtrMass.data['cumulative'],color=self.Colors[phase])   
462.                         cnt = cnt+1   
463.                    
464.                     except IndexError:   
465.                         cnt = cnt+1   
466.                         continue   
467.             #fig.tight_layout()   
468.             fig.show()    
469.                
470.                
471.                
472.     def PlotOneCumulativeMatrix(self,save=False,figuresize=(12,8)):   
473.         """  
474.         This Method Plots the Flowrates in the matrix for for each of the trial includ

ing the separator  
475.         """   
476.         titlenames = FindStreamNames(self.TrialStreams)   
477.         legend = True   
478.         SquareMatrixSize = len(self.Elapsed)   
479.         fig, ax = plt.subplots(SquareMatrixSize,SquareMatrixSize+1,figsize=figuresize)

   
480.            
481.         fig.suptitle(" Parralell calibration cumulative mass [KiloTonnes]",fontsize=15

)   
482.         for i in range(SquareMatrixSize): #For each Trial    
483.             cnt = 0   
484.             for j in range(SquareMatrixSize+1): #For each Stream in Trial / column in 

axis matrix   
485.                 try:   
486.                     #Plotting the Separator values   
487.                     if(type(self.TrialStreams[i][cnt]) == SeparatorStreams):   
488.                         if(i==0): #Sets the name of the stream at the top.   
489.                             ax[i,SquareMatrixSize].set_title(self.TrialStreams[i][cnt]

.name)   
490.                            
491.                         ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].OilMass.

data['cumulative']/1000/1000,color=self.Colors[0])   
492.                         ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].GasMass.

data['cumulative']/1000/1000,color=self.Colors[1])   
493.                         ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].WtrMass.

data['cumulative']/1000/1000,color=self.Colors[2])   
494.                         ax[i,j].set_xticklabels([])   
495.                            
496.                         cnt= cnt+1   
497.                         continue   
498.                    
499.                
500.                     if(j<SquareMatrixSize): #If within the MPFM Streams and not in the

 separators   
501.                         if(self.StreamNames[j] in titlenames and len(titlenames) != 0)

:   
502.                             ax[0,j].set_title(self.StreamNames[j])   
503.                             titlenames.remove(self.StreamNames[j])   
504.                                



  Source Code – Parallel calibration 

28 

 

505.                         if(self.frame[i,j]==0): #If it is Zero then no need to plot, a
nd jumt to next axsis with incrementing the trial, because the trial has no been plott
ed   

506.                             if(legend):       
507.                                 ax[i,j].plot([],[],label='Oil',color=self.Colors[0])   
508.                                 ax[i,j].plot([],[],label='Gas',color=self.Colors[1])   
509.                                 ax[i,j].plot([],[],label='Water',color=self.Colors[2])

   
510.                                 ax[i,j].legend(fontsize = 'x-large')   
511.                                 legend = False   
512.                             ax[i,j].set_xticklabels([]) #removing the x ticks on xaxis

   
513.                             ax[i,j].set_yticklabels([]) #removing the y ticks on yaxis

   
514.                             continue   
515.                         else:   
516.                             TheStreamIndex = self.StreamNames.index(self.TrialStreams[

i][cnt].name)   
517.                             #TrialStreams[i][j].OilMass.data['cumulative']   
518.                             ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt].OilMas

s.data['cumulative']/1000/1000,color=self.Colors[0])   
519.                             ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt].GasMas

s.data['cumulative']/1000/1000,color=self.Colors[1])   
520.                             ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt].WtrMas

s.data['cumulative']/1000/1000,color=self.Colors[2])   
521.                             ax[i,j].set_xticklabels([])   
522.                     cnt = cnt+1   
523.                
524.                 except IndexError:   
525.                     cnt = cnt+1   
526.                     continue   
527.         if(save):   
528.             fig.savefig(title+".png")   
529.         fig.show()    
530.    
531.     def PlotOneStreamMatrix(self,save=False,figuresize=(12,8)):   
532.         """  
533.         This Method Plots the Flowrates in the matrix for for each of the trial includ

ing the separator  
534.         """   
535.         titlenames = FindStreamNames(self.TrialStreams)   
536.         legend = True   
537.         SquareMatrixSize = len(self.Elapsed)   
538.         fig, ax = plt.subplots(SquareMatrixSize,SquareMatrixSize+1,figsize=figuresize)

   
539.            
540.         fig.suptitle(" Parralell calibration mass flow rate [Tonnes/hour]",fontsize=15

)   
541.         for i in range(SquareMatrixSize): #For each Trial    
542.             cnt = 0   
543.             for j in range(SquareMatrixSize+1): #For each Stream in Trial / column in 

axis matrix   
544.                 try:   
545.                     #Plotting the Separator values   
546.                     if(type(self.TrialStreams[i][cnt]) == SeparatorStreams):   
547.                         if(i==0): #Sets the name of the stream at the top.   
548.                             ax[i,SquareMatrixSize].set_title(self.TrialStreams[i][cnt]

.name)   
549.                            
550.                         ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].OilMass.

data['timestamp'],self.TrialStreams[i][cnt].OilMass.data['value']/1000,color=self.Colo
rs[0],zorder=1)   

551.                         ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].GasMass.
data['timestamp'],self.TrialStreams[i][cnt].GasMass.data['value']/1000,color=self.Colo
rs[1],zorder=2)   



  Source Code – Parallel calibration 

29 

 

552.                         ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].WtrMass.
data['timestamp'],self.TrialStreams[i][cnt].WtrMass.data['value']/1000,color=self.Colo
rs[2],zorder=0)   

553.                         ax[i,j].set_xticklabels([])   
554.                            
555.                         cnt= cnt+1   
556.                         continue   
557.                    
558.                
559.                     if(j<SquareMatrixSize): #If within the MPFM Streams and not in the

 separators   
560.                         if(self.StreamNames[j] in titlenames and len(titlenames) != 0)

:   
561.                             ax[0,j].set_title(self.StreamNames[j])   
562.                             titlenames.remove(self.StreamNames[j])   
563.                         if(self.frame[i,j]==0): #If it is Zero then no need to plot, a

nd jumt to next axsis with incrementing the trial, because the trial has no been plott
ed   

564.                             if(legend):       
565.                                 ax[i,j].plot([],[],label='Oil',color=self.Colors[0])   
566.                                 ax[i,j].plot([],[],label='Gas',color=self.Colors[1])   
567.                                 ax[i,j].plot([],[],label='Water',color=self.Colors[2])

   
568.                                 ax[i,j].legend(fontsize = 'x-large')   
569.                                 legend = False   
570.                             ax[i,j].set_xticklabels([]) #removing the x ticks on xaxis

   
571.                             ax[i,j].set_yticklabels([]) #removing the y ticks on yaxis

   
572.                             continue   
573.                         else:   
574.                             TheStreamIndex = self.StreamNames.index(self.TrialStreams[

i][cnt].name)   
575.                             #TrialStreams[i][j].OilMass.data['cumulative']   
576.                             ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt].OilMas

s.data['timestamp'],self.TrialStreams[i][cnt].OilMass.data['value']/1000,color=self.Co
lors[0],zorder=1)   

577.                             ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt].GasMas
s.data['timestamp'],self.TrialStreams[i][cnt].GasMass.data['value']/1000,color=self.Co
lors[1],zorder=2)   

578.                             ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt].WtrMas
s.data['timestamp'],self.TrialStreams[i][cnt].WtrMass.data['value']/1000,color=self.Co
lors[2],zorder=0)   

579.                             ax[i,j].set_xticklabels([])   
580.                     cnt = cnt+1   
581.                
582.                 except IndexError:   
583.                     cnt = cnt+1   
584.                     continue   
585.         if(save):   
586.             fig.savefig(title+".png")   
587.         fig.show()    
588.    
589.     def PlotMatrix(self,save=False,figuresize=(15,10)):   
590.         """  
591.         This Method Plots the Cumulative Matrices used in the method  
592.         """   
593.         titlenames = FindStreamNames(self.TrialStreams)   
594.         for phase in range(len(self.phases)): #For Each Phase   
595.             SquareMatrixSize = len(self.Elapsed)   
596.             fig, ax = plt.subplots(SquareMatrixSize,SquareMatrixSize,figsize=figuresiz

e)   
597.                
598.             fig.suptitle(self.phases[phase]+" Parralell calibration trial matrix data"

,fontsize=15)   
599.             for i in range(SquareMatrixSize): #For each Trial    



  Source Code – Parallel calibration 

30 

 

