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Summary:  

Object detection and tracking are key features in many computer vision applications. Most state 

of the art models for object detection, however, are computationally complex. The goal of this 

project was to develop a fast and light-weight framework for object detection and object tracking 

in a sequence of images using a Raspberry Pi 3 Model B, a low cost and low power computer. 

As even the most light-weight state of the art object detection models, i.e. Tiny-YOLO and 

SSD300 with MobileNet, were considered too computationally complex, a simplified approach 

had to be taken. This approach assumed a stationary camera and access to a background image.  

With these constraints, background subtraction was used to locate objects, while a light weight 

object recognition model based on MobileNet was used to classify any objects that were found. A 

tracker that primarily relied on object location and size was used to track distinct objects between 

frames. 

The suggested framework was able to achieve framerates as high as 7.9 FPS with 1 object in the 

scene, and 2.9 FPS when 6 objects were present. These values are significantly higher, more than 

7 times for 1 object and 2.6 times for 6 objects, than those achieved using the mentioned state of 

the art models. This performance, however, comes at a price. 

While the suggested framework was seen to work well in many situations, it does have several 

weaknesses. Some of these include poor handling of occlusion, a lack of ability to distinguish 

between objects in close proximity, and false detections when lighting conditions change. 

Additionally, its processing speed is affected by the number of objects in an image to a larger 

degree than what the state of the art models are. None of the mention models have deterministic 

processing speeds. 
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Preface 
This report is the written by Torbjørn Grande Østby, a student of Master of Science in Industrial 

IT and Automation at the University of South-East Norway, as his master’s thesis. It is the 

result of 4 months of work, which included studying a field in which the author had no prior 

knowledge. 

It is assumed that the reader has a background in science or related fields. With this, well known 

problems and algorithms, such as the Kalman filter and assignment problems, that are 

mentioned in a general way or not cited. 

The front-page illustration was created by the author. 
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• Python 3.5 and 3.6 

• Spyder 3.2.6 
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Nomenclature 
CNN – Convolutional Neural Network 

CPU – Central Processing Unit 

DPM – Deformable Parts Model 

FLOPS – Floating Point Operations Per Second 

FPS – Frames Per Second 

GPU – Graphics Processing Unit 

HOG – Histogram of Oriented Gradients 

IOU – Intersect Over Union 

PC – Personal Computer 

R-CNN – Region-based Convolutional Neural Network 

ReLU – Rectified Linear Unit 

RGB – Red Green Blue 

RMSE – Root-Mean-Square Error 

RPN – Region Proposal Network 

SIFT – Scale-Invariant Feature Transform 

SPD – Single Pass Detector 

SSD – Single Shot multibox Detector 

YOLO – You Only Look Once 
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1 Introduction 
Object detection and tracking are key features in many computer vision applications, with uses 

in autonomous cars, medical diagnostics, surveillance, and industry automation, amongst 

others. It is a research area which has had a lot of progress in recent years.  

Methods based on Convolutional Neural Networks (CNNs) have proven especially effective in 

this regard. With the increase in computational power of modern computers and hardware, and 

an increase in data availability, complex models are able to achieve both high levels of accuracy 

and low processing times. With the correct model and powerful hardware, real-time 

performance can be achieved.  

The main goal of this project is to develop an object detection and tracking framework that is 

able to run on the Raspberry Pi 3 in real-time. A user-friendly visualization of the detection 

and tracking in images should also be given. 

The Raspberry Pi is a low cost and low power computer. Due to its versatility and price, it has 

become popular in automation settings, especially amongst hobbyists. However, due to its low 

computational power, using unmodified state of the art architectures for object detection is 

likely to result in exceedingly long processing times. 

A signed copy of the original task description can be found in Appendix A. 

 

The rest of this chapter gives more information about the Raspberry Pi, and explains the terms 

real-time image processing, object recognition, object detection and object segmentation. 

Chapter 2 gives a brief historical overview of object recognition and detection. This is followed 

by an in-depth explanation of CNNs, examples of various state of the art CNN-based object 

detector architectures, and an introduction to multiple object tracking. 

Chapter 3 describes the implemented framework in detail, from detection and recognition, to 

tracking and data presentation. 

Chapter 4 shows the results that were achieved when using the implemented object detection 

and tracking framework, and discusses its performance. 

Chapter 5 contains a discussion about possible ways to improve the suggested framework, as 

well as issues that appeared during the project. 

Chapter 6 concludes the project, and gives suggestions for further work. 

1.1 The Raspberry Pi 

The Raspberry Pi is a series small, low cost, and low powered computers developed by the 

Raspberry Foundation, a charity based in the United Kingdom. It was developed to promote 

teaching of computer science in schools and in developing countries. It has significantly less 

processing power than a regular PC, or even most modern smart phones, but due to its 

versatility and cost, it has become popular even outside the initial target audience. The size of 

the Raspberry Pi can be seen in Figure 1.1. 
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Figure 1.1 - The Raspberry Pi 3 Model B, with a size similar to a credit card. 

The Raspberry Pi 3 Model B was used in this project. It boasts a higher CPU core count and 

speed compared to previous models. In certain specialized benchmarks it is able to achieve 

upwards of 5 billion FLOPS [1], however this performance does not reflect regular use. The 

Raspberry Pi’s 3 Model B performance lags significantly behind current day laptop and desktop 

computers [2]. This poses a challenge, as most computer vision tasks are computationally 

expensive. Only having 1 GB of RAM, shared between CPU and GPU, is another factor which 

might prove a challenge. 

A newer version of the Raspberry Pi, the Raspberry Pi 3 Model B+, was released 14.3.2018 

[3]. It boasts some new and improved features, but uses the same SoC as the Model B, at 

slightly higher clock rates, but with the same amount of RAM. Performance using the Model 

B+ would likely have been slightly better, though this was not tested. 

1.2 Real-Time Image Processing 

Exactly what constitutes as real-time image processing can be somewhat unclear. In a digital 

signal processing context, it is required that the processing is completed, deterministically, 

within a given timeframe [4]. The lack of clarity stems from the question of how large this 

timeframe is. For online real-time video processing, the primary factor that impacts this 

timeframe, is the framerate of the video. Even so, video can be taken with a large variety of 

framerates. Modern smartphones often support framerates as high as 60 FPS, while some action 

cameras even support framerates of 240 FPS. Surveillance cameras, on the other hand, 

generally use much lower framerates, such as 10 FPS, 7.5 FPS, or even lower. In many cases, 

when the term is used in research papers about object recognition, it seems it only means “high 

FPS”. 

1.3 Object Recognition, Detection and Segmentation 

Object recognition, object detection and object segmentation are three important concepts in 

computer vision. This chapter gives an explanation and example of what is meant by these 

three concepts. 

According to the Dictionary of Computer Vision and Image Processing the term object 

recognition relates to “identifying which of several (or many) possible objects is observed in 

an image.” [5, pp. 192-193]. In many research articles, however, the term is used to describe 

models able to classify whole images into one of a number of classes [6], [7], [8], [9]. The term 

image classification is often used synonymously with object recognition. An example of such 
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classification can be seen in Figure 1.2. When used in this project, it is this latter, “classification 

of an image of an object”, understanding of object recognition that is implied. 

 

Figure 1.2- An example of object recognition, with AlexNet. Figure from [6, p. 8]. 

Object detection, on the other hand, is about identifying and locating one or more objects in an 

image, as implied by research articles that describe object detection models [10], [11], [12]. 

The Dictionary of Computer Vision and Image Processing gives the simple, and quite general, 

definition, that object detection is “The discovery of objects within a scene or image” [5, p. 

192]. The location of a detected object is usually described by a bounding box, which is a 

rectangle used to bound the extremities of the object, and the identification is usually presented 

as a class probability score. An example of object detection can be seen in Figure 1.3. Models 

for object detection are discussed further in Chapter 2. 

 

Figure 1.3 - An example of object detection, with MobileNet and SSD. Figure from [7, p. 7]. 

Finally, object segmentation pertains to “The separation of objects within a scene or image” 

[5, p. 193]. Segmentation differs significantly from detection, in that, where object detection 

uses a coarse bounding box to denote an objects location, object segmentation aims to predict 

the exact pixels that are associated with a given object. Needless to say, this is a more complex 

operation than object detection. An example of object segmentation can be seen in Figure 1.4. 
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Figure 1.4 - An example of object segmentation, with Mask R-CNN. Figure from [13, p. 9]. 
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2 Theory 
In this chapter, a brief history of object recognition and detection is presented, followed by a 

detailed explanation of how CNNs work, examples of CNN-based feature extractors and CNN-

based object detectors, and, finally, an explanation of how multiple object tracking works. 

2.1 Brief History of Object Recognition and Detection 

Object recognition and detection has long been a challenge in computer vision, and many 

different approaches have been taken in the attempt to overcome it. Some of these approaches 

include matching visual aspects of an object, such as edges, contours, and colour, with similar 

instances in an image, or using more specific features to do the same. 

Before 2012 the primary method used for object detection was based on using feature matching. 

In many cases these features were hand-crafted. An example of a popular method is Scale-

Invariant Feature Transform (SIFT) [14]. It is able to recognize known objects in images, and 

solved many of the problems with matching features with changing scale and rotation. A 

method using a similar approach is Histograms of Oriented Gradients (HOG) [15], though it is 

more interested in contours than specific feature points. HOG has been successfully used for 

challenges such as pedestrian detection, though it works less well for deformable objects and 

people in more varied poses. A solution to this was introduced with the Deformable Parts 

Model (DPM) [16]. Instead of using a single large template in order to locate an object, as 

HOG does, several templates are used for various object parts as well as the base object. Prior 

to 2012, DPM was the state of the art when it came to performance on object recognition 

benchmarks such as ImageNet.  

Then in 2012 AlexNet [6], a CNN based object recognition model, entered the yearly ImageNet 

challenge. It outperformed its competition by a large margin, achieving 15.3 % top-5 error 

compared to 26.2 % from the second-best entry. This was in many ways the advent of CNNs, 

and since then CNNs have become immensely popular. CNNs, however, weren’t really 

anything new. An important example of this is LeNet from 1998 [17] , which is a model that 

was being used to read hand written digits in postal zip codes. The increase in the computational 

power of computers and the increase in available data have been used to explain the resurgence 

of CNNs in 2012 and since. 

