University of
South-Eastern Norway WWW.usn.no

FMHG606 Master's Thesis 2018

Industrial IT and Automation

Machine Learning Algorithms in
Multiphase Flow Regime Identification
using Electrical Capacitance Tomography

e F

Rafael Johansen

Faculty of Technology, Natural sciences and Maritime Sciences
Campus Porsgrunn



University of
South-Eastern Norway WWW.usn.no

Course: FMH606 Master's Thesis, 2018

Title: Machine Learning Algorithms in Multiphase Flow Regime Identification using
Electrical Capacitance Tomography

Number of pages: 109

Keywords: Machine learning, deep learning, convolutional neural networks, electrical

capacitance tomography, multiphase flow, flow regime identification

Student: Rafael Johansen

Supervisor: Saba Mylvaganam, Antoine Dupré
External partner: Statoil, University of Manchester
Availability: Open

Approved for archiving:

(supervisor signature)

Summary:

Using Electrical Capacitance Tomography (ECT) cross sectional images of material distributions
within a pipe were reconstructed. Stacking them together, the dynamics of multiphase flows were
captured as temporal elongated images. Using machine learning algorithms for image recognition,
methods to create data driven models for identification of five multiphase flow regimes are
presented.

Deep learning algorithms were developed as MATLAB implementations using Convolutional
Neural Networks (CNN). As such networks can be constructed with a diverse number of layers
and features, Genetic Algorithms were used to find an architecture that fits the problem at hand.
Datasets of stacked images were manipulated by adjusting parameters to emphasize relevant
information from the raw data. Comparing models with respect to accuracy reveals that color
gradients, exposing details in both phases, improve the performance. Unexpectedly, employing
pixels from the ECT image center to the temporal images, had a positive impact on the overall
classification accuracy. The highest overall classification accuracy demonstrated was 93.19%.
Also, decreasing the sample rate from 500 to 25 fps resulted in a minor reduction of performance,
giving a classification accuracy of 91.85%.

Using an ECT-system reconstructing images of 32 X 32 pixels representing a cross sectional area
of a pipe with a diameter of 0.56 mm was found to introduce the most significant limitation to
detect small air bubbles and oscillations. As a consequence, causing classification errors mainly
in the plug/slug and stratified/wavy transitional areas.

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this student report.
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1 Introduction

1 Introduction

As processors advance and computational power becomes more and more available, Deep
Learning (DL) algorithms take ground and are used in an increasing number of application
areas. Also, the process industry has started to apply new techniques like Machine Learning
(ML) in solving problems arising in its data driven sectors. Whereas multiphase flows already
have been characterized using more traditional methods, this thesis focuses on utilizing new
methods by introducing Convolutional Neural Networks (CNN) in the identification of flow
regimes.

Electrical Capacitance Tomography (ECT) is a noninvasive and nonintrusive measuring
method that gathers information about cross sectional material distribution in pipes without
disturbing its state. Previous research has shown that identification of flow regimes to certain
degrees can be obtained by using the raw capacitance data. However, this time image
reconstruction algorithms will be incorporated to generate images that can be recognized and
classified by DL algorithms. The aim of this study is to find out how different aspects of
learning algorithms influence model accuracy and how the model can be enhanced using these
methods. Constraints and limitations introduced by the measuring technique will hereby also
be taken into consideration.

A plethora of sensors and a multiphase rig with a section, that can be tilted, were earlier
provided by STATOIL in conjunction with various research projects, at times supported by
Research Council of Norway. STATOIL provided some of the tomographic units. This
collaboration between USN and STATOIL has been ongoing for more than two decades.

Chapter 2 presents the background and fundamentals for this thesis. It gives a description of
five flow regimes obtained in multiphase flow of water and air, and introduces ECT. It also
presents a historical and technical overview of ML in general, while focusing on DL algorithms
with CNNs. Finally, a short introduction to genetic algorithms for parameter optimization is
given.