600.                 cnt=0   
601.                 for j in range(SquareMatrixSize): #For each Stream in Trial   
602.                     if(self.StreamNames[j] in titlenames and len(titlenames) != 0):   
603.                         ax[0,j].set_title(self.StreamNames[j])   
604.                         titlenames.remove(self.StreamNames[j])   
605.                     if(self.frame[i,j]==0):   
606.                         ax[i,j].set_xticklabels([]) #removing the x ticks on xaxis   
607.                         ax[i,j].set_yticklabels([]) #removing the y ticks on yaxis   
608.                         continue   
609.                     else:   
610.                         if(self.TrialStreams[i][cnt].name not in self.StreamNames):   
611.                             continue #it is a separator stream.   
612.                         else:   
613.                             TheStreamIndex = self.StreamNames.index(self.TrialStreams[

i][cnt].name)   
614.                             #TrialStreams[i][j].OilMass.data['cumulative']   
615.                             if(self.phases[phase]=="Oil"):   
616.                                 ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt].Oi

lMass.data['cumulative'],color=self.Colors[phase])   
617.                             if(self.phases[phase]=="Gas"):   
618.                                 ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt].Ga

sMass.data['cumulative'],color=self.Colors[phase])   
619.                             if(self.phases[phase]=="Water"):     
620.                                 ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt].Wt

rMass.data['cumulative'],color=self.Colors[phase])   
621.                             cnt = cnt +1   
622.             if(save):   
623.                 fig.savefig(title+".png")   
624.             fig.show()         
625.    
626.     def PlotStreamsIntVar(self,save=False,figuresize=(15,10)):   
627.         """  
628.         This Method Plots the Flowrates in the matrix for for each of the trial includ

ing the separator  
629.         """   
630.         titlenames = FindStreamNames(self.TrialStreams)   
631.         legend = True   
632.         for phase in range(1):  #Only need one output for entire calibration data. it 

is the -    
633.             SquareMatrixSize = len(self.Elapsed)   
634.             fig, ax = plt.subplots(SquareMatrixSize,SquareMatrixSize+1,figsize=figures

ize)   
635.             #fig.autofmt_xdate()   
636.                
637.             fig.suptitle("Parralell calibration process conditions",fontsize=15)   
638.             for i in range(SquareMatrixSize): #For each Trial    
639.                 cnt = 0   
640.                 for j in range(SquareMatrixSize+1): #For each Stream in Trial   
641.                     try:   
642.                         #Plotting the Separator values   
643.                         if(type(self.TrialStreams[i][cnt]) == SeparatorStreams):   
644.                             if(i==0): #Sets the name of the stream at the top.   
645.                                 ax[i,SquareMatrixSize].set_title(self.TrialStreams[i][

cnt].name)   
646.                                
647.                             #Checks the phase and plots accordingly   
648.                             if(self.phases[phase]=="Oil" and self.TrialStreams[i][cnt]

.name == 'Third Party Separator'):   
649.                                 ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].

wc['timestamp'],self.TrialStreams[i][cnt].wc['value'],label ='Water cut[Vol%]',color=s
elf.Colors[0])   

650.                                 ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].
SeparatorOilLevel['timestamp'],self.TrialStreams[i][cnt].SeparatorOilLevel['value'],la
bel ='Oil Level[%]',color=self.Colors[1])   



  Source Code – Parallel calibration 

31 

 

651.                                 ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].
SeparatorWaterLevel['timestamp'],self.TrialStreams[i][cnt].SeparatorWaterLevel['value'
],label ='Water Level[%]',color=self.Colors[2])   

652.                                 ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].
SeparatorPressure['timestamp'],self.TrialStreams[i][cnt].SeparatorPressure['value'],la
bel ='Pressure [Barg]',color=self.Colors[3])   

653.                                 ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].
SeparatorTemp['timestamp'],self.TrialStreams[i][cnt].SeparatorTemp['value'],label ='Te
mperatur [°C]',color=self.Colors[4])   

654.                                 #ax[i,SquareMatrixSize].legend()   
655.                                    
656.                                    
657.                             if(self.phases[phase]=="Gas" and self.TrialStreams[i][cnt]

.name == 'Third Party Separator'):   
658.                                 ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].

SeparatorPressure['timestamp'],self.TrialStreams[i][cnt].SeparatorPressure['value'],la
bel ='Pressure [Barg]',color=self.Colors[0])   

659.                                 ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].
SeparatorTemp['timestamp'],self.TrialStreams[i][cnt].SeparatorTemp['value'],label ='Te
mperatur [°C]',color=self.Colors[1])   

660.                                 ax[i,SquareMatrixSize].legend()   
661.                                    
662.                                    
663.                             if(self.phases[phase]=="Water"and self.TrialStreams[i][cnt

].name == 'Third Party Separator'):     
664.                                 ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].

wc['timestamp'],self.TrialStreams[i][cnt].wc['value'],label ='Water cut[Vol%]',color=s
elf.Colors[0])   

665.                                 ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].
SeparatorOilLevel['timestamp'],self.TrialStreams[i][cnt].SeparatorOilLevel['value'],la
bel ='Oil Level[%]',color=self.Colors[1])   

666.                                 ax[i,SquareMatrixSize].plot(self.TrialStreams[i][cnt].
SeparatorWaterLevel['timestamp'],self.TrialStreams[i][cnt].SeparatorWaterLevel['value'
],label ='Water Level[%]',color=self.Colors[2])   

667.                                 #ax[i,SquareMatrixSize].legend()   
668.                                
669.                             ax[i,SquareMatrixSize].set_xticklabels([]) #Removes the va

lues on the x-scale       
670.                             #ax[i,SquareMatrixSize].fmt_xdata = mdates.DateFormatter('

%d-%h')   
671.                             cnt= cnt+1   
672.                             continue   
673.                        
674.                     #self.SeparatorWaterLevel   
675.                                           
676.                         if(j<SquareMatrixSize): #If within the MPFM Streams and not in

 the separators   
677.                             if(self.StreamNames[j] in titlenames and len(titlenames) !

= 0):   
678.                                 ax[0,j].set_title(self.StreamNames[j])   
679.                                 titlenames.remove(self.StreamNames[j])   
680.                             if(self.frame[i,j]==0): #If it is Zero then no need to plo

t, and jumt to next axsis with incrementing the trial, because the trial has no been p
lotted   

681.                                    
682.                                 if(legend): #Plotting the legend in the first empty ma

trix cell    
683.                                     ax[i,j].plot([],[],label ='Water cut[Vol%]',color=

self.Colors[0])   
684.                                     ax[i,j].plot([],[],label ='Oil Level[%]',color=sel

f.Colors[1])   
685.                                     ax[i,j].plot([],[],label ='Water Level[%]',color=s

elf.Colors[2])   
686.                                     ax[i,j].plot([],[],label ='Pressure [Barg]',color=

self.Colors[3])   



  Source Code – Parallel calibration 

32 

 

687.                                     ax[i,j].plot([],[],label ='Temperatur [°C]',color=
self.Colors[4])   

688.                                     ax[i,j].legend(fontsize = 'x-large')   
689.                                     #ax[i,j].plot([],[],label ='Pressure [Barg]',color

=self.Colors[3])   
690.                                     legend = False   
691.                                                                  
692.                                    
693.                                 ax[i,j].set_xticklabels([]) #removing the x ticks on x

axis   
694.                                 ax[i,j].set_yticklabels([]) #removing the y ticks on y

axis   
695.                                 continue   
696.                             else:   
697.                                 TheStreamIndex = self.StreamNames.index(self.TrialStre

ams[i][cnt].name)   
698.                                 #TrialStreams[i][j].OilMass.data['cumulative']   
699.                                 if(self.phases[phase]=="Oil"):   
700.                                     ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt

].Pressure['timestamp'],self.TrialStreams[i][cnt].Pressure['value'],label ='Pressure [
Bar]',color=self.Colors[3])   

701.                                     ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt
].Temp['timestamp'],self.TrialStreams[i][cnt].Temp['value'],label ='Temperatur [°C]',c
olor=self.Colors[4])   

702.                                     #ax[i,TheStreamIndex].legend()   
703.                                 if(self.phases[phase]=="Gas"):   
704.                                     ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt

].Pressure['timestamp'],self.TrialStreams[i][cnt].Pressure['value'],label ='Pressure [
Bar]',color=self.Colors[3])   

705.                                     ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt
].Temp['timestamp'],self.TrialStreams[i][cnt].Temp['value'],label ='Temperatur [°C]',c
olor=self.Colors[1])   

706.                                     #ax[i,TheStreamIndex].legend()   
707.                                 if(self.phases[phase]=="Water"):     
708.                                     ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt

].Pressure['timestamp'],self.TrialStreams[i][cnt].Pressure['value'],label ='Pressure [
Bar]',color=self.Colors[3])   

709.                                     ax[i,TheStreamIndex].plot(self.TrialStreams[i][cnt
].Temp['timestamp'],self.TrialStreams[i][cnt].Temp['value'],label ='Temperatur [°C]',c
olor=self.Colors[1])   

710.                                     #ax[i,TheStreamIndex].legend()   
711.                                 ax[i,TheStreamIndex].set_xticklabels([]) #Removes the 

values on the x-scale   
712.                                 #ax[i,TheStreamIndex].fmt_xdata = mdates.DateFormatter

('%d-%h')   
713.                                    
714.                         cnt = cnt+1   
715.                    
716.                     except IndexError:   
717.                         cnt = cnt+1   
718.                         continue   
719.             if(save):   
720.                 fig.savefig(title+".png")   
721.             fig.show()         
722.    
723.     def PlotAccHist(self,n_bins=20,save=False,figuresize=(12,8)):   
724.         """  
725.         This Method Plots the Flowrates in the matrix for for each of the trial includ

ing the separator  
726.         """   
727.         titlenames = FindStreamNames(self.TrialStreams)   
728.         for phase in range(len(self.phases)): #For Each Phase   
729.             SquareMatrixSize = len(self.Elapsed)   
730.             fig, ax = plt.subplots(SquareMatrixSize,SquareMatrixSize+1,figsize=figures

ize)   
731.                