Today CNNs are the state of the art. They do, however, have their weaknesses. Capsule 

networks and CapsNet [18] are examples of an architecture whose performance is impacted 

less by various transformations of the input data compared to what CNNs are. Capsule 

networks, however, are still in their infancy, and are not used in this project. 

2.2 Convolutional Neural Networks 

This chapter gives an introduction to CNNs. First, an explanation of how CNNs work is given, 

before examples of CNN-based feature extractors and object detection architectures are 

introduced. 

2.2.1 The Structure of Convolutional Neural Networks 

CNNs are primarily made up of 3 main building blocks; convolutional layers, activation 

functions, and pooling layers.  For object recognition a fully connected feed forward part is 

often also included.  
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2.2.1.1 Convolutional Layers 

In a convolutional layer, convolutions are performed between the filters of the layer and the 

matrix input to the layer. This is similar to when a filter is used for edge detection. The 

difference is that for edge detection the filters are hand crafted, while for CNNs the filters are 

found through solving an optimization problem, and that CNNs usually contain a lot of filters.  

The values in these filters are called weights. 

The filters are smaller than the input, and as such, these filters are moved across the input in a 

sliding window approach [19]. An example of the convolution and sliding window approach 

can be seen in Figure 2.1. The number of filters in a layer, the size of the filters, and the stride 

with which the filters are moved between convolutions, are user defined hyperparameters. In 

this context a hyperparameter is a parameter with a value that is set before a model is fit to the 

data, while other parameters are derived through training [20]. The output from a convolutional 

layer is often referred to as a feature map. 

 

Figure 2.1 - The convolution operation. Figure from [19, p. 131]. 

For 3-dimensional input, such as an RGB-image with 3 channel layers, the filter size is 

generally defined by height and width, while the filter depth implicitly is equal to the depth of 

the input. Filters tend to be square with an odd numbered height and width, such as 3 × 3, 

5 × 5, or 7 × 7, so that there is a centre pixel in the filter.  

Because of the way the convolutions between the input and filter are performed, information 

contained near the edges and corners of the input is given less impact in the layer output. To 

alleviate this problem, zero padding of the input is often used. In such cases, often referred to 

as same padding, the input is padded with zeros so that the layer output has the same height 

and width as the input [19]. An example of this can be seen in Figure 2.2. Using no padding is 

often referred to as valid padding. 
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Figure 2.2 - Zero-padded input (left), with a 3 × 3 filter (mid), to achieve an output with the same size as the 

non-padded input (right). 

2.2.1.2 Activation Layer 

A convolutional layer is usually followed by an activation layer. A variety of activation 

functions exist, but for CNNs a Rectified Linear Unit (ReLU), shown in Figure 2.3, is generally 

used [19]. The activation function is applied elementwise, and is used to make the network 

nonlinear. This nonlinearity is what allows the neural network to model complex problems. 

The activation function also serves an important purpose when it comes to training the neural 

network. This is further explained in Subsection 2.2.3.  

 

Figure 2.3 - The ReLU activation function. Figure from [21]. 

2.2.1.3 Pooling Layer 

In the final building block, the pooling layer, the spatial size of the data is reduced, often with 

a pooling filter size of 2 × 2. This operation helps make the model more robust and less 

affected by small changes in the input data. This is useful when whether a feature is present is 

more important than its exact location [22]. 

The pooling operation finds a summary statistic of neighbouring locations, combining these 

into one value. Max pooling is perhaps the most used pooling operations, where the maximum 

value inside the pooling filter is used. An example of this pooling operation can be seen in 

Figure 2.4. Examples of other pooling operations that can be used include the average, the L2-
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norm, or a weighted average. It should be noted that pooling is generally not done across the 

depth of the data.  

 

Figure 2.4 - An example of the max pooling operation, using a pooling size of 2 × 2. 

2.2.1.4 Fully Connected Layers 

The objective of fully connected layers is to map combinations of high level features to class 

probabilities. These layers are often added to the end of CNNs used for classification, and have 

more or less the same structure as a standard feed forward neural network. The output from the 

convolutional and pooling parts of the CNN is reshaped from 3D to 2D, before being fed to 

fully connected layers of neurons. The activation function used in these neurons will often be 

the same as the one used with the convolutional layers, except for the output layer. For 

classification, where the input only represents one class, the softmax activation function is 

used. The softmax function is a logistic function, but with the output squashed so that the sum 

of the output across all linked nodes equals 1. 

2.2.2 Visualizing Convolutional Neural Networks 

Understanding CNNs, however, is not that easy. Even knowing the mathematics that they are 

built on they can appear to be black boxes. One explanation of how neural networks work that 

is often given is how early layers detect simple features such as colours and lines, while later 

layers combine earlier features into more and more complex features. An example of this can 

be seen in Figure 2.5. 
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Figure 2.5 - An example of how early layers in a neural network detects simple features, such as colours and 

lines, while later layers combine these into more and more complex features. Figure by Zeiler and Fergus, here 

from [22, p. 6]. 

It is interesting to see what triggers various filters in different layers in a CNN, by calculating 

what kind of input produces a high output from a filter. An example by Chollet [23], displayed 

in Figure 2.6, shows this for some filters in the first 5 layers of VGG-16, a feature extractor 

that is described further in Subsection 2.2.4. From this it is clear that latter layers are triggered 

by combinations of features that triggers earlier layers. 
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Figure 2.6 - A visualization of the preferred input to some of the filters in the first 5 layers of VGG-16. Figure 

from [23]. 

While CNNs are able to map images correctly to probable classes, they do not have the same 

concepts of what specific objects as humans do. They simply map combinations of various 

features, be it colour, textures, contours or others, to this probability [23].  This can be 

exemplified by generating synthetic images of what a CNN considers to be various classes. An 

example for bell pepper, lemon and husky can be seen in Figure 2.7. To some extent I can, as 

a human, agree that these are examples of bell pepper, lemon and husky, but they are not what 

I would visualize. That the image shown in Figure 2.8 is a magpie, however, is harder to 

swallow. 
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Figure 2.7 - Generated synthetic images of what a CNN considers to be bell pepper (left), lemon (middle), and 

husky (right). Figure from [24, p. 3]. 

 

Figure 2.8 - A generated synthetic image of a magpie, with 99.99 % confidence. Figure from [23]. 

Though they aren’t perfect, there is no denying how effective CNNs are for object recognition. 

CNNs have state of the art performance in object recognition benchmarks. They are currently 

the best option that exists when it comes to being accurate on multi-class object recognition 

problems. Because of this, a CNN based model was the preferred method in this project. 

2.2.3 Training Neural Networks 

When it comes to training CNNs, this is usually done through supervised learning. With 

supervised learning, input variables and their corresponding output variables are known, and 

the objective of the training is to find the best possible mapping between these. This means that 

the supervised training of neural network can be solved as an optimization problem. The 

performance of the mapping between input and output is quantified by a loss, or objective 

function. Often used loss functions in machine learning are RMSE, entropy, L1-, and L2-norm.  

This optimization problem is usually solved using gradient descent, or a version thereof. With 

backpropagation the gradient is propagated backwords through the various layers of the 

network, using the chain rule, and filter and neuron weights are updated [19]. Since neural 

networks often are trained on, and even require, very large datasets, calculating the gradient 

based on the whole dataset can be time consuming. Because of this, methods such as stochastic 

gradient descent and mini-batch gradient descent are often preferred. With stochastic gradient 

descent the gradient is calculated for backpropagation performed for each data sample, while 

for mini-batch gradient descent the same is done but based on a small batch of data samples. 
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As neural networks tend to be complex models, they are vulnerable to overfitting. Various 

regularization techniques are often used to prevent this from happening. One such technique 

pertains to the amount of data used for training. The more unique data one has, the less likely 

overfitting is to occur. In many cases, however, more data is not available. In some such cases 

data augmentation can be used. For images such augmentation can include horizontal or 

vertical flipping, performing various degrees of rotation, shifting hue and saturation, blurring, 

sharpening and cropping [25]. Another regularization technique is called dropout. With dropout 

randomly selected nodes in a neural network are disabled during training. This is done to 

prevent neurons from co-adapting too much, and is proven to be an effective regularization 

technique [26]. These are just two of a number of techniques. 

During this project some simple data augmentation was used, as well as dropout. 

2.2.4 Notable Feature Extractors 

From 2012 and on research has yielded many new feature extractor architectures, with ever 

increasing accuracy values on benchmark datasets. Two notable feature extractors, LeNet and 

AlexNet, have already been mentioned in Chapter 2.1. This chapter will introduce some more 

feature extractors, and discuss how they differ. 

While all the mentioned features extractors are built using the same basic building blocks 

mention in Subsection 2.2.1, the size and the number of filters used, as well as the number of 

layers, differ significantly. Some of these feature extractors also introduce unique structures 

and layers. 

VGG [27] is notable in that it started using stacked layers of 3 × 3 filters, rather than the 9 × 9 

and 11 × 11 filters used in AlexNet. In the article describing VGG it is argued that this makes 

the network more discriminative, that it reduces the number of parameters, and that it imposes 

some amount of regularization. This approach is also used by later feature extractors. The 

perhaps most commonly used version of VGG is VGG-16, which has 16 layers. 

With Network In Network (NIN) [28]  it was suggested that 1 × 1 convolutions could be 

helpful by combining higher level features after convolutions are performed. GoogLeNet [8] 

utilizes such 1 × 1 convolutions to reduce the computational complexity of operations that 

would otherwise be too expensive, in its Inception modules, where 1 × 1, 3 × 3 and 5 × 5 

convolutions are performed in parallel. GoogLeNet requires a lot fewer operations compared 

to VGG.  

With Inception V2 [29], batch-normalization layers were introduced. In these layers the output 

of a convolutional layer is normalized. Having all layers respond in the same range of values 

is something that helps during training.  

ResNet [9] introduced the idea of using a bypass to skip layers. This serves two purposes. 

Firstly, it allows the combination of lower and higher lever features. Secondly, and perhaps 

more important, it makes training more efficient, allowing networks to get even deeper and 

more complex. 

Needless to say, many of these networks have been improved upon, and many of the mentioned 

innovations have been combined, of ResNet and Inception V4 are good examples. 

One final feature extractor that must be mentioned, is MobileNet [7]. MobileNet was designed 

with mobile devices in mind. It utilizes some of the mentioned innovations, such as 1 × 1 

convolutions and batch-normalization. While it may not have as high accuracy as the newer 

feature extractors like Inception V3 and ResNet, it is able to achieve results similar to 
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GoogLeNet and VGG-16 with a lot fewer operations and parameters. This makes MobileNet a 

very interesting feature extractor for use in this project. 