Chapter 3 gives information about the experimental set-up and the obtained datasets. It
describes the features and dimensions of the multiphase rig, and the technical specifications of
the ECT-system, used in this research. Also, the methodical approach for carrying out
experiments and taking measurements is explained here.

Chapter 4 reviews how the experimental data were prepared for later use in ML algorithms by
utilizing methods for image reconstruction. To gather dynamic information in the data, a buffer
is introduced by stacking a given number of image frames together. Additionally, the
importance of decisions on flow regime labeling is included.

Chapter 5 presents all the results obtained in terms of accuracy with respect to adjustments of
relevant parameters and characteristics. Here, genetic algorithms are used to find a good model
architecture for the problem at hand. The image data are also manipulated by adjusting their
colors and the way they are stacked.

Chapter 6 discusses the results obtained and challenges that appeared during the progression
of this study. Also, some issues that could be addressed in future research in the usage of ECT
in process industries is presented.

Chapter 7 rounds up the report with a conclusion on the results and the achieved goals.
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2 Background and Fundamentals

The problem scope of this study is illustrated in Figure 2.1. The aim is to develop a ML
system that identifies multiphase flow regimes using ECT. Having a fundament to build on,
each of these subjects are explained in the following subchapters.

1,
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Figure 2.1: Overview of the problem scope with a specific application in multiphase flow.

2.1 Flow regimes in Multiphase Flows

When liquid and gas flow together in a pipe, different geometrical configurations arise. These
patterns are called flow regimes, and depend on several various flow conditions. Although
the varying flow rates for either of the phases are important for the consequential flow
behavior, also several static parameters are crucial. These are material properties, like
viscosity, temperature, density, and the pipe’s inner diameter and length. Flow regimes need
a certain amount of time and straight traveling distance to fully develop.

The five flow regimes addressed in this study are called stratified, plug, slug, wavy and
annular (see Figure 2.2). Figure 2.3 shows an overview of these flow regimes with respect to
gas- and liquid flow rates. Stratified simply means that the gas and liquid are completely
separated. However, in this study, the meaning of this term is limited to include only smooth
separation surfaces. Stratified flow occurs when both phases flow with slow velocities. When
the liquid flow rate is increased, small oscillations are starting to appear on the separation
surface, and the flow is called wavy. Usually the waves become longer and more significant
with respect to increasing gas flow rates. Notice that other studies may refer to these two
regimes as stratified smooth and stratified wavy because the phases are totally separated in
both cases. As the liquid flow rate is increased even further, the phases start to fuse together
in a chaotic mixture of liquid, gas and steam. This phenomenon is characterized as annular
flow. As with the velocities, the pressure is high but stable, and liquid coats the walls of the
pipe. This is, however, not the case for the two remaining flow regimes. In general, with
higher gas flow rates, the flow is no longer continuous but becomes uneven and intermittent.
Liquid velocities start fluctuating, and sudden pressure drops occur in between the presence
of large liquid bodies completely filling the pipe. For low liquid flow rates, the large liquid
bodies are called plugs. For higher liquid flow rates, the liquid bodies contain many small gas
bubbles and are called slugs. As plugs often are longer than slugs, notice that other studies
may rather refer to the gas chambers between the liquid bodies, hence using the term
elongated bubble instead of plug.
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Figure 2.2: Sketches of the five flow regimes addressed in this study; (a) plug, (b) slug, (c)
annular, (d) stratified and (e) wavy.
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Figure 2.3: Flow regime map used at the multiphase rig at USN, Porsgrunn. The map is
derived from Mandhane et al. (1974) [1], and later modified by [2] and [3]. Instead of using
superficial velocity (m/s), the axes are adapted to mass flow rates (kg/min) according to the

rigs specifications.