  Source Code – Parallel calibration 

33 

 

732.             fig.suptitle(self.phases[phase]+" Parralell calibration accumulator time d
eltas",fontsize=15)   

733.             for i in range(SquareMatrixSize): #For each Trial    
734.                 cnt = 0   
735.                 for j in range(SquareMatrixSize+1): #For each Stream in Trial / column

 in axis matrix   
736.                     try:   
737.                         #Plotting the Separator values   
738.                         if(type(self.TrialStreams[i][cnt]) == SeparatorStreams):   
739.                             if(i==0): #Sets the name of the stream at the top.   
740.                                 ax[i,SquareMatrixSize].set_title(self.TrialStreams[i][

cnt].name)   
741.                                
742.                             #Checks the phase and plots accordingly   
743.                             if(self.phases[phase]=="Oil" and self.TrialStreams[i][cnt]

.name == 'Third Party Separator'):   
744.                                 ax[i,SquareMatrixSize].hist(self.TrialStreams[i][cnt].

OilMass.data['dt'],color=self.Colors[phase], bins=n_bins)   
745.                                 Max = max(self.TrialStreams[i][cnt].OilMass.data['dt']

)   
746.                                 #ax[i,SquareMatrixSize].text('Highest time delta:'+str

(Max))   
747.                                    
748.                             if(self.phases[phase]=="Gas" and self.TrialStreams[i][cnt]

.name == 'Third Party Separator'):   
749.                                 ax[i,SquareMatrixSize].hist(self.TrialStreams[i][cnt].

GasMass.data['dt'],color=self.Colors[phase], bins=n_bins)   
750.                                 Max = max(self.TrialStreams[i][cnt].GasMass.data['dt']

)   
751.                                 #ax[i,SquareMatrixSize].text('Highest time delta:'+str

(Max))   
752.                                    
753.                             if(self.phases[phase]=="Water"and self.TrialStreams[i][cnt

].name == 'Third Party Separator'):     
754.                                 ax[i,SquareMatrixSize].hist(self.TrialStreams[i][cnt].

WtrMass.data['dt'],color=self.Colors[phase], bins=n_bins)   
755.                                 Max = max(self.TrialStreams[i][cnt].WtrMass.data['dt']

)   
756.                                 #ax[i,SquareMatrixSize].text('Highest time delta:'+str

(Max))   
757.                                    
758.                             ax[i,SquareMatrixSize].set_yscale('log')   
759.                             cnt= cnt+1   
760.                             continue   
761.                        
762.                        
763.                         if(j<SquareMatrixSize): #If within the MPFM Streams and not in

 the separators   
764.                             if(self.StreamNames[j] in titlenames and len(titlenames) !

= 0):   
765.                                 ax[0,j].set_title(self.StreamNames[j])   
766.                                 titlenames.remove(self.StreamNames[j])   
767.                             if(self.frame[i,j]==0): #If it is Zero then no need to plo

t, and jumt to next axsis with incrementing the trial, because the trial has no been p
lotted   

768.                                 ax[i,j].set_xticklabels([]) #removing the x ticks on x
axis   

769.                                 ax[i,j].set_yticklabels([]) #removing the y ticks on y
axis   

770.                                 continue   
771.                             else:   
772.                                 TheStreamIndex = self.StreamNames.index(self.TrialStre

ams[i][cnt].name)   
773.                                 #TrialStreams[i][j].OilMass.data['cumulative']   
774.                                 if(self.phases[phase]=="Oil"):   



  Source Code – Parallel calibration 

34 

 

775.                                     ax[i,TheStreamIndex].hist(self.TrialStreams[i][cnt
].OilMass.data['dt'],color=self.Colors[phase], bins=n_bins)   

776.                                     Max = max(self.TrialStreams[i][cnt].OilMass.data['
dt'])   

777.                                     #ax[i,i,TheStreamIndex].text('Highest time delta:'
+str(Max))   

778.                                 if(self.phases[phase]=="Gas"):   
779.                                     ax[i,TheStreamIndex].hist(self.TrialStreams[i][cnt

].GasMass.data['dt'],color=self.Colors[phase], bins=n_bins)   
780.                                     Max = max(self.TrialStreams[i][cnt].GasMass.data['

dt'])   
781.                                     #ax[i,i,TheStreamIndex].text('Highest time delta:'

+str(Max))   
782.                                 if(self.phases[phase]=="Water"):     
783.                                     ax[i,TheStreamIndex].hist(self.TrialStreams[i][cnt

].WtrMass.data['dt'],color=self.Colors[phase], bins=n_bins)   
784.                                     Max = max(self.TrialStreams[i][cnt].WtrMass.data['

dt'])   
785.                                     #ax[i,i,TheStreamIndex].text('Highest time delta:'

+str(Max))   
786.                             ax[i,TheStreamIndex].set_yscale('log')   
787.                         cnt = cnt+1   
788.                    
789.                     except IndexError:   
790.                         cnt = cnt+1   
791.                         continue   
792.                
793.             if(save):   
794.                 fig.savefig(title+".png")   
795.             fig.show()    
796.        
797.     def GetKfactors(self,Stream,Phase):   
798.         if(Stream in self.StreamNames):   
799.             streamIndex = self.StreamNames.index(Stream)   
800.         else:   
801.             print('Stream name not found')   
802.             return 'Stream name not found'   
803.         if(Phase in self.phases):   
804.             PhaseIndex = self.phases.index(Phase)   
805.         else:   
806.             print('Phase not found')   
807.             return 'phase not found'   
808.            
809.         return self.Kfaktors[PhaseIndex][:,streamIndex]   
810.            
811.        
812.     def PrintMethodReport(self):   
813.         """  
814.         This print out a report of the parralell calibration  
815.           
816.         """   
817.         for i in range(len(self.StreamNames)):   
818.             print("--------------------------"+self.StreamNames[i]+"------------------

-------")   
819.             print(" Oil K-factor = "+str(self.Kfaktors[0][len(self.Kfaktors[0])-

1,i]))   
820.             print(" Gas K-factor = "+str(self.Kfaktors[1][len(self.Kfaktors[1])-

1,i]))   
821.             print(" Water K-factor = "+str(self.Kfaktors[2][len(self.Kfaktors[2])-

1,i]))   
822.             print("--------------------------------------------------------")   
823.        
824.     def Statisics(self):   
825.            
826.         self.StatStreams = []   
827.         for i in range(len(self.StreamNames)):   



  Source Code – Parallel calibration 

35 

 

828.             Stream = []   
829.             Stream.append(stats(self.Kfaktors[0][0:,i],self.StreamNames[i], self.phase

s[0]))   
830.             Stream.append(stats(self.Kfaktors[1][0:,i],self.StreamNames[i], self.phase

s[1]))   
831.             Stream.append(stats(self.Kfaktors[2][0:,i],self.StreamNames[i], self.phase

s[2]))   
832.             self.StatStreams.append(Stream)   
833.                
834.         self.PlotStats()   
835.         self.PrintStats()   
836.         self.CreateStatsDF()   
837.                
838.     def PlotStats(self):   
839.            
840.         for stream in self.StatStreams:   
841.             for phase in stream:   
842.                 phase.plot()   
843.                    
844.     def PrintStats(self):   
845.            
846.         for stream in self.StatStreams:   
847.             for phase in stream:   
848.                 print(phase.to_string())   
849.                    
850.     def GetStats(self,Stream,Phase):   
851.         if(Stream in self.StreamNames):   
852.             streamIndex = self.StreamNames.index(Stream)   
853.         else:   
854.             print('Stream name not found')   
855.             return 'Stream name not found'   
856.         if(Phase in self.phases):   
857.             PhaseIndex = self.phases.index(Phase)   
858.         else:   
859.             print('Phase not found')   
860.             return 'Phase not found'   
861.            
862.         return self.StatStreams[streamIndex][PhaseIndex]   
863.        
864.     def CreateStatsDF(self):   
865.         """ Creates a resulting multi dimentional Pandas datafram of the result from t

he statistics """   
866.         StreamNames = []   
867.         Phase = []   
868.         first = True   
869.         for Stream in self.StatStreams:   
870.             for result in Stream:   
871.                 StreamNames.append(result.name)   
872.                 Phase.append(result.phase)   
873.                 if(first):   
874.                     ResultMatrix = result.ResultVector()   
875.                     first = False   
876.                 else:   
877.                     ResultMatrix = np.vstack((ResultMatrix,result.ResultVector()))   
878.            
879.         MdimIndecis = list(zip(StreamNames,Phase))   
880.         MdimIndecis = pd.MultiIndex.from_tuples(MdimIndecis)   
881.         self.StatsDF = pd.DataFrame(ResultMatrix,MdimIndecis,['mean','uncert','St.dev'