2.2.5 Convolutional Neural Network Object Detection Meta-architectures 

With CNNs, a lot of progress has been made, not only with object recognition, but also with 

object detection. Multiple (meta)-architectures for object detection have been developed and 

iterated upon. The term meta-architecture is used to refer to object detection architectures that 

use similar approaches for detection [30].   

One of the first proposed meta-architectures, was R-CNN [10]. R-CNN uses a selective search 

algorithm to find region proposals. An image crop of each region is then taken and passed 

through a CNN to extract features. Finally, a support vector machine is used to decide whether 

the crop contains an object, and what kind of object it is. Two issues with R-CNN is that it is 

slow, often with many duplicated computations, and that, because it is built up of 3 separate 

parts, it can be difficult to train [31]. 

 

Figure 2.9 - An overview of the R-CNN architecture. Figure from [10, p. 1]. 

To alleviate these issues Fast R-CNN [32], and later Faster R-CNN [33], was developed. For 

Fast R-CNN the main change was in that the whole image is passed through the CNN once, 

before crops are taken from the resulting feature space. This way, features contained in areas 

of overlapping regions are calculated just once. Additionally, the three parts of R-CNN were 

joined and trained as one. An overview of the Fast R-CNN architecture can be seen in Figure 

2.10. For Faster R-CNN, the main change was in how region proposals are found. Instead of 

using selective search, a CNN called a Region Proposal Network (RPN) is used. This network 

predicts regions of interest based on features calculated by a feature extractor, features that are 

calculated when classifying the region content anyway, and results in a significant speedup.  

 

Figure 2.10 - An overview of the Fast R-CNN architecture. Figure from [32, p. 2]. 
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A different meta-architecture, is an architecture where an image is passed once through a single 

CNN. While this meta-architecture is referred to as Single Shot Detector in [30], the term 

Single Pass Detector (SPD) will be used here, to differentiate between the SPD meta-

architecture and the Single Shot Multibox Detector (SSD) architecture. The three most notable 

SPD architectures are Single Shot Multibox Detector [11] (SSD), You Only Look Once [34] 

(YOLO), and RetinaNet [35]. In these architectures coordinates for bounding boxes, 

classification of the content in these boxes and the confidence that an object is contained in the 

box, are calculated in a single pass through the network. This output is usually filtered by 

applying a threshold to the box confidences, and applying non-max suppression to overlapping 

boxes. Due to only using a single network, and only a single pass through this network for a 

given image, such architectures tend to be faster than Faster R-CNN.  

 

Figure 2.11 – An overview of a version of the SSD architecture (top)  

and the YOLOv1 architecture (bottom). Figure from [34, p. 4]. 

An important thing to note, is that all the object detection architectures mentioned above can 

make use of any feature extractor. Since CNNs are important in all of them, the choice of 

feature extractor will have a large impact on performance, both with regard to accuracy metrics 

and to speed. Figure 2.12 shows the accuracy and calculation time for various combinations of 

meta-architectures and feature extractors. It should be noted that all these benchmarks are 

performed using a NVIDIA Titan X GPU, a card with upwards of a thousand times the 

computational power of a Raspberry Pi. 



 

 2 Theory 

20 

 

Figure 2.12 - Accuracy vs time, with marker shapes indication meta-architecture and colours indicating feature 

extractor. Figure from [30, p. 8] . 

It should be noted that when [30] was published, YOLO was in its first version, and performed 

worse than SSD in all metrics, and as such, its performance is not shown in Figure 2.12. With 

YOLOv2 [36] and YOLOv3 [37], YOLO has seen significant improvements and seems to 

outperform SSD in many cases. 

For use in this project, however, speed and computational complexity is perhaps the most 

important metric. While the most lightweight YOLO model, Tiny YOLO, reports an impressive 

framerate, of 244 FPS, one pass through the model requires 5.41 billion floating point 

operations [12]. SSD using MobileNet and an input size of 300, on the other hand, requires 

only 1.2 billion multiplications and additions [7]. However, compared to the low computational 

power of a Raspberry Pi, even these light weight models seem heavy. Because of this, a 

different approach has to be taken in the implemented object detection framework. 

2.3 Multiple Object Tracking 

Multiple object tracking in video pertains to localizing and identifying all objects of interest in 

a video and keeping the identities of these objects consistent between frames [38]. An example 

of this can be seen in Figure 2.13. Tracking can be very challenging, especially considering 

that objects can temporarily be occluded or leave the field of view. Objects crossing paths is 

another challenging aspect of object tracking.  
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Figure 2.13 - An example of object tracking, here of pedestrians. The identity of individuals is 

 indicated by colour and a number above their bounding box. A trail for each individual, 

 showing their previous locations, is also included. Frame from [39].  

A distinction is often made between online and offline trackers. While online trackers only 

have information from the current and previous frames, offline trackers are able to use 

information from both previous and future frames. A distinction can also be made between 

single and multi-class trackers. While having more classes provide more distinguishing 

features, it means all objects must be classified, preferably correctly. 

With the advent of deep learning and CNNs, tracking-by-detection has grown popular. In this 

approach, all objects are first localized using an object detector. Association between objects 

between frames can then be made using information about this localization and other features 

of the objects. An example of this can be seen in Figure 2.14. In some cases, an estimator, such 

as a particle filter or the Kalman filter, is used to predict object features in the next frame, and 

the association is made between this prediction and the features collected from the next frame 

[38]. 
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Figure 2.14 - An example of tracking by detection, here of pedestrians. The top pictures show  

detections in two different frames. The bottom pictures show these detections associated 

 with individuals, across frames, as indicated by the colour of the bounding box. 

Frames from PETS 2009 dataset, here in [40]. 

Given that each object in a frame corresponds to a tracked object, the association between these 

becomes an assignment problem. In order to find the optimal association, a cost function 

calculated from one or more similarity measure is used. The solution of this optimization 

problem can then be found, for instance by using the Hungarian algorithm.  

One often used similarity measure is the amount of overlap between bounding boxes, often 

labelled intersect over union (IOU). An example of what is meant by intersect and union is 

shown in Figure 2.15. IOU is the ratio between these, and is calculated according to equation 

(2.1) [41], where 𝑎 and 𝑏 refers to two different bounding boxes. A different, and quite self-

explanatory, measure is the object class. Two objects belonging to the same class will be more 

similar than two objects belonging to different classes. 
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Figure 2.15 - Intersect and union between two boxes. 

 

𝐼𝑂𝑈(𝑎, 𝑏) =  
𝐴𝑟𝑒𝑎(𝑎) ∩ 𝐴𝑟𝑒𝑎(𝑏)

𝐴𝑟𝑒𝑎(𝑎) ∪ 𝐴𝑟𝑒𝑎(𝑏)
 (2.1) 

 

Looking at the result chart of the MOT17 challenge [42], a benchmark or framework for 

evaluating various tracking algorithms, one tracker in particular stands out when it comes to 

speed. The IOU tracker reports to process 1522.9 FPS, a value much higher than any of the 

other trackers, though with slightly worse scores in other metrics compared to the most accurate 

tracker. The IOU tracker implements a simple algorithm, solely relying on the IOU measure, 

with some filtration based on confidence scores and track lengths [41]. Due to its speed and 

simplicity, this tracker is very relevant for the detection and tracking framework that will be 

implemented in this project. It does, however, come with several constraints, is very reliant on 

correct detections of objects.  
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3 Implementation 
In this chapter, the implemented object detection and tracking framework is described and 

explained. First, an overview of the framework is given, before each used sub process is 

described in detail. Code for the implemented framework can be found in Appendix B. 

3.1 Overview 

The perhaps largest challenge in this project is the low computational power of the Raspberry 

Pi. State of the art object detectors perform with great accuracy, and are able to process images 

at high framerates, as mentioned in Subsection 2.2.5. However, this performance is achieved 

when using specialized hardware, with computational power many times that of the Raspberry 

Pi. While these object detectors can be implemented on a Raspberry Pi, the inference time will 

be excessively long. Even with Tiny-YOLO, a lightweight YOLO model, and code optimized 

for the CPU on the Raspberry Pi, the prediction time clocks in at about 1.3 seconds [43]. 

In order to create a framework able to achieve higher processing speeds than this, an approach 

other than that of using an already established object detection meta-architecture had to be 

taken. The object detection problem had to be simplified, so that a simpler approach for 

detecting objects could be used. With this, the following problem constraints were introduced: 

• Stationary camera 

• Background image is available 

• Only 5 different classes: Ball, Car, Cup, Person, Unknown 

These constraints allow for background subtraction to be used in order to find the location of 

possible objects in an image, a process that is further described in Chapter 3.2. Any such object 

can then be classified using a small object recognition model, as described in Chapter 3.3. 

Objects are then tracked between consecutive frames, as described in Chapter 3.4. Finally, data 

collected through object detection and tracking is presented as described in Chapter 3.5. An 

overview of this framework can be seen in Figure 3.1. The suggested framework is to some 

extent inspired by the R-CNN meta-architecture described in Subsection 2.2.5.  

 

 

Figure 3.1 - An overview of the object detection and tracking framework implemented in this project. 

All examples used in this chapter are based on the images shown in Figure 3.2. Examples of 

results on more complex images are given in Chapter 4.   
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Figure 3.2 - Background image (left) and two consecutive frames (middle and right) used in examples in this 

chapter. 

3.2 Finding Regions of Interest 

The goal when finding regions of interest is to identify areas where an object is likely to be, or 

is, present. In our case, the coordinates of the bounding box around any such objects are sought, 

as shown in Figure 3.3.  

To find these regions of interest in an image, the foreground in the image is segmented from 

the background using background subtraction. The image is scaled down to a smaller size 

before it is blurred. The background is then subtracted, and a binary image created. The regions 

of interest are calculated based on connected pixels in the binary image. This process, and the 

reasoning behind it, is explained in-depth in this chapter. 

  

Figure 3.3 - The bounding boxes, for which the coordinates are sought, for the two objects in this example 

image. 

The primary reason for reducing image size is to reduce the computational cost of the other 

operations that are performed when finding the regions of interest. For instance, reducing the 

height and width of an image by a factor of 0.1, reduces the number pixels by a factor of 0.01. 