2.2 Noninvasive ldentification of Materials

As materials respond different to external impacts, they can be distinguished by measuring
their varying properties. Such characteristics can be categorized with respect to i.a. their
acoustical, electrical, magnetic or thermal behavior. However, to measure material
characteristics without affecting their current process state, noninvasive sensing techniques
are introduced. The point of these techniques is to gather information about the materials in
their present condition without having to apply interruptive interventions disturbing their
state of behavior. The following examples briefly present a few approaches to noninvasive
identification of material characteristics.
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Taking advantage of acoustic properties, ultrasonic methods can be utilized. Ultrasonic
sensors measure the time a sound wave uses to travel through a given material. These sensors
consist basically of a transmitter and a receiver, and can also be used to measure velocities by
mounting them in a way that allows the sound to travel co-current or countercurrent in
reference to material flows.

Gamma Ray Meters (GRM) can be used to measure i.a. densities, levels and material
segmentations within vessels and pipes [4]. Exposing materials for a radioactive source, the
Gamma Ray Absorption (GRA) principle reveals information about electromagnetic
properties.

As materials have different permittivities, characteristics can be revealed by applying
electrical potentials. ECT and Electrical Resistance Tomography (ERT) are specific examples
of techniques that use impedance to characterize materials (see section 2.3).

By having a combination of sensor modalities capable of interacting with the medium, its
material properties can be estimated using sensor data fusion, a technique better known as
soft sensing.

2.3 Introduction to Electrical Capacitance Tomography

Tomographic sensing has demonstrated to be an efficient method to unveil details about
systems without affecting their state or behavior. Whereas tomographic development started
with medical applications in the 1950s, it first started to advance in industrial processes
during the 1980s [5]. The following decade tomographic methods developed, and in 1991,
Schlumberger Gould Research (SGR) introduced a real-time ECT-system using 12 electrodes
and a maximum sample rate f; of 100 fps [6]. As most multiphase flow meters in the gas-oil-
water industry still used to rely on using radioactive gamma rays, researchers from the
University of Manchester and SGR came together in 2011 and developed a prototype of a
multimodal flow meter, including ECT sensors [7]. It was shown that ECT systems have the
capability to measure flow regime relevant parameters like the water-in-liquid ratio and the
thickness of liquid layers in annular flow. The recent years a growing interest for using the
flow regime knowledge from ECT-systems to validate and fine tune models within the field
of Computational Fluid Dynamics (CFD) is seen [8].

However, process tomography’s main objectives are in many cases to visualize process states
within pipes and vessels. As will be explained, cross sectional visualizations of actual
material distributions inside process apparatus requires reconstruction algorithms. Because
this may be computationally demanding, it sometimes is more convenient to directly analyze
raw measurements and utilize data fusing methods to extract relevant parameters that
describe process states. Using such inferential methods for identification of specific flow
regimes, has the recent years been a hot research topic. In collaboration with USN and the
Centre of Atomic Energy (CEA) in France, it has been shown that eigenvalues and the Fast
Fourier Transform (FFT) can be used to fuse raw capacitance data and extract different
parameters that describe multiphase flow regimes [3] [9]. Concepts of ML, incorporating
neural networks, have also been used with ECT for interface level measurements in pipes
[10].

As a next step, this study focuses on taking advantage of how modern technology facilitates
the availability of inexpensive processing power and advanced methods within image
recognition. Instead of using the raw capacitance data, reconstructed ECT images can be used
in combination with ML algorithms to develop image recognition models for flow regime
identification.
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2.3.1 Technical Details

ECT is one of several tomographic methods comprised by the term Electrical Impedance
Tomography (EIT). Basic electro-physics teaches that impedance is defined as the measure of
the opposition a circuit presents to an applied electrical potential [11]. In simple terms this
means that the impedance increases when it is harder for the electrical current to flow through
the circuit. Impedance is a super-term, incorporating resistance, capacitance and inductance.
Capacitance is therefore also a measure of the opposition in an electrical circuit, and its unit

is Farad (F). More precisely the capacitance C is expressed according to eq. (2.1), where Q is
the charge in Coulombs and V is the voltage.

c== 2.1)

When considering a capacitor with parallel plates, the permittivity € of the materials between
the plates, affects the consequential capacitance (see eq. (2.2)).