,'SampleSize'])   
882.         self.StatsDF.index.names = ['Stream','Phase']   
883.            
884.         # self.StatsDF.xs('Oil',level='Phase')  returnere alle olje kfaktor linjene   
885.         # self.StatsDF.loc('Bøyla') returnere en normal DF med bøyla talla   
886.        
887.     def CreateBasisDF(self):   
888.            



  Source Code – Parallel calibration 

36 

 

889.         dfs = []   
890.         for Stream in self.StatStreams:   
891.             for phase in Stream:   
892.                 thisBase = phase.Basis   
893.                 stream = []   
894.                 streamphase = []   
895.                 for i in range(len(thisBase)):   
896.                     stream.append(phase.name)   
897.                     streamphase.append(phase.phase)   
898.                     data = {'stream':stream, 'phase':streamphase, 'k-

factor':thisBase.tolist()}   
899.                 dfs.append(pd.DataFrame(data))   
900.            
901.         self.BasisDF = pd.concat(dfs, ignore_index=True)   
902.            
903.       
904.     def ViolinPlot(self,FigureSize = (10,10)):   
905.         self.CreateBasisDF()   
906.         plt.figure(figsize=FigureSize)   
907.         ax = sns.violinplot(x='stream', y='k-

factor', hue ='phase', data=self.BasisDF)   
908.         plt.show()   
909.             
910.     def Stats(self):   
911.         self.PlotStats()   
912.         self.PrintStats()   
913.        
914.     def Report(self,title = 'Parrell calibration report'):   
915.         #not yet implemented   
916.         print('not yet implemented')   
917.            
918.     def Save(self,CalibrationName):   
919.         self.rootDir = os.getcwd()   
920.         #self.dirname = self.rootDir+"/"+CalibrationName"_"+str(self.DateCalculated)   
921.         #os.mkdir(CalibrationName"_"+str(self.DateCalculated))   
922.         os.chdir(self.dirname)   
923.            
924.     def SavePlots(self):   
925.         "Not yet implemented"   
926.         return "Not yet implemented"           
927.     def SaveTrials(self):   
928.         "Not yet implemented"   
929.         return "Not yet implemented"   
930.            
931.            
932.            
933.    
934.    
935. """Calibration Comparrison methods """   
936.    
937. def PlotCalvsCal(Cals,StreamName):   
938.     fig, axes = plt.subplots(figsize=(15,10),dpi=300,nrows=3,ncols=1)   
939.    
940.     #or current_ax in axes:   
941.     #    current_ax.plot(Kfaktorer[0][0:,0], label ='Oil_P', color='#DF0071')   
942.     #    current_ax.plot(BøTO[1][0:],  label = 'Oil_T', color='#00A030')   
943.     Cal2 = Cals[0]   
944.     Cal1 = Cals[1]   
945.    
946.     axes[0].plot(Cal1.GetKfactors(StreamName,'Oil')[20:], label ='Oil_Trad', color='#D

F0071')   
947.     axes[0].plot(Cal2.GetKfactors(StreamName,'Oil')[20:], label ='Oil_Para', color='#0

0A030')   
948.     #axes[0].plot(TBø[0][1][0:],  label = 'Oil_T', color='#00A030')   
949.     axes[0].legend()   
950.     axes[0].set_title(StreamName+' Comparrison  Calibration')   



  Source Code – Parallel calibration 

37 

 

951.    
952.     axes[1].plot(Cal1.GetKfactors(StreamName,'Gas')[20:], label ='Gas_Trad', color='#D

F0071')   
953.     axes[1].plot(Cal2.GetKfactors(StreamName,'Gas')[20:], label ='Gas_Para', color='#0

0A030')   
954.     #axes[1].plot(TBø[1][1][0:],  label = 'Gas_T', color='#00A030')   
955.     axes[1].legend()   
956.    
957.     axes[2].plot(Cal1.GetKfactors(StreamName,'Water')[20:], label ='Water_Trad', color

='#DF0071')   
958.     axes[2].plot(Cal2.GetKfactors(StreamName,'Water')[20:], label ='Water_Para', color

='#00A030')   
959.     #axes[2].plot(TBø[2][1][0:],  label = 'Water_T', color='#00A030')   
960.     axes[2].legend(fontsize = 'x-large')   
961.    
962.     fig.show()   
963.    
964. def PlotOneCalvsCal(Cals,StreamName):   
965.     plt.figure(figsize=(15,10))   
966.        
967.     Colors = ['#000000','#DF0071','#00A030','#EE7900','#777777',' #000028','#B9B9B9','

#E6E6E6']   
968.    
969.     #or current_ax in axes:   
970.     #    current_ax.plot(Kfaktorer[0][0:,0], label ='Oil_P', color='#DF0071')   
971.     #    current_ax.plot(BøTO[1][0:],  label = 'Oil_T', color='#00A030')   
972.     Cal2 = Cals[0]   
973.     Cal1 = Cals[1]   
974.    
975.     plt.plot(Cal1.GetKfactors(StreamName,'Oil')[50:], label ='Oil_Trad', color=Colors[

0])   
976.     plt.plot(Cal2.GetKfactors(StreamName,'Oil')[50:], label ='Oil_Para', color=Colors[

1])   
977.     plt.plot(Cal1.GetKfactors(StreamName,'Gas')[50:], label ='Gas_Trad', color=Colors[

2])   
978.     plt.plot(Cal2.GetKfactors(StreamName,'Gas')[50:], label ='Gas_Para', color=Colors[

3])       
979.     plt.plot(Cal1.GetKfactors(StreamName,'Water')[50:], label ='Water_Trad', color=Col

ors[4])   
980.     plt.plot(Cal2.GetKfactors(StreamName,'Water')[50:], label ='Water_Para', color=Col

ors[6])       
981.     #axes[0].plot(TBø[0][1][0:],  label = 'Oil_T', color='#00A030')   
982.     plt.ylabel('K-factor',fontsize = 'x-large' )   
983.     plt.xlabel('Syncronice runs across trials' ,fontsize = 'x-large')   
984.     plt.legend(fontsize = 'x-large')   
985.     plt.title(StreamName+' Comparison Calibration',fontsize = 'x-large')   
986.    
987.     plt.show()   
988.    
989.    
990. #Box plot comparrison eller violinplot noge sånt :)    
991. #def ViolinPlot(Calibrations,FigureSize = (10,10)):   
992. #    first = Calibrations[0]   
993. #    sec = Calibrations[1]   
994. #       
995. #       
996. #    plt.figure(figsize=FigureSize)   
997. #    ax = sns.violinplot(x='stream', y='k-factor', hue ='phase', data=self.BasisDF)   
998. #       
999. #    plt.show()   
1000.    
1001.    
1002. #unit testing of important functions   
1003. if (__name__ == '__main__'):   
1004.        
1005.     Frame = np.array([[1,1,0],[0,1,1],[1,0,1]])   



  Source Code – Parallel calibration 

38 

 

1006.        
1007.     baseT1 = np.array([1,1,2])   
1008.     baseT2 = np.array([0.5,1,1.5])   
1009.     baseT3 = np.array([0.25,0.5,0.75])   
1010.     T1 = baseT1   
1011.     T2 = baseT2   
1012.     T3 = baseT3   
1013.        
1014.     x = np.linspace(1,1000,100)   
1015.     for i in range(len(x)):   
1016.        T1 = np.vstack((T1,baseT1*x[i]))   
1017.        T2 = np.vstack((T2,baseT2*x[i]))   
1018.        T3 = np.vstack((T3,baseT3*x[i]))   
1019.          
1020.     Trials = [[T1,T1,T1],[T2,T2,T2],[T3,T3,T3]]   
1021.        
1022.     Mm = GetM_m(Frame,Trials,0)   
1023.        
1024.     for i in range(len(Mm)):   
1025.         M = Mm[i][0]   
1026.         m = Mm[i][1]   
1027.         print(str(M))   
1028.         print(" = ")   
1029.         print(str(m))   
1030.        
1031.        
1032.     #Copy this from where it is used in the code. or just implement it as a function :