Since the downsized image is just used for finding areas that are different in the current image 

compared to the background image, and not to classify the difference, the fidelity of the image 

is not overly important. Even so, how much it is possible to downscale an image without losing 

important information is dependent on the image resolution, and the relative size of any object 

of interest. Figure 3.4 shows an example where the height and width of an image, with a 

resolution of 1920 by 1080, is downscaled by a factor of 0.2, 0.1 and 0.05. With the reduction 

in size it gets increasingly difficult to identify what objects are present in the image. However, 

it should in all three cases be clear that objects are present.  

While it gets increasingly difficult with the increased reduction in size, to identify what object 

is present in the image, it should in all three cases be clear that an object is present. Throughout 

this project, downscaling was done by a factor of 0.1. 
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Figure 3.4 - Image with width and height downscaled by a factor of 0.2 (left), 0.1 (top right),  

and 0.05 (lower right). It is clear that an object is present in all three cases. 

Blurring is done to reduce the impact of noise and any unwanted sharpness in an image. Several 

methods for blurring images exist, though maybe most notable are gaussian blur, median blur 

and box blur. An example of the result of using these three blurring methods can be seen in 

Figure 3.5. Using OpenCV and the same kernel sizes, box blur is notably faster than the other 

two methods. Since computational efficiency in this case is more important than image fidelity, 

the faster option was the reasonable choice. Furthermore, one can argue whether blurring the 

image is necessary when the image is downscaled significantly, as the downscaling process 

also reduces image fidelity. An example of the final result if no blurring or downscaling is 

performed, can be seen in Figure 3.7. Here, many small and fine-grained spots or flecks are 

present all over the image. This result is unwanted as it increases calculation time and presents 

a very high number of regions of no interest. 

 

Figure 3.5 - Image blurred using three methods: gaussian blur (top), median blur (bottom left),  

box blur (bottom right). 

When the image has been downscaled and blurred, the absolute difference between the present 

image and the background image, which also has been downscaled and blurred, is calculated. 

The calculation is done elementwise. The resulting differential image is then converted to a 

binary image by evaluating which pixel values are above a set threshold. An example of a 

differential image and the corresponding binary image can be seen in Figure 3.6.  
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Figure 3.6 – Absolute difference between current frame and background image (left),  

converted to binary image through thresholding (right). 

Once the binary image has been created, the regions of interest can be found by evaluating 

interconnected pixels. Two neighbouring pixels are considered to belong to the same region if 

they have the same value. The minimum and maximum row and column indices for each region 

are calculated, giving the coordinates for the bounding box around the region. 

 

Figure 3.7 - A crop of the end result if no blurring or downscaling is performed. The image shows many 

 small white flecks or spots not in connection to the objects that are present in the image. 

In addition to performing blurring and downscaling to prevent small false negative detections, 

a simple filter was implemented. The filter simply discards bounding boxes with a height or 

width lower than a set value.  

Some experimentation was done as to whether using a colour space other than RGB would 

yield benefits for the background subtraction, such as making the process less vulnerable to 

changes in lighting and image exposure. No notable difference could be seen, and it seemed 

that it only introduced the additional calculation cost of converting colour space. However, it 

should be mentioned that this could be due to the controlled environment in which the images 

and videos used were taken.  

While traditional background subtraction, by subtracting a known background image, is used 

in this project, other approaches for segmenting the foreground from the background can be 

used instead. This could be using the differential between two or more consecutive frames for 

identifying movement, or more complex algorithms based around Bayesian segmentation or 

Gaussian mixture models. As long as the method used is able to identify the regions of interest 
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and find the bounding boxes for these regions, it could replace the method described in this 

chapter. 

With potential objects having been located, these objects can be classified, as described in the 

next chapter. 

3.3 Classifying Region Content 

When regions of interest in an image have been found, the content of the regions can be 

classified. A crop of each region, with some padding added to make sure the whole object is in 

the crop, is taken from the full-sized image. The crops are then scaled to fit the input size 

expected by the object recognition model used to classify the region content. An example of 

such scaled crops can be seen in Figure 3.8. The pixel values in these crops are also scaled to 

be between -1 and 1. Finally, the crops are input to the recognition model, which produces a 

probability score for each predefined class for each crop. 

 

Figure 3.8 - Scaled crops taken from the full-sized image. 

The neural network used to classify objects was built around the MobileNet feature extractor. 

As discussed in Subsection 2.2.4, MobileNet is a fast and efficient feature extractor, albeit with 

a poorer accuracy performance than other larger and slower feature extractors. Its speed and 

efficiency made MobileNet the natural choice in this project.  

Instead of building and training the neural network from scratch, which is a very time-

consuming process, the smallest and most lightweight model of MobileNet, with weights 

trained on the ImageNet dataset, was repurposed and retrained to classify the five classes used 

in this project. The fully connected layers of the original model where replaced, while the 

convolution and pooling layers remained the same, before the model was retrained. The model 

was retrained on a manually, and somewhat arbitrarily, selected subset of the ImageNet and 

Coco datasets. Approximately 1300 images were used for each category. Some pictures of RC-

cars had to be substituted into the car category in order to achieve descent classification 

accuracy on these. Transfer learning, where a model trained on a general dataset, such as 

ImageNet, is repurposed and retrained for use in more specialized cases has proven to be an 

effective method [44].  

The network expects a 4-dimensional array as input. The first dimension is used to index an 

image or crop, with a size equal to the number of images in the array. The second and third 

dimensions are used to index image height and width, respectively, both having a size of 128. 

Finally, the fourth dimension is used to index the channels in the RGB colour space, with a 

size of 3. In other words, the expected input has the dimensions 𝑁𝐼 × 128 × 128 × 3, where 

𝑁𝐼, the number of images, can vary.  
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The output of the network is a 2-dimensional array, with the first dimension corresponding to 

the first dimension of the input, and the second dimension corresponding to the classes used 

by the network. 

When objects have been located and classified, they can be tracked, as explained in the next 

chapter. 

3.4 Tracking Objects 

With objects having been detected, found and classified in a frame, it must be established 

whether these objects are instances of objects tracked from the previous frame or if they 

represent new objects. This is done by matching detections in the current frame with detections 

in the previous frame, using a cost function subject to optimization with the Hungarian 

algorithm. An example of such detections in consecutive frames, can be seen in Figure 3.9 

 

Figure 3.9 - Objects having been detected and classified in two consecutive frames,  

frame 1 (left) and frame 2 (right). 

The IOU-tracker mentioned in Chapter 2.3 makes the foundation for the tracker used in this 

project. However, the MOT challenge is a single class tracking problem, while this project 

presents a multi-class tracking problem. Because of this, the similarity measure of object class 

is used in addition to IOU.  A weighted sum approach is used to combine these two measures, 

with IOU having a weight of 1, and same class categorization adding a value of 0.1 when 

classes are the same. An example of a cost matrix built for the frames in Figure 3.9, can be 

seen in Figure 3.10. Here 𝐴 and 𝐵 refer to two already tracked objects, and 𝑎 and 𝑏 refers to 

two new detections. IOU is calculated as in equation (2.1), and SC as in (3.1), where 𝑎 and 𝑏 

refer to two detections, and 𝐶𝑙𝑎𝑠𝑠(∙) is the classification of the object. As both a high IOU and 

same class categorization suggests a good match between objects, and the cost function is 

subjected to maximization.  

𝑆𝐶(𝑎, 𝑏) = {
𝐶𝑙𝑎𝑠𝑠(𝑎) = 𝐶𝑙𝑎𝑠𝑠(𝑏) 1
𝐶𝑙𝑎𝑠𝑠(𝑎) ≠ 𝐶𝑙𝑎𝑠𝑠(𝑏) 0

 (3.1) 
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Figure 3.10 - An example of a cost matrix used to match detections with tracked objects,  

with values based on the detections in Figure 3.9. 

Once solved, each assignment is checked to see if it is a good match. This is done by evaluating 

whether the assignment cost is above a set threshold. Assignments with a cost higher than the 

threshold are assumed to be correct. Unassigned detections in the current frame, and 

assignments with a low cost, are assumed to be instances of new objects, and are set to be 

tracked as such. Unassigned detections in the previous frame, or with assignments with low 

cost, are assumed to be objects that no longer are within the field of view, and tracking of these 

objects is stopped. 

Each tracked object is assigned a unique ID. It is also given a colour, which is used when 

annotating images. While not unique, these colours are assigned sequentially from a list of 

colours. Additionally, the following information is stored for each tracked object for each frame 

where the object is detected: 

• Frame number 

• Bounding box coordinates 

• Class probability score 

This data can be presented to the user, as described in the next chapter. 

3.5 Presenting Detection and Tracking Data 

When the object detection and tracking procedures have been completed, the collected data is 

presented to the user. Detections are displayed for each frame, with a bounding box drawn 

around each object and the classification class confidence score annotated in the lower left 

corner of the box. Colours are used to indicate whether an object is the same one tracked in the 

previous frame. An example of this can be seen in Figure 3.11. 

 

Figure 3.11 - Two consecutive frames, showing detections using bounding boxes, annotations and colours. 

A history of where tracked objects have been located, and their classification when in that 

location, can also be displayed. This information is shown as a line plot, with bounding box 

centres used to describe object location, marker shapes used to show classification, and colours 

used to differentiate between tracked objects. This plot is overlaid on the background image in 

A B

a 1•IOU(a,A) + 0.1•SC(a,A) 1•IOU(a,B) + 0.1•SC(a,B)

b 1•IOU(b,A) + 0.1•SC(b,A) 1•IOU(b,B) + 0.1•SC(b,B)

A B

a 0,65 0

b 0 1,1
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order to give the plots some context. An example of this data presentation, for the example 

images used in this chapter, can be seen in Figure 3.12.  

 

Figure 3.12 - A plot showing the history of tracked objects, with bounding box centres being used to describe 

object location. Mark shapes are used to describe object classification and colours are used to differentiate 

between tracked objects. 
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4 Results 
In this chapter, results from the suggested framework are shown and discussed. First, the 

performance of the object localization is evaluated, before the object recognition model and 

tracking algorithm are assessed. Finally, the processing speed of the framework is reviewed. 

As no benchmark dataset suitable for the implemented framework was available, the 

presentation of the performance results is to a large degree anecdotal. 

4.1 Object Localization Performance 

Background subtraction was the chosen method for locating objects in images. Given the 

constraints of a stationary camera, and a known background image, this is seen to work well in 

many cases. An example of this can be seen in Figure 4.1. The method, however, is not without 

flaws. 

 

Figure 4.1 - An example of when the suggested framework works well. 