A
C=€¢— 2.2
€ (2.2)
Where A is the area of the plates and d is the distance between them (see Figure 2.4).
A
Q -
+ ¢ Q
d

Figure 2.4: Capacitator with parallel plates. The capacitance C is depending on the plate area
A, their distance d and € of the materials in between.

ECT is based on the fact that different materials have different permittivities, hence letting
them be differentiable. An ECT-system includes a sensor, a data acquisition system and a
computer running an image reconstruction program (see Figure 2.5).
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Figure 2.5: Sketch of an ECT-system consisting of a sensor, a data acquisition system and
computer software reconstructing the images. ECT differentiates materials based on that their
different permittivities and measures their distribution with surrounding electrodes sensing
the consequential capacitances.
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The sensor comprises a set of electrodes mounted on the outside of the tube. Typically, the
number of electrodes Ey can be 8, 12 or 24. Obviously, the more electrodes, the higher
spatial resolution Sp can be achieved in the images. In general, the number of independent
electrode pairs My can be expressed as a function of Ey (see eq. (2.3)).

My = %(EN -1 (2.3)

The data acquisition system measures the capacitances between all the independent electrode
pairs and passes it to the computer. Each independent electrode pair can thus be regarded as a
capacitor. However, because most of the plates are non-parallel to each other, a measure of
their angles will have to be accounted for in eq. (2.2). During one time frame, an electrical
potential is applied to one electrode at a time while the remaining electrodes sense the
consequential capacitances. The computer controls the whole system and runs an algorithm
reconstructing images using the raw capacitances and a sensitivity map.

Hence, ECT is a noninvasive and nonintrusive method that recreates a cross sectional image
of the material distributions inside pipes and other process apparatus.

2.4 Artificial Intelligence, Machine Learning and Deep
Learning

One of the greatest pioneers in computer science, Alan Turing, did according to [12] in 1947
make suggestions about ML to be an essential part of future development. A few years later
the field of Artificial Intelligence (Al) research was founded in 1956 [13]. However, in 1959
the term “Machine Learning” was officially used in Arthur Samuel’s research when applying
it on the game of checkers [14] and defined as “a field of study that gives computers the
ability to learn without being explicitly programmed” [15]. As mentioned in [16], Tom
Mitchell explained it more precisely in 1998 when he wrote:

“A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks in T, as measured by P, improves
with experience E.” [17]

Thus, the performance P will be the objective function of an optimization problem where the
optimizable parameters will decide the structure of the system that solves task T

/

v

Figure 2.6: An illustrative sketch for Mitchell’s definition of ML.

The use of ML developed and it was applied on larger scale problems, especially for image
recognition. Whereas Ivakhnenko and Lapa already created deep networks in 1965 [18], the
term “Deep Learning” was officially first used by Rina Dechter in 1986 [19]. In the 1990s a
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CNN for character recognition, called LeNet [20], was developed. Throughout the following
years DL with CNNs became more and more efficient and available as data and computing
power became better and cheaper. When Alex Krizhevsky, Ilya Sutskever and Geoftrey
Hinton were announced as the winning team of the ImageNet' Large Scale Visual
Recognition Challenge in 2012, things really started to speed up [21]. Their deep CNN,
called AlexNet [22], had a relatively simple architecture compared to other modern networks,
and was written on the NVIDIA CUDA platform [23] for efficient GPU training. It had an
impressive test error that was 10.8% better than the second-best opponent [24].

DL methods are compared by testing and benchmarking on common datasets. This stands in
contrast to traditional models usually compared by mathematical deduction and proofing
based on physical laws. DL networks are, in other words, so complex that they cannot be
analyzed in the same way.

Looking back, the terms AI, ML and DL are closely related. DL is a set of techniques [25]
that can be regarded as an implementation of ML, which is a way to obtain Al [26] (see
Figure 2.7). Whereas Al is the fundamental concept of having computers imitate human
behavior and decision-making, ML is an approach utilizing neural networks and experience-
based algorithms to achieve this objective. Following up, DL is made possible through
accelerating availability of processing power and big amounts of data. Utilizing GPU-
programming with deeper and more complex neural networks, data are mined and used in
new ways to solve problems across an increasing number of application areas.

e :
1950s 1980s 2010s

v

Figure 2.7: Relationship between the terms Al, ML and DL. The illustration is inspired by
[26].