)    
1033.     Kfactors = []   
1034.     for phase in range(3): # 3 phases Oil, Gas and Water in that order.   
1035.         Mm = GetM_m(Frame,Trials,phase) #Gets a touple of the M matrix and m phase    
1036.         first = True   
1037.         for i in range(1,len(Mm)):   
1038.             try:   
1039.                 K_i = Solver(Mm[i])   
1040.             except:   
1041.                 print("Singular matrix at "+str(i)+"iteration")   
1042.                 continue   
1043.                
1044.             if(first):   
1045.                 K = K_i   
1046.             else:   
1047.                 K = np.vstack((K,K_i))   
1048.             first = False   
1049.                
1050.         Kfactors.append(K)   
1051.        
1052.     for i in range(len(Kfactors[0][:,0])):   
1053.         print(str(Kfactors[0][i][0])+" "+str(Kfactors[0][i][1])+" "+str(Kfactors[0][i]

[2]))   
1054.            
1055.     print(""""\n \n \n \n \n \n \n \n /n /n /n /n /n /n /n """)   
1056.            
1057.            
1058.     for i in range(len(Kfactors[1][:,0])):   
1059.         print(str(Kfactors[1][i][0])+" "+str(Kfactors[1][i][1])+" "+str(Kfactors[1][i]

[2]))   
1060.            
1061.     print(""""\n \n \n \n \n \n \n \n /n /n /n /n /n /n /n """)   
1062.                    
1063.     for i in range(len(Kfactors[2][:,0])):   
1064.         print(str(Kfactors[2][i][0])+" "+str(Kfactors[2][i][1])+" "+str(Kfactors[2][i]

[2]))   
1065.            



  Source Code – Parallel calibration 

39 

 

 



  Source Code - Calibration Statistics 

40 

 

6 Source Code - Calibration Statistics 
Printed 12/05-2019 

1. # -*- coding: utf-8 -*-   
2. """  
3. Created on Sat Apr 13 23:26:19 2019  
4.   
5. @author: stig  
6. """   
7. import numpy as np   
8. import matplotlib.pyplot as plt   
9. from scipy.signal import find_peaks   
10.    
11.    
12. def SSE(Kfaktorer):   
13.     """Finds the sum squared error within the dataset"""   
14.        
15.     totnum = len(Kfaktorer)   
16.     Startnum = int(0.05*totnum)   
17.     MaxUse = int(0.9*totnum) # Max use 90% of the values    
18.     SSEs = []   
19.     for i in range(MaxUse):   
20.         ItersFactors = Kfaktorer[len(Kfaktorer)-Startnum-i:]   
21.         mu = np.mean(ItersFactors) #The mean   
22.         SSE = 0   
23.         for j in range(len(ItersFactors)):   
24.             SSE = SSE + (ItersFactors[j]-mu)**2   
25.         SSEs.append(SSE)   
26.     return SSEs   
27.        
28. def DSSE(SSEs):   
29.     """  Finds the differances of the sum squared error list  """   
30.     DSSEs = []   
31.     for i in range(1,len(SSEs)):   
32.         DSSEs.append((SSEs[i-1]-SSEs[i])**2)   
33.     return DSSEs   
34.    
35.    
36. def findStableValues(Kfaktorer,height=1.0e-06):   
37.     """  
38.     Finds the stable values from the end to a change, by finding slopes by differentiati

on a Sum of squared errors, and use peak detection to detect   
39.       
40.     """   
41.     SSEs = SSE(Kfaktorer)   
42.     DSSEs = DSSE(SSEs)   
43.        
44.     peak, __ = find_peaks(np.asarray(DSSEs), height, distance=2.1)   
45.        
46.     if(len(peak)==0):   
47.         peak, __ = find_peaks(np.asarray(DSSEs), 9.199606608655428e-07, distance=2.1)   
48.         if(len(peak)==0):   
49.             lim = int(0.8*len(Kfaktorer))   
50.         else:   
51.             lim = peak[0]   
52.     else:   
53.         lim = peak[0] #taking the first peak as the stopping point.   
54.        
55.        
56.     Basis = Kfaktorer[len(Kfaktorer)-lim:]   
57.        
58.     return (Basis,lim)   
59.    



  Source Code - Calibration Statistics 

41 

 

60.    
61.    
62. def CalcRandUncert(Basis,rep=False):   
63.     """  
64.     This method numerically integrates a normal distrobution to probe the uncertanity of

 the Basis data.  
65.       
66.     """   
67.     mean = np.mean(Basis)   
68.     sigma = np.std(Basis)   
69.     stdev = sigma #if you see this don't tell anyone.   
70.     mu = mean   
71.        
72.     Coverage = 2 #Definint the coverage factor for integration limits   
73.        
74.     lower = mean-(Coverage*stdev)   
75.     upper = mean+(Coverage*stdev)   
76.        
77.     steps = 10000 #numb of intervall segments for numerical integration of normal probab

ility density distibution.   
78.        
79.     """      The Actual calculation and integration of the normal distrobution   """   
80.     t = np.linspace(lower,upper,10000)   
81.     dt = (t[1]-t[0])/steps   
82.     f = 1/(np.sqrt(2*np.pi*(sigma**2)))*np.exp(-(t-

mu)**2/(2*sigma**2)) #Created a normal distibution vector between +-
2 std. deviations   

83.        
84.     X = f[0]*dt #inital datapoint with or without? i cannot decide, it is also a part of

 the first iteration in the for loop   
85.     for i in range(1,len(t)):   
86.         X = X + ((f[i-1]*f[i])/2)*dt #Numerically integrates a normalditrobution   
87.        
88.     if(rep):   
89.         print("Mean="+str(mean)+"+-"+str(X*100)+"%  Sigma="+str(stdev))   
90.        
91.     return (mean,X,stdev)   
92.    
93. def PlotStats(Kfaktorer,lim,Basis,title='',save=False):   
94.        
95.     Colors = ['#000000','#DF0071','#00A030','#EE7900','#777777',' #000028','#B9B9B9','#E

6E6E6']   
96.        
97.     mu = np.mean(Basis)   
98.     sigma = np.std(Basis)   
99.     lower = mu-(4*sigma)   
100.     upper = mu+(4*sigma)   
101.        
102.     steps = 1000   
103.     t = np.linspace(lower,upper,steps)   
104.     f = 1/(sigma*np.sqrt(2*np.pi))*np.exp(-(t-mu)**2/(2*sigma**2))   
105.            
106.     rempart = 25   
107.     ymin = np.min(Kfaktorer[rempart:])   
108.     ymax = np.max(Kfaktorer[rempart:])   
109.     fig = plt.figure()   
110.     fig.suptitle(title)   
111.     Trend = fig.add_axes([0.1,0.1,0.8,0.8])   
112.     Prob = fig.add_axes([0.9,0.1,0.3,0.8])   
113.     Trend.plot(Kfaktorer[rempart:],color=Colors[6])   
114.     Trend.plot(np.arange(len(Kfaktorer)-lim-rempart,len(Kfaktorer)-

rempart),Basis,color=Colors[1])   
115.        
116.     Prob.hist(Basis, bins=30, orientation = 'horizontal',color=Colors[2])   
117.     Prob.plot(f,t, color=Colors[3])   
118.     Prob.set_ylim(ymin,ymax)   



  Source Code - Calibration Statistics 

42 

 