One issue is if the lighting in a scene, or if the exposure to the camera’s image sensor, changes. 

This will cause new images to differ significantly from a previously taken background image. 

In a best-case scenario this is likely to lead to false positives, while in a worst-case scenario it 

might render the suggested method unusable. An example of such false positives can be seen 

in Figure 4.2. 
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Figure 4.2 – An example of false detections of objects due to changing in light or camera exposure. 

Another issue, which will always be present, is that the suggested method for locating objects 

is poor for handling occlusion. If only one part of an object is visible, while the rest is occluded, 

the method might work fine. However, if multiple non-connected parts of an object are visible, 

each part will be detected as a separate object, something that can be seen in Figure 4.3. 

 

Figure 4.3 – An example of occlusion causing one object to be detected as two. 

Finally, if two objects get too close to one another other, they will be understood to be one 

object. An example of this can be seen in Figure 4.4. This lack of ability to differentiate between 

objects in close proximity severely impacts the rest of the object detection model, as it makes 

object recognition more difficult, with multiple objects being present in the image crop. It will 

also affect object tracking, as certain objects will no longer be detected. 
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Figure 4.4 - An example of objects in close proximity being detected as one object. 

All these issues were expected, as a price paid in the attempt to achieve as high processing 

speeds as possible. The speed performance of the suggested framework is described in more 

detail in Chapter 4.4. 

4.2 Object Recognition Performance 

The classification performance of the CNN used to classify objects, was evaluated on a small 

set of test images. An example of the classification of 9 different images, of which none were 

used for training or validation, can be seen in Figure 4.6. Except for the top left of these 

example images, the classification is near perfect. The exact reason for why the volleyball in 

the top left image is classified as a cup is not clear. Using a more closely cropped image of this 

ball, however, produces the correct classification with close to 100 % confidence. During 

training, the object recognition model was able to achieve an accuracy of 91.2 % on the 

validation dataset.  

In photos and videos taken of fast moving objects, the problem of motion blur appeared. An 

example of two images with such blurring can be seen in Figure 4.5. This blurring affected the 

classification of the objects significantly, often with the object being classified as “unknown”. 

Using slightly blurred images in the training dataset might have made correct classification 

easier for cases where some blurring was present. In images with severe blurring, however, 

correct classification cannot be expected. 

 

Figure 4.5 - Two images with motion blur, which makes classification difficult. 
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Figure 4.6 - The classification output from the object recognition model, for 9 different images. 
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4.3 Tracking Performance 

The implemented tracking algorithm is highly reliant on correct detections. Needless to say, if 

detection fails, so will tracking. Tracking of moving objects is also reliant on how fast an object 

moves, and at which framerate images are taken. Figure 4.7 shows the tracking history for an 

RC-car entering from the right, using video with framerates of 7 FPS and 5 FPS.  

 

Figure 4.7 - Plots showing the tracking history for an RC-car driving in a circle, using videos  

with 7 FPS (left) and 5 FPS (right). It is clear that proper tracking starts to 

 break down when objects move too far between frames. 

This example shows that, when objects move too far between frames, due to a high speed, low 

framerates, or a combination of these, the tracking of these objects starts to break down. If the 

object moves too far, detections of this object are no longer understood to be instances of the 

same object. This can be seen going from green to yellow in Figure 4.7. Changes in the 

classification of the object further exacerbates this, as seen in going from red to blue to green, 

and from yellow to magenta, and from magenta to turquoise. This is to be expected, due to the 

high reliance on IOU to associate detections between frames.  

4.4 Framework Speed Performance 

The speed of the suggested framework was measured by timing the various components of the 

framework over a number of iterations. A set of images containing 1-6 objects, shown in Figure 

4.8, were used, with predictions being performed on each image 1001 times. The average 

timings over 1000 iterations could then be calculated. The first time object recognition is 

performed is always notably slower than the rest, and is, for this reason, not included in the 

average timings. The results are presented in Figure 4.9 and Figure 4.10, with values shown in 

Table 4.1.  

 

Figure 4.8 - The set of images, containing 1-6 objects, used to analyse the speed of the suggested framework. 
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As can be seen from these results, the primary contributor to the total processing time is the 

classification process. The time spent on classifying regions increases significantly with 

increased number of objects, which is to be expected, as calculations in this process are 

performed per object. 

  

Figure 4.9 - Processing speed for all parts of the framework, as well as the total. 

Tracking, on the other hand, did not notably affect the processing speed. While time spent on 

tracking does increase with the number of objects, this increase is so small that, when compared 

to the other timings, it is nigh imperceptible.  

The time it takes to find regions of interest does not increase notably with an increased number 

of objects, either, which is to be expected. Most of the calculations done in this process are 

done regardless of how many objects are present, and only a small number of calculations are 

done per region found. 

  

Figure 4.10 - Processing speed for the three fastest parts of the framework. 

The only real surprise, was how long it took to annotate an image by drawing bounding boxes 

and writing class confidence scores. This process should not be computationally expensive, 

and the fact that it takes longer to annotate an image than to find regions of interest is 
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astonishing. Preliminary investigations suggest this has to do with how a copy of the original 

image is being created. Compared to the classification process, however, annotating does not 

contribute that much to the total prediction time. The time it takes to annotate an image scales 

with the number of objects, which is to be expected.  

 

Table 4.1 - The timings, in seconds, for the various components in the framework, calculated for 1-6 objects. 

 

 

The suggested framework is significantly faster than Tiny-YOLO and SSD300, assuming 

processing time for Tiny-YOLO to be as reported in [43] and processing time for SSD300 with 

MobileNet to be as measured using djmv’s OpenCV implementation [45]. Processing times for 

these frameworks can be seen in Table 4.2. It should be noted that tracking is not included for 

Tiny-YOLO and SSD300. 

 

Table 4.2 - Processing time and framerates for 3 different object detection frameworks. 

 

 

When only one object is present, the suggested framework is almost 10 times as fast as Tiny-

YOLO and 7 times as fast as the implementation of SSD. If 6 objects are present, these values 

drop to 3.6 and 2.6, respectively, which is still a significant speedup. This speedup, however, 

does not come without a cost. The suggested framework comes with significant constraints, 

and is severely impacted by the number of detected objects, something the other methods are 

not. 

While running the suggested framework on a Raspberry Pi it was noted that the CPU usage 

fluctuated around 54-60 %, across all cores. This observation was made using htop. The 

framework itself is not multi-threaded, though some of the used libraries, TensorFlow for 

instance, are. The fact that CPU usage was not capped out during inference suggests that 

something was bottlenecking the CPU. The performance of the suggested framework would 

improve if this bottleneck could be avoided. Some speculation of how this could be done is 

performed in Chapter 5. 

1 object 2 objects 3 objects 4 objects 5 objects 6 objects

Find regions 0,009 0,009 0,010 0,010 0,010 0,010

Classify regions 0,083 0,139 0,172 0,216 0,266 0,297

Track objects 0,002 0,002 0,002 0,002 0,002 0,002

Annotate image 0,011 0,012 0,013 0,014 0,015 0,016

Measured total 0,126 0,185 0,218 0,264 0,314 0,346

Ours, 1 object Ours, 6 objects Tiny-YOLO
SSD300 with 

MobileNet

Processing time [s] 0,126 0,346 1,2 0,95

FPS [Hz] 7,9 2,9 0,8 1,1
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5 Discussion 
In this chapter, various possible ways of improving the speed of the suggested framework are 

discussed. 

5.1 Why use Python 

A very reasonable question to ask, is: “Why would you ever use Python, when you are working 

with a low power device, and speed is of the essence?”. It is a well-known fact that Python has 

a high overhead, especially when compared to languages such as C++.  C++ would in many 

ways have been a more logical language to use when implementing the suggested framework. 

The reason for using Python is quite simple. At the start of this project the author had little 

experience with deep learning and neural networks, and great high-level machine learning 

libraries, Keras in particular, exist for Python, and not for C++. Additionally, the online 

community for machine learning that uses Python is really quite great. A number of good 

tutorials and guides exist. The though was to use Python initially, for then to port the framework 

over to C++. Sadly, there wasn’t enough time within the timeframe of the project to do this. 

It should be noted, however, that the most computationally expensive operations are done using 

highly optimized libraries written in C and C++, such as NumPy, OpenCV and TensorFlow. 

An attempt was made to make the impact of the increased overhead from Python as small as 

possible, for instance by using vectorized computations in order to avoid loops in Python. So, 

while porting the framework to C++ is likely to provide a speed increase, this increase might 

not be as large as one would hope. 

5.2 Quantization and Network Pruning 

The largest contributor to the calculation time of the suggested network, by far, is object 

recognition. So, is there any way of speeding this up? After all, one of the most light-weight 

CNN architectures is already used. 

One approach would be to use an even less complex CNN. This could be achieved by building 

and training a new model, with fewer layers etc, from the ground up. A different approach 

would be to remove layers that aren’t important. It is this latter approach that is referred to as 

network pruning. 

Network pruning is proving to be quite effective. In a recent article [46] it is shown that the 

number of floating point operations in a model can be reduced by approximately 80 %, while 

only losing 3.4 percentage points in accuracy. It should be noted that these values are for a 

network with a more complex feature extractor than the one used in this project, and because 

of this that pruning is unlikely to be as effective here. Even so, it would have been interesting 

to see what results could be achieved by pruning the implemented object recognition model.  

Another approach would be to use a quantized network [47]. Quantization is a method for 

representing values in a model using lower resolution representation, for instance 8-bit, without 

notably affecting the networks accuracy. One of the benefits of using 8-bit data representation, 

compared to the standard 32-bit, is that it uses 25 % of memory bandwidth. If memory 

bandwidth was what bottlenecked the CPU, as noted in 4.4, this could be a possible solution. 

In some cases, calculations based on 8-bit fixed point data representation are also faster, 

enabling the use of more specialized hardware such as SIMD architectures. 
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Due to time constraints these approaches could not really be explored in this project.  
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6 Conclusion 
In this project, an attempt was made to develop an object detection and tracking framework 

able to run in real-time on a Raspberry Pi 3 Model B.  

Multiple state of the art object detection algorithms, Tiny-YOLO and SSD300 with MobileNet 

in particular, were considered and discarded due to their computational complexity. As an 

alternative, a scheme of using background subtraction to locate objects, which could then be 

classified by light weight object recognition model, was suggested.  

This required a stationary camera, and it was assumed that a background image was available. 