119.     Trend.set_ylim(ymin,ymax)   
120.     if(save):   
121.         fig.savefig(title+".png")   
122.     else:   
123.         fig.show()   
124.    
125.    
126.        
127.        
128.    
129. class stats():   
130.     def __init__(self,Kfaktorer,name='',phase = '',PLen=-1):   
131.            
132.         self.name = name   
133.         self.phase = phase   
134.         self.Kfaktorer = Kfaktorer   
135.         self.totStdev = np.std(Kfaktorer)   
136.         self.totmean = np.mean(Kfaktorer)   
137.         self.PeakDetLim = (self.totStdev**7)*100   
138.         if (PLen == -1):   
139.             self.Basis, self.lim = findStableValues(Kfaktorer,self.PeakDetLim)   
140.         else:   
141.             self.lim = PLen   
142.             self.Basis = Kfaktorer[len(Kfaktorer)-lim:]   
143.         self.mean , self.X ,self.stdev = CalcRandUncert(self.Basis)   
144.         self.N = len(self.Basis)   
145.        
146.     def ReCalc(self,newlim):   
147.         self.lim = newlim   
148.         self.Basis = self.Kfaktorer[len(self.Kfaktorer)-self.lim:]   
149.         self.mean , self.X ,self.stdev = CalcRandUncert(self.Basis)   
150.         self.N = len(self.Basis)   
151.            
152.         self.plot()   
153.         print(self.to_string())   
154.            
155.    
156.     def plot(self):   
157.         PlotStats(self.Kfaktorer,self.lim,self.Basis,self.name+" "+self.phase)   
158.        
159.     def plotDiag(self):   
160.         """  
161.         Diagnostics plot  
162.         """   
163.    
164.         SSEs = SSE(self.Kfaktorer)   
165.         DSSEs = DSSE(SSEs)   
166.            
167.         fig = plt.figure()   
168.         axSSE = fig.add_axes()   
169.         axDSSE = fig.add_axes()   
170.         axSSE.plot(SSEs)   
171.         axDSSE.plot(DSSEs)   
172.            
173.     def ResultVector(self):   
174.         return np.array([self.mean,self.X*100,self.stdev,len(self.Basis)])   
175.        
176.     def to_string(self):   
177.         return self.name+" "+self.phase+" mean = "+str(self.mean)+" ± "+str(self.X*100)+

" % - St.dev ="+str(self.stdev)+" #Samples ="+str(len(self.Basis))    
178.            
179.            
180. if __name__ == "__main__":   
181.     """ Unit testing of find and do statistics"""   
182.     N_num = 1000 #må være partall   
183.     x = np.linspace(0.5,-20,N_num)   



  Source Code - Calibration Statistics 

43 

 

184.     noise = (np.random.rand(N_num)-0.5)*0.03   
185.     noisreduction = np.hstack((np.linspace(1.6,0.1,int(N_num/2)),0.1*np.ones(int(N_num/2

))))   
186.     noise = np.multiply(noise,noisreduction)   
187.     cumunoise = np.zeros(len(noise))   
188.     for i in range(1,len(noise)):   
189.         cumunoise[i] =cumunoise[i-1]+noise[i]   
190.     y = 1+0.5*np.exp(10*x)/100+cumunoise#+(0.01*np.sin(x))   
191.     #y[int(0.3*1000)] = y[int(0.7*1000)]*1.05   
192.        
193.     plt.plot(y)   
194.     plt.title('Randomly generated k-factor development')   
195.     plt.show()   
196.     SSEs = SSE(y)   
197.     plt.plot(SSEs)   
198.     plt.title('SSE')   
199.     plt.show()   
200.     DSSEs = DSSE(SSEs)   
201.     plt.plot(DSSEs)   
202.     plt.title('DSSE')   
203.     plt.show()   
204.     plt.semilogy(DSSEs)   
205.     plt.title('DSSE - logarithmic')   
206.     plt.show()   
207.     std = np.std(y)   
208.     (Basis,lim) = findStableValues(y,std**7*100)   
209.     print("lim = "+str(lim))   
210.     plt.plot(Basis)   
211.     plt.show()   
212.     PlotStats(y,lim,Basis)   
213.     CalcRandUncert(Basis,rep=True)   
214.     test = stats(y,'unit testing')   
215.     print(test.to_string())   
216.     test.plot()   
217.     test.ReCalc(259)   
218.        

 



 1 Appendix E – Calibration Execution and Results January 

1 

 

1 Appendix E – Calibration Execution 
and Results January 

 



 1 Appendix E – Calibration Execution and Results January 

2 

 

Contents 
This appendix will have the results of the performed calibrations both Traditional, synthetic 

and perform a comparison. There are two data sets available for this comparison one from 

January 2019 and one from late march the same year. This Appendix will cover the execution 

of these test and give the data and result of the traditional and synthetic calibration. And gives 

insight to the accuracy of the parallel algorithm compared to a traditional method. 

 

1 Appendix E – Calibration Execution and Results January ............................ 1 

Contents ................................................................................................................... 2 

2 January – Traditional vs Synthetic .................................................................. 3 

2.1 Synthetic Parallel calibration ................................................................................................. 4 
2.1.1 Trial Plots ......................................................................................................................... 5 
2.1.2 Statistics .......................................................................................................................... 6 

2.2 Traditional calibration ............................................................................................................ 8 
2.2.1 Trial Plots ......................................................................................................................... 8 
2.2.2 Statistics ........................................................................................................................ 10 

2.3 Comparison ........................................................................................................................... 13 

3 Compare result to real calibration ................................................................. 18 

 

  



 2 January – Traditional vs Synthetic 

3 

 

2 January – Traditional vs Synthetic 
Traditional calibration was carried out in January 2019, this chapter will perform a traditional 

and synthetic parallel calibration. Also, worth to note that the Multi-phase meter on Bøyla 

was changed to another model, and in the march test later in this appendix a new installed 

multi-phase meter will be in operations.   

Figure 1 shows the first lines of code, considering the implementation of standard methods, 

and formatting the output as well as getting the parallel calibration libraries an a Cognite 

client and getting the time windows when the traditional calibration was carried out. 

 

Figure 1 - Initial libraries and locating time windows for traditional calibration 



 2 January – Traditional vs Synthetic 

4 

 

2.1 Synthetic Parallel calibration 

 

Figure 2 - Initial code and Synthetic parallel calibration 

Figure 2 shows the initial code, then processed to get the time windows for traditional 

calibration. Then it creates a synthetic trial dataset based on the streams in question, for each 

trial the streams remain the same, but the reference streams (separators streams) are added 

together. 



 2 January – Traditional vs Synthetic 

5 

 

Figure 3 shows the development of k-factors over the elapsed time of the trials. 

 

 

Figure 3 - Synthetic K-factor development 

Since this is a synthetic dataset, when gauging the process stability during these trials, this 

can be seen in Figure 9 in the traditional method, since the synthetic data does nothing with 

the intensive variables in the system, this won’t be representable of the real states, due to the 

higher the flow is through the separator, both the temperature and pressure should be higher. 

2.1.1 Trial Plots 

 

Figure 4 – synthetic cumulative mass matrix plot 



 2 January – Traditional vs Synthetic 

6 

 

Figure 4 shows the data going into the parallel calibration solver, where the synthetic here is 

the Third party separator as explained in the code in Figure 2. 

2.1.2 Statistics 

The result of the calibration is shown in Figure 5, which is based on the statistical basis 

shown in Figure 6. 

 

Figure 5- Resulting data frame of synthetic calibration  



 2 January – Traditional vs Synthetic 

7 

 

Figure 6 - Statistical basis form k-factor development synthetic calibration, with vertical histogram with number of samples and probability 

density 



 2 January – Traditional vs Synthetic 

8 

 

2.2 Traditional calibration 

 

Figure 7 - Traditional calibration performed 

Figure 7 Shows the execution of a traditional calibration but uses the parallel calibration 

algorithm, but the results are the same, where the trial matrix is a diagonal matrix with only 

non-zero values on the diagonal, the inverse of the diagonal matrix then becomes the 

reciprocals of the values in each of the diagonal line. All in all, the use of the parallel 

calibration class to perform a traditional calibration can be and is done. 

Figure 8 Shows the resulting k-factor development through the trials. 

 

Figure 8 – Resulting k-factors over the Traditional calibration 

2.2.1 Trial Plots 

Figure 9 shows the intensive variables of the trials. Figure 10 shows the cumulative matrix 

plot of the accumulated mass, this plot is the values over the different runs going into the 

solver 



 2 January – Traditional vs Synthetic 

9 

 

 

Figure 9 - Intensive variables of data set 



 2 January – Traditional vs Synthetic 

10 

 

 

Figure 10 - Cumulative matrix plot 

2.2.2 Statistics 

Figure 11 shows the resulting values for each stream and each phase based on the data basis 

shown in Figure 12. 



 2 January – Traditional vs Synthetic 

11 

 

 

Figure 11 - Resulting data frame of calibration



 2 January – Traditional vs Synthetic 

12 

 

 

Figure 12 - Statistical basis form k-factor development traditional calibration, with vertical histogram with number of samples and probability 

density



 2 January – Traditional vs Synthetic 

13 

 

 

 

2.3 Comparison 

The result of both calibration compared towards each other for each stream is shown in 

Figure 13 for Volund, Figure 14 for Vilje and Figure 15 for Bøyla multi-phase flow meters. 

Just form these figures the result of both methods seam to replicate each other very well and 

that the parallel calibration method based on synthetic data works very well. A print of the 

data frames of the differences is also shown in Figure 16. And is collected in Table 1. 

 

 

Figure 13 - Volund calibration comparrison 

 



 2 January – Traditional vs Synthetic 

14 

 

 

Figure 14- Vilje calibration comparrison 

 

 



 2 January – Traditional vs Synthetic 

15 

 

 

Figure 15 - Bøyla calibration comparrison 

 



 2 January – Traditional vs Synthetic 

16 

 

 

Figure 16 - Print of differences between Traditional and synthetic calibration 

  



 2 January – Traditional vs Synthetic 

17 

 

Table 1 - Comparison of Traditional an Synthetic parallel 

January Calibration Traditional Synthetic Parallel Differences between Synthetic and Traditional (ref) 

Stream Phase mean 
random 

uncertainty 
[%] 

Standard 
deviation 

sample 
size 

mean 
random 

uncertainty 
[%] 

Standard 
deviation 

sample 
size 

deviation 
on k-
factor 

Deviation 
diff rand. 

uncertainty 
stability 

(St.dev-St.dev) 

Bøyla 

Oil 0.99874 0.99 1.42E-03 996 0.99961 0.54 2.59E-03 1060 8.64E-04 0.09% -0.449 0.001 

Gas 1.06660 1.42 9.92E-04 500 1.06667 1.34 1.05E-03 500 7.00E-05 0.01% -0.079 0.000 

Water 0.93887 1.83 7.69E-04 1000 0.93910 1.15 1.22E-03 1500 2.31E-04 0.02% -0.673 0.000 

Volund 

Oil 1.01642 0.33 4.31E-03 1923 1.01431 0.41 3.40E-03 1947 -2.11E-03 -0.21% 0.088 -0.001 

Gas 0.92548 1.41 9.92E-04 1000 0.92536 1.42 9.92E-04 1000 -1.26E-04 -0.01% 0.001 0.000 

Water 1.07209 0.94 1.49E-03 1394 1.07186 0.83 1.70E-03 1327 -2.28E-04 -0.02% -0.117 0.000 

Vilje 

Oil 0.88346 0.23 6.05E-03 958 0.88274 0.20 7.04E-03 935 -7.20E-04 -0.08% -0.032 0.001 

Gas 0.96650 0.57 2.46E-03 1897 0.96650 0.49 2.86E-03 1897 1.00E-06 0.00% -0.080 0.000 

Water 1.20046 0.78 1.79E-03 1122 1.20056 0.78 1.79E-03 1124 1.04E-04 0.01% 0.000 0.000 



  Contents 

18 

 

3 Compare result to real calibration 
Table 2 below compare the different result to the actual accepted k-factors from the metering 

system on Alvheim, and this is subsequently plotted in Figure 17, Figure 18 and Figure 19 for 

each respective multi-phase meter streams. 

 

Table 2 - Result compared to real result 

January 
Calibration 

Phase 
Current 

metering 
system 

Algorithm 

Traditional Synthetic parallel 

Bøyla 

Oil 0.97919 0.99874 0.99961 

Gas 1.01439 1.0666 1.06667 

Water 0.93353 0.93887 0.9391 

Vilje 

Oil 0.86164 0.88346 0.88274 

Gas 0.96043 0.9665 0.9665 

Water 1.15805 1.20046 1.20056 

Volund 

Oil 0.98797 1.01642 1.01431 

Gas 0.90674 0.92548 0.92536 

Water 1.04478 1.07209 1.07186 

 

 

Figure 17 - calibration result comparison Vilje January 

0,8

0,85

0,9

0,95

1

1,05

1,1

1,15

1,2

1,25

k-
fa

ct
o

r

Phase

Resuling comparrison - Vilje january results
Current metering system Traditional Synthetic  parallel

Oil Gas WaterOil Gas Water



  Contents 

19 

 

 

Figure 18 - calibration result comparison Volund January 

 

 

Figure 19 - calibration result comparison Bøyla January 

0,8

0,85

0,9

0,95

1

1,05

1,1

1,15

1,2

1,25

k-
fa

ct
o

r

Phase

Resuling comparrison - Volund january results
Current metering system Traditional Synthetic  parallel

Oil Gas WaterOil Gas Water

0,8

0,85

0,9

0,95

1

1,05

1,1

1,15

1,2

1,25

k-
fa

ct
o

r

Phase

Resuling comparrison - Bøyla january results
Current metering system Traditional Synthetic  parallel

Oil Gas Water



 1 Appendix F Calibration execution and result April 

1 

 

1 Appendix F Calibration execution 
and result April 



 1 Appendix F Calibration execution and result April 

2 

 

Contents 
This appendix will have the results of the performed calibrations both Traditional, synthetic 

and perform a comparison. There are two data sets available for this comparison one from 

January 2019 and one from late march the same year. This Appendix will cover the execution 

and result of parallel calibrations in both the start and end of April and compare the results. 

 

1 Appendix F Calibration execution and result April ........................................ 1 

2 Traditional vs Synthetic .................................................................................... 3 

2.1 Synthetic Parallel calibration ................................................................................................. 4 
2.1.1 Trial Plots ......................................................................................................................... 5 
2.1.2 Statistics .......................................................................................................................... 6 

2.2 Traditional calibration ............................................................................................................ 8 
2.2.1 Trial Plots ......................................................................................................................... 8 
2.2.2 Statistics ........................................................................................................................ 10 

2.3 Comparison ........................................................................................................................... 13 

3 2x2x2 parallel calibration ............................................................................... 15 

4 3x2x2 parallel calibration ............................................................................... 21 

5 One month later 3x2x2 .................................................................................... 28 

6 Result ................................................................................................................. 33 

 



 2 Traditional vs Synthetic 

3 

 

2 Traditional vs Synthetic 
Traditional calibration was carried out in late March 2019, this chapter will perform a 

traditional and synthetic parallel calibration, this is also the initial calibration of a newly 

installed multiphase meter on Bøyla.  

Figure 1 shows the first lines of code, considering the implementation of standard methods, 

and formatting the output as well as getting the parallel calibration libraries and a Cognite 

client and getting the time windows when the traditional calibration was carried out. 

 

Figure 1 - Initial libraries and locating time windows for traditional calibration 



 2 Traditional vs Synthetic 

4 

 

2.1 Synthetic Parallel calibration 

 

Figure 2 - Initial code and Synthetic parallel calibration  

Figure 2 shows the initial code, then processed to get the time windows for traditional 

calibration. Then it creates a synthetic trial dataset based on the streams in question, for each 

trial the streams remain the same, but the reference streams (separators streams) are added 

together. 



 2 Traditional vs Synthetic 

5 

 

Figure 3 shows the development of k-factors over the elapsed time of the synthetic trials. 

 

 

Figure 3 - Synthetic K-factor development 

Since this is a synthetic dataset, when gauging the process stability during these trials, this 

can be seen in Figure 9 in the traditional method, since the synthetic data does nothing with 

the intensive variables in the system, this won’t be representable of the real states, due to the 

higher the flow is through the separator, both the temperature and pressure should be higher. 

2.1.1 Trial Plots 

 

Figure 4 – synthetic cumulative mass matrix plot 



 2 Traditional vs Synthetic 

6 

 

Figure 4 shows the data going into the parallel calibration solver, where the synthetic here is 

the 3rd party separator as explained in the code in Figure 2. 

2.1.2 Statistics 

The result of the calibration is shown in Figure 5 which is based on the statistical basis shown 

Figure 6. 

 

Figure 5- Resulting data frame of synthetic calibration  



 2 Traditional vs Synthetic 

7 

 

 

Figure 6 - Statistical basis of synthetic calibration



 2 Traditional vs Synthetic 

8 

 

2.2 Traditional calibration 

 

Figure 7 - Traditional calibration performed 

Figure 7 Shows the execution of a traditional calibration but uses the parallel calibration 

algorithm, but the results are the same, where the trial matrix is a diagonal matrix with only 

non-zero values on the diagonal, the inverse of the diagonal matrix then becomes the 

reciprocals of the values in each of the diagonal line. All in all, the use of the parallel 

calibration class to perform a traditional calibration can be and is done. 

Figure 8 Shows the resulting k-factor development through the trials. 

 

Figure 8 – Resulting k-factors over the Traditional calibration 

2.2.1 Trial Plots 

Figure 9 shows the intensive variables of the trials, with a blue square around the separator 

conditions on the Vilje trial; during the Vilje trial the separator conditions where not stable 

there where significant changes to the oil level and peaks of high water cut, which are not 

nessasery beneficial for a parallel calibration  Figure 10 shows the cumulative matrix plot of 

the accumulated mass, this plot is the values over the different runs going into the solver 



 2 Traditional vs Synthetic 

9 

 

 

Figure 9 - Intensive variables of data set 



 2 Traditional vs Synthetic 

10 

 

 

Figure 10 - Cumulative matrix plot 

2.2.2 Statistics 

Figure 11 shows the resulting values for each stream and each phase based on the data basis 

shown in Figure 12. 