The object recognition model used the MobileNet feature extractor, and was adapted from a 

model trained on the ImageNet dataset. Tracking was performed using a modified IOU-tracker, 

which associated detections between frames based on location and object classification.  

The suggested framework was able to achieve framerates as high as 7.9 FPS when 1 object was 

detected, and 2.9 FPS when 6 objects were present. These values are significantly higher, more 

than 7 times for 1 object and 2.6 times for 6 objects, than those achieved using state of the art 

models. This increase in speed, however, does not come without a price. 

While the suggested framework was seen to work well in many situations, it does have several 

weaknesses. Some of these include poor handling of occlusion, a lack of ability to distinguish 

between objects in close proximity, and false detections when lighting conditions change. 

Additionally, the processing speed of the suggested framework is not deterministic, as its 

processing times are highly dependent on the number of detected objects. This is true for state 

of the art models as well, though to a much smaller extent. 

6.1 Suggestions for Further Work  

Much of the accuracy performance of the suggested framework stands or falls with the success 

of the background subtraction method. Chapter 3.2 briefly mentions alternative methods for 

background subtraction. It would have been interesting to see how the suggested framework 

would have been affected by the various approaches to background subtraction. 

The current implementation is in Python, a language known for its overhead. Porting the 

framework to C++, as discussed in Chapter 5.1, is likely to increase the speed of the suggested 

framework.  

The largest contributor to the calculation time of the suggested framework is object recognition. 

Two possible ways of speeding up this process, through quantization and network pruning, are 

discussed in Chapter 5.2. Whether the object recognition process could be sped up is something 

that should be looked further into.
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import json
import cv2
import time
import numpy as np

from ObjectDetector import ObjectDetector
from ImagePreprocessing import resize, resize_absolute
from NeuralNetwork import NeuralNetwork

def detect_using_image(n_iterations):
    # Load settings
    with open("settings.json", "r") as json_settings:
        settings = json.load(json_settings)
    test_image = cv2.imread(settings["image"]["test_image_path"])
    # create detector
    detector = ObjectDetector(settings, log_length = log_length)
    log_index = 0

    for i in range(n_iterations):
        start_time = time.time()
        print("Analyzing image")
        # Perform inference and show image
        output_image = detector.analyze_image(test_image)
        output_image = resize(output_image, 0.5)
        cv2.imshow("Output image", output_image)
        cv2.waitKey(1)
        log_total[log_index] = time.time() - start_time
        log_index = increment_log_index(log_index)
        print("Complte process took: {} s".format(time.time() - start_time))
    print_calculation_times(detector)
    detector.present_tracking_history()
    cv2.waitKey(0)

def detect_using_webcam():
    # Load settings
    with open("settings.json", "r") as json_settings:
        settings = json.load(json_settings)
    # Take background image
    time.sleep(2)
    cap = cv2.VideoCapture(0)
    ret, background = cap.read()
    # create detector
    detector = ObjectDetector(settings, background, log_length = log_length)
    
    while (True):
        # Read camera
        ret, frame = cap.read()
        if not ret:
            break
        # Perform inference and show image
        output = detector.analyze_image(frame)
        output = resize(output, 1)
        cv2.imshow("Output", output)
        
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

Granoes
Text Box
Appendix B - Code for the Implemented Framework



...Programming\02 Object Detection\ObjectDetection\Main.py 2
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    cap.release()
    detector.present_tracking_history()

def detect_using_video(bg_from_vid):
    # Load settings
    with open("settings.json", "r") as json_settings:
        settings = json.load(json_settings)
    # Load background
    background = cv2.imread(settings["image"]["background_path"])
    # Load video
    cap = cv2.VideoCapture(settings["image"]["test_video_path"])
    # Create detector
    detector = ObjectDetector(settings, background, log_length = log_length)
    frame_number = 0
    while(cap.isOpened()):
        # Read vid
        ret, frame = cap.read()
        if not ret:
            break
        if frame_number == 0 and bg_from_vid:
            # Take alternative background iamge
            cv2.imwrite("bg_vid.jpg", frame)
            detector = ObjectDetector(settings, frame)
        # Perform inference
        output = detector.analyze_image(frame)
        output = resize(output, 0.5)
        cv2.imshow("Output", output)        
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
        frame_number += 1
        print(frame_number)
    cap.release()    
    detector.present_tracking_history()

def print_calculation_times(detector):
    print("Average calculataion times over {} frames:".format(log_length))
    print("Region proposals: {}".format(np.mean(detector.find_regions_log)))  

  
    print("Classifications: {}".format(np.mean(detector.classify_log)))
    print("Tracking: {}".format(np.mean(detector.track_log)))
    print("Annotating: {}".format(np.mean(detector.annotate_log)))
    print("Total: {}".format(np.mean(log_total)))

def increment_log_index(log_index):
    if log_index == log_length - 1:
        log_index = 0
    else:
        log_index += 1 
    return log_index

if __name__ == "__main__":
    log_length = 1
    log_total = np.zeros((log_length))
    detect_using_image(1)
    detect_using_webcam()
    detect_using_video(True)
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import numpy as np
from keras.applications.mobilenet import MobileNet, preprocess_input, relu6, 
DepthwiseConv2D

from keras.preprocessing.image import ImageDataGenerator
from keras.models import Model, load_model
from keras.layers import Dropout, Flatten, Dense, BatchNormalization
from keras.models import model_from_json
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint

class NeuralNetwork:

    def __init__(self, architecture=None, model_path=None):
        self.model = None
        if model_path is not None:
            self.load_model(architecture, model_path)

    def load_model(self, architecture, model_path):
        """ Loads neural network model and weights from file

        Args:
            model_path (str): path to model .json file
            weights_path (str): path to weights .h5 file
        """        
        self.model = load_model(model_path, custom_objects = {'relu6':relu6, 

'DepthwiseConv2D': DepthwiseConv2D})

    def declare_model(self, n_classes):
        """ Declares model using static declaration. Used when no model file 

exists.

        Args:
            n_classes (int): Number of classes
        """
        # Import MobileNet feature extractor without fully connected layer
        base_model = MobileNet(input_shape = (128, 128, 3), alpha = 0.25, 

depth_multiplier = 1, include_top = False, weights = "imagenet")
        # Generate new fully connected layer
        x = Flatten()(base_model.output)
        x = Dense(128, activation='relu')(x)
        x = Dropout(0.5)(x)
        x = BatchNormalization()(x)
        x = Dense(32, activation='relu')(x)
        x = Dropout(0.5)(x)
        x = BatchNormalization()(x)
        predictions = Dense(n_classes, activation='softmax')(x)
        self.model = Model(input=base_model.input, output=predictions)
        # Compile model
        self.model.compile(optimizer='adam', loss='categorical_crossentropy', 

metrics=['categorical_accuracy'])
        print(self.model.summary())

    def train_model(self, x_train, y_train, x_val, y_val, n_epochs = 15, 
batch_size = 32):

        """ Trains neural network model on data
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        Args:
            x_train (4d tensor): training input to model
            y_train (2d tensor): known output for training data
            x_val (4d tensor): validation input to model
            y_val (2d tensor): known output for validation data
        """
        # Preprocess input for mobilenet (input size already correct)
        x_train = preprocess_input(x_train.astype(np.float32))
        x_val = preprocess_input(x_val.astype(np.float32))
        # Set random seed for reproducability
        seed = 5
        # Declare generator for image augmentation
        data_gen = ImageDataGenerator(horizontal_flip=True,
                                    width_shift_range=0.1, 
                                    height_shift_range=0.1)
                                    #shear_range = 0.1,
                                    #zoom_range = [0.3, 0])
        data_gen.fit(x_train, augment=True, seed=seed)        
        image_gen = data_gen.flow(x_train, y_train, batch_size = batch_size)
        # Recompile model with optimizer learning rate decay        
        learning_rate = 0.001
        decay = learning_rate / n_epochs
        optimizer = Adam(lr = learning_rate, decay = decay)
        self.model.compile(optimizer=optimizer, 

loss='categorical_crossentropy', metrics=['categorical_accuracy'])
        # Create checkpoint to save best model
        checkpoint = ModelCheckpoint("train_checkpoint.h5", 

monitor='val_categorical_accuracy', verbose=1, save_best_only=True, 
mode='max')

        # Train model
        self.model.fit_generator(image_gen,
                        steps_per_epoch = int(x_train.shape[0] / batch_size),
                        epochs=n_epochs,
                        verbose=1,
                        validation_data=(x_val, y_val),
                        workers=3,
                        max_queue_size=20,
                        callbacks=[checkpoint])

    def predict(self, images):
        """ Predicts classification of supplied images

        Args:
            images (4d tensor): Images to classify [image, y, x, d]
        Returns:
            2d tensor of class predictions
        """
        model_input = preprocess_input(images.astype(np.float32))
        model_output = self.model.predict(model_input)
        return model_output

    def save_model(self, model_path, weights_path):
        """ Saves neural network model and weights to file

        Args:
            model_path (str): path to model .json file
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            weights_path (str): path to weights .h5 file
        """
        with open(model_path, "w+") as json_file:
            json_file.write(self.model.to_json())
        self.model.save_weights(weights_path)
        print("Model saved")
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import cv2
import numpy as np
import json
import time
from skimage import measure
from keras.models import model_from_json
from keras.applications.mobilenet import relu6, DepthwiseConv2D, MobileNet
#from keras.models import load_model
import ImagePreprocessing
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
from NeuralNetwork import NeuralNetwork
from Tracker import Tracker

class ObjectDetector:    
    def __init__(self, settings, background = None, log_length = 1):
        """ Class constructor

        Args:
            settings (dict): Dictionary containing settings
            background (array): Background image, image loaded from file if 

None
            log_length (int): Length of timings logs
        """
        # Store settings in object
        self.settings = settings
        self.image = np.zeros((settings["image"]["height"], settings["image"]

["width"]))
        # Load background image from file, if not provided
        if background is None:
            background = cv2.imread(settings["image"]["background_path"])
        self.background_fullsized = background
        self.background_image = ImagePreprocessing.resize(background, settings

["preprocessing"]["downscale_factor"])
        self.background_image = ImagePreprocessing.blur(self.background_image,

 settings["preprocessing"]["blur_kernel_size"])
        #self.background_image = cv2.cvtColor(self.background_image, 

cv2.COLOR_BGR2YCrCb)
        # Load neural network
        self.neural_network = NeuralNetwork(settings["neural_network"]