 2 Traditional vs Synthetic 

11 

 

 

Figure 11 - Resulting data frame of calibration



 2 Traditional vs Synthetic 

12 

 

 

Figure 12 - Statistical basis of Traditional calibration 



  Traditional vs Synthetic 

13 

 

 

 

2.3 Comparison 

The result of both calibration compared towards each other for each stream is shown in 

Figure 13 for Volund, Figure 14 for Vilje and Figure 15 for Bøyla multi-phase flow meters. 

Just form these figures the result of both methods seam to replicate each other very well and 

that the parallel calibration method performs satisfactorily. But the data set for Traditional 

and synthetic parallel calibration has one weakness which is the Vilje trial, which is not a 

type of trial wanted for a parallel calibration. 

 

 

Figure 13 - Volund calibration comparison 

 



  Traditional vs Synthetic 

14 

 

 

Figure 14- Vilje calibration comparison 

 

 

 

Figure 15 - Bøyla calibration comparison 



  2x2x2 parallel calibration 

15 

 

3 2x2x2 parallel calibration 
A 2x2x2 calibration was performed on Alvheim Figure 16 shows the code for the buildup of 

trials, import libraries, and the time windows and duration, and the trial configuration for this 

calibration. Figure 17 shows the resulting k-factor development across the runs. Figure 18 

show the cumulative values fed into the calibration method. Figure 19 show the mass 

flowrates for each stream and trial. Figure 20 shows the process conditions. Figure 21 depicts 

the statistical basis of the different k-factor developments and plots a histogram of the sample 

distribution together with the probability density plot of a normal distribution based on the 

statistical basis. Figure 22 show the resulting values in a pandas dataframe, and Figure 23 

shows a violin plot of the resulting statistical basis for each stream and phase. 

 

Figure 16 - Execution of calibration 

 



  2x2x2 parallel calibration 

16 

 

 

Figure 17 - k-factor development as a result of the calibration 



  2x2x2 parallel calibration 

17 

 

 

Figure 18 - cumulative values across the trials in augmente matrix plotting 

 

Figure 19 - mass flowrates across the trials in augmented matrix plotting 



  2x2x2 parallel calibration 

18 

 

 

Figure 20 - Process conditions during trials 

 

  



  2x2x2 parallel calibration 

19 

 

 

Figure 21 - Statistical basis and distribution of calibration, k-factor development and basis in left plot and vertical histogram of sample numbers 

and probability density of a normal distribution.



  2x2x2 parallel calibration 

20 

 

 

Figure 22 - result data frame of calibration 

 

 

Figure 23 - Violin plot of the resulting basis of the calibration 



  3x2x2 parallel calibration 

21 

 

4 3x2x2 parallel calibration 
A 2x2x2 calibration was performed on Alvheim Figure 24 shows the code for the buildup of 

trials, import libraries, and the time windows and duration, and the trial configuration for this 

calibration. Figure 25 shows the resulting k-factor development across the runs. Figure 26 

show the cumulative values fed into the calibration method. Figure 27 show the mass 

flowrates for each stream and trial. Figure 28 shows the process conditions. Figure 29 depicts 

the statistical basis of the different k-factor developments and plots a histogram of the sample 

distribution together with the probability density plot of a normal distribution based on the 

statistical basis. Figure 31 show the resulting values in a pandas dataframe, and Figure 30 

shows a violin plot of the resulting statistical basis for each stream and phase. 

 

Figure 24 - execution of calibration 



  3x2x2 parallel calibration 

22 

 

 

Figure 25 - Resulting k-factor development of the algorithm 



  3x2x2 parallel calibration 

23 

 

 

Figure 26 - Cumulative values entering the calibration method 

 

Figure 27 - mass flowrates of streams and trials 



  3x2x2 parallel calibration 

24 

 

 

Figure 28 - Process condition during trials 

 

  



  3x2x2 parallel calibration 

25 

 

 

Figure 29 - k-factor development with statistical basis, with complementary histogram and normal distributions probability density function 

based on statistical basis 



  3x2x2 parallel calibration 

26 

 

 

Figure 30 - Violin plot of resulting statistical basis 

 



  3x2x2 parallel calibration 

27 

 

  

Figure 31 - pandas dataframe of resulting numerical values 



  One month later 3x2x2 

28 

 

5 One month later 3x2x2 
In the last days of April 2019 a new parallel calibration sequence was executed on Alvheim 

giving the following results, and is shown in the figures below. Figure 32 shows the 

execution and configuration of calibration. Figure 33 shows the resulting k-factor 

development, Figure 34 shows the chosen statistical basis for the calibration. Figure 35 shows 

the mass flowrates for the calibration. Figure 36 shows the process conditions during the 

calibration. Figure 37 shows the resulting calibration in a pandas dataframe. Figure 38 shows 

a violin plot of the result. 

 

 

Figure 32 - Calibration execution late April 



  One month later 3x2x2 

29 

 

 

Figure 33 - k-factor development 

 

  



  One month later 3x2x2 

30 

 

 

Figure 34 - Statistical basis of calibration one month later 

  



  One month later 3x2x2 

31 

 

 

Figure 35 - mass flowrate during April May calibration 

 

Figure 36 Process condition during april may calibration 



  One month later 3x2x2 

32 

 

 

Figure 37 - resulting dataframe of calibration 

 

Figure 38 - violin plot of 3x2x2 calibration in April / May 



  Result 

33 

 

6 Result 
Combining the real result and the results from the algorithm execution as documented in this appendix 

the results combined together is shown in Table 6.1, and plotted in point plots for each of the streams 

in Figure 39 for Bøyla, Figure 40 for Vilje and Figure 41 for Volund 

Table 6.1: Resulting values of actual, and the algorithms ,traditional, synthetic parallel and parallel calibration in 

March / April 2019 

Calibration Algorithm 

Time: March / April 2019 27/3 to 29/3 30/3 to 3/4 30/4 to 1/5 

Stream Phase 
Current 
system Traditional 

Synthetic 
parallel 

Parallel 
2x2x2 

Parallel 
3x2x2 

1mnd later 
3x2x2 

Bøyla 

Oil 1.56405 1.59178 1.59117 1.55913 1.62318 1.51129 

Gas 0.90507 0.97910 0.97763 0.98940 1.05450 1.06952 

Water 1.07492 1.09826 1.09789 1.08120 1.00231 1.02029 

Vilje 

Oil 0.82050 0.86202 0.86305 0.78272 0.83145 1.11121 

Gas 0.97801 1.01513 1.01680 0.98864 1.06908 1.08579 

Water 1.13873 1.19756 1.19935 1.24515 1.14677 1.01351 

Volund 

Oil 1.14429 1.15180 1.15164 1.07059 1.03411 1.02004 

Gas 0.90674 0.94987 0.95168 0.97845 0.91330 0.96824 

Water 1.04478 0.98520 0.98450 0.98896 1.08478 0.99176 

 

 

Figure 39 - Resulting comparison of Bøyla on March April results 

 

0,8

0,9

1

1,1

1,2

1,3

1,4

1,5

1,6

1,7

k-
fa

ct
o

r

Phase

Resulting comparison - Bøyla march/april results
Current system Traditional Synthetic  parallel Parallel 2x2x2 Parallel 3x2x2 1mnd later 3x2x2

Oil Gas WaterOil Gas Water



  Result 

34 

 

 

 

  

Figure 40 - Resulting comparison of Vilje on March April results 

 

 

Figure 41 - Resulting comparison of Volund on March April results 

0,8

0,85

0,9

0,95

1

1,05

1,1

1,15

1,2

k-
fa

ct
o

r

Phase

Resulting comparison - Volund march/april results
Current system Traditional Synthetic  parallel Parallel 2x2x2 Parallel 3x2x2 1mnd later 3x2x2

Oil Gas WaterOil Gas Water

0,8

0,85

0,9

0,95

1

1,05

1,1

1,15

1,2

k-
fa

ct
o

r

Phase

Resulting comparison - Volund march/april results
Current system Traditional Synthetic  parallel Parallel 2x2x2 Parallel 3x2x2 1mnd later 3x2x2

Oil Gas WaterOil Gas Water


	Masters Thesis.pdf
	Appendix A Task WBS GANTT.pdf�
	Appendix A Task WBS GANTT
	SM_SHG_Master_Thesis_2019_SM_31012019_SHGSigned
	Appendix A Task WBS GANTT
	WBS rev0.1 
	WBS rev0.1 .vsdx
	Page-1


	Appendix A Task WBS GANTT
	GANT rev 0.0 
	GANT rev 0.0 .vsdx
	Page-1



	Appendix C Digital Representation of fluid streams.pdf
	Appendix D Paralell calibration.pdf
	Appendix E Calibration results January.pdf
	Appendix F Calibration execution and result April.pdf