["architecture"], 
                                            settings["neural_network"]

["model_path"])
        # Load class labels
        with open(settings["neural_network"]["labels_path"], "r") as 

json_labels:
            self.labels = json.load(json_labels)
        # Hard-coded marker types, to fit number of classes
        self.class_markers = ["o", "^", "s", "x", "d"]
        # Initialize tracker
        # Hard-coded list of colours.
        color_list_dummy = [(0,0,255),
                            (255,0,0),
                            (0,127,0),
                            (0,191,191),
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                            (191,0,191),
                            (191,191,0),
                            (50,255,0),
                            (255,50,0),
                            (50,0,255),
                            (255,0,50),
                            (0,50,255)]
        self.tracker = Tracker(color_list_dummy, settings["tracker"]

["same_class_reward"])
        # Initialize arrays used to log calculation times
        self.log_length = log_length
        self.log_index = 0
        self.find_regions_log = np.zeros((log_length))
        self.classify_log = np.zeros((log_length))
        self.track_log = np.zeros((log_length))
        self.annotate_log = np.zeros((log_length))  

    def analyze_image(self, image):
        """ Detects and classifies objects in image        
        Args:
            image (array): image to be analyzed
        Returns:
            Image annotated with bounding boxes and class confidences
        """        
        # Find region proposals
        start_time = time.time()
        bounding_boxes = self.find_region_proposals(image)     
        self.find_regions_log[self.log_index] = time.time() - start_time
        print("Finding bounding boxes took: {} s".format(self.find_regions_log

[self.log_index]))
        start_time = time.time()
        # Classify content in regions
        start_time = time.time()
        classifications = self.classify_region_content(image, bounding_boxes)
        self.classify_log[self.log_index] = time.time() - start_time          

        
        print("Classifying {} crops took: {} s".format(bounding_boxes.shape

[0], self.classify_log[self.log_index]))
        # Track objects
        start_time = time.time()
        tracks = self.tracker.track(bounding_boxes, classifications, 

self.settings["tracker"]["iou_threshold"])
        self.track_log[self.log_index] = time.time() - start_time             

  
        print("Tracking objects took took: {} s".format(self.track_log

[self.log_index]))
        # Draw bounding boxes
        start_time = time.time()
        annotated_image = self.draw_bounding_boxes(image, tracks)        
        self.annotate_log[self.log_index] = time.time() - start_time          

     
        print("Annotating images took: {} s".format(self.annotate_log

[self.log_index]))
        # Increment log index
        self.increment_log_index()
        return annotated_image
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    def classify_region_content(self, image, bounding_boxes):
        """ Classifies content in bounding box regions using neural network 

model

        Args:
            image (array): Image to perform detection on
            bounding_boxes (array): array containing upper left and lower 

right corner coordinates of bounding box rectangle (y1, x1, z, 
y2, x2, d) in second dim

        Returns:
            2d array of class probabilities
        """
        # Declare array for holding input data
        network_input = np.zeros((len(bounding_boxes), self.settings

["neural_network"]["input_size"], self.settings["neural_network"]
["input_size"], 3))

        crop_index = 0
        # Loop through bounding boxes, crop image, scale, and add to input 

array
        start_time = time.time()
        for bounding_box in bounding_boxes:
            x1 = np.maximum(0, bounding_box[1] - self.settings["bounding_box"]

["padding"])
            x2 = np.minimum(1919, bounding_box[3] + self.settings

["bounding_box"]["padding"])
            y1 = np.maximum(0, bounding_box[0] - self.settings["bounding_box"]

["padding"])
            y2 = np.minimum(1079, bounding_box[2] + self.settings

["bounding_box"]["padding"])
            crop = image[y1:y2,x1:x2]
            network_input[crop_index,:,:,:] = 

ImagePreprocessing.resize_absolute(crop, self.settings
["neural_network"]["input_size"], self.settings
["neural_network"]["input_size"])

            #cv2.imshow("debug", network_input[crop_index,:,:,:,].astype
("int"))

            #cv2.waitKey(0)
            crop_index += 1
        print("Croping images took {} s".format(start_time - time.time()))
        # Classify content
        start_time = time.time()
        classifications = self.neural_network.predict(network_input)
        print("classifying images took {} s".format(start_time - time.time()))
        return classifications

    def draw_bounding_boxes(self, image, tracks):
        """ Draws bounding boxes on image

        Args:
            image (array): Image to annotate
            tracks (list): list of currently tracked objects
        Returns:
            Annotated image
        """
        # Copy image
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        annotated_image = np.array(image)#image.copy()
        # Loop through bounding  boxes, drawing each on the copied image, add 

class text
        for i in range(len(tracks)):
            # Create text annotation
            class_index = np.argmax(tracks[i].classification_track[-1][:])
            annotation = "{0}: {1:.2f}".format(self.labels[str(class_index)], 
                                               tracks[i].classification_track

[-1][class_index])
            # Draw bounding box
            cv2.rectangle(annotated_image,
                          (tracks[i].bounding_box_track[-1][1], 
                            tracks[i].bounding_box_track[-1][0]), 
                          (tracks[i].bounding_box_track[-1][3], 
                            tracks[i].bounding_box_track[-1][2]),
                          color = tracks[i].color, 
                          thickness = self.settings["bounding_box"]

["box_thickness"])
            # Write annotation
            cv2.putText(annotated_image, 
                        annotation, 
                        (tracks[i].bounding_box_track[-1][1], 
                            tracks[i].bounding_box_track[-1][2]), 
                        cv2.FONT_HERSHEY_SIMPLEX,
                        fontScale = self.settings["bounding_box"]

["font_scale"], 
                        color = tracks[i].color,
                        thickness = self.settings["bounding_box"]

["font_thickness"])
        return annotated_image

    def find_region_proposals(self, image):
        """ Finds region proposals using background subtraction

        Preprocesses image, through color space change, resizing, background 
subtraction, bluring, and thresholding, to generate region proposals

        Args:
            image (array): Image (differential, threshold) to find region 

proposals from
        Returns:
            Array of bounding boxes/region proposals (y1, x1, z, y2, x2, d)
        """
        # Preprocess image    
        resized_image = ImagePreprocessing.resize(image, self.settings

["preprocessing"]["downscale_factor"])
        blured_image = cv2.blur(resized_image, tuple(self.settings

["preprocessing"]["blur_kernel_size"]))
        diff_image = ImagePreprocessing.remove_background(blured_image, 

self.background_image)
        threshold_image = ImagePreprocessing.threshold(diff_image, 

self.settings["preprocessing"]["threshold"] * 255)
        ## Show image for debug
        #cv2.imshow("debug", dilated_image)
        #cv2.waitKey(1)
        # Get region proposals

Granoes
Text Box
Appendix B - Code for the Implemented Framework



...g\02 Object Detection\ObjectDetection\ObjectDetector.py 5
183
184
185

186

187
188
189
190
191

192
193
194

195
196
197
198

199

200

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

219
220
221
222
223
224
225
226

227
228
229

        labels = measure.label(threshold_image)
        regionprops = measure.regionprops(labels)
        bounding_boxes = [prop.bbox for prop in regionprops] # (y1, x1, z, y2,

 x2, d)
        bounding_boxes = np.array(bounding_boxes) * (1 / self.settings

["preprocessing"]["downscale_factor"])
        bounding_boxes = self.filter_bounding_boxes(bounding_boxes)
        return bounding_boxes.astype("int")

    def filter_bounding_boxes(self, bounding_boxes):
        """ Filters bounding boxes based on minimum box size and maximum 

intersect/union (IoU)

        Args:
            bounding_boxes (array): array containing upper left and lower 

right corner coordinates of bounding box rectangle   
        """
        if len(bounding_boxes) == 0:
            return bounding_boxes
        # Filter out bounding boxes with size smaller than minimum size in 

settings
        height_filter = (bounding_boxes[:, 2] - bounding_boxes[:,0] > 

self.settings["bounding_box"]["min_size"])
        width_filter = (bounding_boxes[:, 3] - bounding_boxes[:,1] > 

self.settings["bounding_box"]["min_size"])
        box_filter = np.bitwise_and(height_filter, width_filter)
        return bounding_boxes[box_filter,:] 

    def increment_log_index(self):
        """ Increments the log index
        """
        if self.log_index == self.log_length - 1:
            self.log_index = 0
        else:
            self.log_index += 1  
            
    def present_tracking_history(self):
        """ Creates a plot for all tracked objects history
        """
        # Set background image as plot background for context
        plt.imshow(cv2.cvtColor(self.background_fullsized, cv2.COLOR_BGR2RGB))
        # Create list of markers for plot legend
        marker_list = [mlines.Line2D([], [], color="black", marker=m) for m in

 self.class_markers]
        # Create line and scatter plots for each active track
        for track in self.tracker.tracks_active:
            self.plot_track(track)
        # Create line and scatter plots for each active track
        for track in self.tracker.tracks_finished:
            self.plot_track(track)
        # Add legend and show plot
        plt.legend(marker_list, list(self.labels.values()), bbox_to_anchor=

(1.05, 1), loc=2, borderaxespad=0)
        plt.show()

    def plot_track(self, track):
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        """ Plots line and scatter plot of a specific tracked objects history

        Args:
            track (track object): Object containing a tracked objects history
        """
        # Set color for track
        color = tuple([v/255 for v in reversed(track.color)])
        # Convert list of box coordinates to an array, and calculate centre 

point for each position
        box_coords = np.array(track.bounding_box_track)
        x_center = (box_coords[:,3] + box_coords[:,1])/2
        y_center = (box_coords[:,2] + box_coords[:,0])/2
        # Find class with highest confidence in each frame
        classifications = np.array(track.classification_track).argmax(axis=1)
        classes = np.unique(classifications)
        # Create a scatterplot for each classification type the object was 

classified as, in order to get correct markers
        for c in classes:
            index_mask = classifications == c
            plt.scatter(x_center[index_mask], y_center[index_mask], 

marker=self.class_markers[c], color=color, s=60)
        # Plot line to show positions
        plt.plot(x_center, y_center, color=color)
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import numpy as np
from scipy.optimize import linear_sum_assignment
from itertools import cycle

class Tracker:

    def __init__(self, color_list, same_class_reward):
        self.colors = cycle(color_list)
        self.tracks_active = []
        self.tracks_finished = []
        self.frame_index = 0
        self.incremental_id = 0
        # Variables holding data from previous frame,
        # to not have to calculate again for next frame
        self.previous_boxes = np.empty((0,0))
        self.previous_area = np.empty((0))
        self.previous_classifications = np.empty((0,0))
        self.box_to_track_map = []
        self.same_class_reward = same_class_reward

    def track(self, boxes, classifications, threshold):
        """ Matches bounding boxes in previous and current frame, using 

Hungarian Algorithm   

        Args:
            boxes (array): new bounding boxes
            classifications (array): classifications of content in provided 

bounding boxes
            threshold (scalar): threshold used to determine whether detections

 are instances of the same object.
        """
     # compute the area of the bounding boxes
        if len(boxes) > 0:
            area = (boxes[:,3] - boxes[:,1]) * (boxes[:,2] - boxes[:,0])
        else:
            area = np.zeros((0))
                
        # Find number of previous and current boxes
        n_new = boxes.shape[0]
        n_prev = self.previous_boxes.shape[0]

        # If boxes exist
        if n_new > 0 and n_prev > 0:
            # Find all maximum coordinate combinations between new and 

previous boxes
            yy1 = self.get_max_coordinate_block(boxes[:,0], 

self.previous_boxes[self.box_to_track_map,0], n_new, n_prev)    
    

            xx1 = self.get_max_coordinate_block(boxes[:,1], 
self.previous_boxes[self.box_to_track_map,1], n_new, n_prev)

            yy2 = self.get_min_coordinate_block(boxes[:,2], 
self.previous_boxes[self.box_to_track_map,2], n_new, n_prev)

            xx2 = self.get_min_coordinate_block(boxes[:,3], 
self.previous_boxes[self.box_to_track_map,3], n_new, n_prev)

            # Calculate intersect between new and previoius boxes
            w = np.maximum(np.zeros((n_new,n_prev)), xx2-xx1)
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            h = np.maximum(np.zeros((n_new,n_prev)), yy2-yy1)
            intersect = np.multiply(w,h)
            # Create 2d arrays from area and previous area
            area_block = np.repeat(area[:,None],n_prev,1)
            prev_area_block = np.repeat(self.previous_area

[None,self.box_to_track_map],n_new,0)
            # Calculate intersect over union between new and previous boxes
            iou = intersect / (area_block + prev_area_block - intersect + 1)
            # Find cases where classification of previous and new boxes match
            class_match_block = self.get_class_match_block(classifications, 

self.previous_classifications[self.box_to_track_map,:], n_new, 
n_prev)

            # Create cost matrix
            cost_matrix = iou + class_match_block*self.same_class_reward
            # Solution using hungarian algorithm, maximize cost
            col_ind, row_ind = linear_sum_assignment(-cost_matrix.T)
            # Filter out instances where value is below threshold
            ind_mask = cost_matrix[row_ind,col_ind] >= threshold
            row_ind = row_ind[ind_mask]
            col_ind = col_ind[ind_mask]
        else:
            row_ind = []
            col_ind = []     
            
        # Generate list of indices of new boxes not assigned to tracks
        not_assigned_row = [i for i in range(n_new) if i not in row_ind]
        not_assigned_col = [i for i in range(n_prev) if i not in col_ind]

        # Add box matches to current tracks
        for i in range(len(row_ind)):
            self.tracks_active[i].add_frame_data(self.frame_index, 
                                                    boxes[row_ind[i],:], 
                                                    classifications[row_ind

[i],:])
        # Move non-matched tracks from active to finished, then delete them
        for i in range(len(not_assigned_col)-1, -1, -1):
            self.tracks_finished.append(self.tracks_active[not_assigned_col

[i]])
            del self.tracks_active[not_assigned_col[i]]

        # Add non-matched boxes to active tracks
        for i in range(len(not_assigned_row)):
            self.tracks_active.append(Track(self.incremental_id, 
                                            self.frame_index, 
                                            boxes[not_assigned_row[i],:], 
                                            classifications[not_assigned_row

[i],:],
                                            next(self.colors)))            
            # Increment next id
            self.incremental_id += 1  
            
        # Update box_to_track_map
        self.box_to_track_map = list(row_ind) + not_assigned_row
        # Move boxes to previous boxes, area to previous area, and increment 

frame index
        self.previous_area = area
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        self.previous_boxes = boxes
        self.previous_classifications = classifications
        self.frame_index += 1
        return self.tracks_active

    def get_max_coordinate_block(self, new, prev, n_new, n_prev):    
        """ Creates a 2d block containing the max coordinates between new and 

previous bounding boxes

                  A,       B
            a  max(a,A) max(a,B)
            b  max(b,A) max(b,B)

        Args:
            new (array): New bounding boxes
            prev (array): Previous bounding boxes
            n_new (int): Number of new boxes
            n_prev (int): Number of previous boxes
        Returns:
            2d array containing max coordinates between combinations of new 

and previous boxes
        """
        new_block = np.repeat(new[:,None],n_prev,1)
        prev_block = np.repeat(prev[None,:],n_new,0)
        max_coords = np.maximum(new_block, prev_block)
        return max_coords

    def get_min_coordinate_block(self, new, prev, n_new, n_prev):   
        """ Creates a 2d block containing the max coordinates between new and 

previous bounding boxes

                   A,       B
            a  min(a,A) min(a,B)
            b  min(b,A) min(b,B)

        Args:
            new (array): New bounding boxes
            prev (array): Previous bounding boxes
            n_new (int): Number of new boxes
            n_prev (int): Number of previous boxes
        Returns:
            2d array containing min coordinates between combinations of new 

and previous boxes
        """
        new_block = np.repeat(new[:,None],n_prev,1)
        prev_block = np.repeat(prev[None,:],n_new,0)
        max_coords = np.minimum(new_block, prev_block)
        return max_coords
        
    def get_class_match_block(self, new, prev, n_new, n_prev):
        """ Creates a 2d block containing information of whether combinantions

 of bounding boxes had the same class

        Args:
            new (array): New bounding boxes
            prev (array): Previous bounding boxes
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            n_new (int): Number of new boxes
            n_prev (int): Number of previous boxes
        Returns:
            2d array containing information of whether combinantions of 

bounding boxes had the same class
        """
        new_block = np.repeat(new.argmax(axis=1)[:,None],n_prev,1)
        prev_block = np.repeat(prev.argmax(axis=1)[None,:],n_new,0)
        match_block = new_block == prev_block
        return match_block

            
class Track:
    """ Class containing tracking information
    """
    def __init__(self, identifier, frame_index, bounding_box, classification, 

color):
        self.frame_track = [frame_index]
        self.bounding_box_track = [bounding_box]
        self.classification_track = [classification]
        self.color = color
        self.identifier = identifier

    def add_frame_data(self, frame_index, bounding_box, classification):
        """ Adds data for current frame to an objects track

        Args:
            frame_index (int): Index of current frame
            bounding_box (1d array): Bounding box in current frame
            classification (1d array): Classification scores in current frame
        """
        self.frame_track.append(frame_index)
        self.bounding_box_track.append(bounding_box)
        self.classification_track.append(classification)
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import cv2
import numpy as np
import os
from keras.utils import to_categorical

from NeuralNetwork import NeuralNetwork
from ImagePreprocessing import resize_absolute

def load_data(data_path, val_portion, network_input_size):
    """ Loads image data from folders (requires correct structure)

   |-Data (top level directory)
      |-Class 1 folder
      .  |-image 1
      .  |-image 2
      .  |-image n
      |-Class 2 folder
      .  |-image 1
      .  |-iamge 2
      .  |-image n
      |-...
      |-Class n folder

    Args:
        data_path (str): Path top level data directory
        val_portion (float): Portion of loaded data to use as validation 

(remainder used as training)
    Returns:
        Lists containing training data, validation data, and number of classes
    """
    print("Loading data...")
    x_train = []
    y_train = []
    x_val = []
    y_val = []
    class_index = 0
    # Traverse directory
    for dir_name, sub_dirs, files in os.walk(data_path):
        x = []
        y = []
        if len(files) > 0:
            # Read files
            for file in files:
                image = cv2.imread(dir_name + "\\" + file)
                resized_image = resize_absolute(image, network_input_size, 

network_input_size)
                x.append(resized_image)
                y.append(class_index)
        
            # Calculate number of files in class to use for validation
            n_val = int(len(files)*val_portion)
            val_indices = np.random.choice(range(len(files)), n_val, replace =

 False)
            # Add validation data to validation lists, add training data to 

trainingn lists
            x_train.extend(np.delete(x, val_indices, axis=0))
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            y_train.extend(np.delete(y, val_indices))
            x_val.extend([x[i] for i in val_indices])
            y_val.extend([y[i] for i in val_indices])
            # Increment class index
            class_index += 1
    n_classes = class_index  
    x = None
    y = None
    x_train = np.array(x_train)
    x_val = np.array(x_val)
    print("Data loaded!")
    return x_train, y_train, x_val, y_val, n_classes

def reshape_image_list(x, network_input_size):
    """ Reshapes list of images to 4d array, with correct shape (dimensions) 

for use with neural network

    Args:
        x (list): List of images
        network_input_size (int): input height and width expected by neural 

network
    Returns
        Reshaped array, ready for use in training
    """
    # Declare array to hold reshaped data
    x_reshaped = np.zeros((len(x), network_input_size, network_input_size, 3))
    # Resize images 
    for i in range(len(x)):
        x_reshaped[i,:,:,:] = resize_absolute(x[i], network_input_size, 

network_input_size)
    return x_reshaped

if __name__ == '__main__':
    # Settings
    np.random.seed(5) # For reproducability
    val_portion = 0.25
    data_path = 'E:\\Download\\Datasets\\Master\\'
    model_path = 'E:models\\Mobilenet_128_model.json'
    weights_path = 'E:models\\Mobilenet_128_weights.h5'
    n_epochs = 50
    batch_size = 128
    network_input_size = 128
    # Load and reshape data
    x_train, y_train, x_val, y_val, n_classes = load_data(data_path, 

val_portion, network_input_size)
    #x_train = reshape_image_list(x_train, network_input_size)
    y_train = to_categorical(y_train)
    #x_val = reshape_image_list(x_val, network_input_size)
    y_val = to_categorical(y_val)
    # Create neural network
    neural_network = NeuralNetwork()
    neural_network.declare_model(n_classes)
    # Train neural network
    neural_network.train_model(x_train, y_train, x_val, y_val, n_epochs, 

batch_size)
    neural_network.save_model(model_path, weights_path)
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