2.5 Technical Overview of Machine Learning

ML algorithms can typically be divided into three categories: supervised, unsupervised and
reinforcement learning (see Figure 2.8). In supervised learning, the program is trained by
being introduced to different scenarios and each time being told how to react. The model is
told when it makes faults and can correct its behavior for the future. Therefore, when the
program is introduced to new situations, it knows how to react based on past training. In
unsupervised learning, however, it is never told how to respond on input. This kind of
training would typically demand a larger amount of training data. The method is based on

! A dataset containing over 10 000 000 labeled images from over 10 000 different categories.
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pattern recognition and tries to find a hidden structure in the data. Reinforcement learning is
usually applied online. In this case, the model learns from its own actions and relies on
sensing the consecutive reactions. The method is often used in robotic control problems.

Swpervised

LEARNING

Unsupervised Renforcement
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Figure 2.8: Different categories of ML: supervised, unsupervised and reinforcement learning.

ML methods can also be categorized with respect to the different problems they intend to
solve, which may be regression, classification, clustering and prediction (see Figure 2.9).
Regression, also called curve fitting, is about adapting a function to a dataset. Classification
is a type of pattern recognition, and the algorithm is intended to map the data to a set of target
categories, called labels. Whereas this is a typical supervised method where correct labels are
obtained from a training set, clustering problems are rather connected to unsupervised
learning algorithms. Clustering, also known as segmentation, groups all data points by
similarities. Prediction problems are related to time series data and their solutions try to
forecast future data points based on past experience.
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Figure 2.9: ML problems graphically illustrated; (a) regression, (b) classification, (c)
clustering and (d) prediction, where p1 and p2 are two measured parameters.
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2.5.1 Atrtificial Neural Networks — a Machine Learning Algorithm

Even though studies of the human brain are hundreds of years old, most of its complicated
functionalities remain a mystery to modern technology. However, it is known that the brain
contains approximately 100 billion so-called neurons that are interconnected in large
structures. As each neuron can be connected with up to 200 000 other neurons, the brain is
able to store information as patterns [27]. As seen in Figure 2.10, one such neuron has a
relatively simple structure. It takes inputs from other neurons, processes it in some way and

passes it further to the next neurons.
%eﬂ Dendrites: inputs

<\\ Soma: processing of inputs

Axons: inputs turned to output

\\\

Synapses: electrochemical contact with other neurons

Figure 2.10: Illustration of the biological neuron. Information taken from [27].

In 1943 a neurophysiologist and a mathematician presented the first model of an artificial
neural network [28]. After years of initial incubation, a new interest for neural network
research approached in the 1980s [29]. Taking inspiration from the human brain, later an
artificial neuron was modelled as shown in Figure 2.11. The neuron sums up the inputs X,
each with a weight w, adds a bias b and passes it through some activation function. The latter
may i.a. be a linear function, step function, ramp function or a tan-sigmoidal function. To
take advantage of the dynamic potential of neural networks, it is essential to include non-
linear activation functions.

Activation function

Output

Figure 2.11: Model of an artificial neuron.

By connecting these neurons in networks, they are organized in layers (see Figure 2.12). A
network consists of an input layer, an output layer and hidden layers in between. Both
number of neurons in each hidden layer, and total number of hidden layers can vary. In
general, most networks contain a diversity of different activation function across the different
hidden layers. These architectural parameters determine the model complexity and are user-
specified. Mostly, fewer hidden layers make more general models and more hidden layers
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may lead to overfitted models. However, these parameters cannot be algebraically optimized.
They are simply chosen by test and trial.

Hidden Layers

Input Layer AL Output Layer
N

Figure 2.12: A simple Neural Network organized in layers. Each circle represents an artificial
neuron.

Whereas each single neuron has a very simple structure and cannot do much by itself, a
complete network of such neurons has powerful potentials. When the network is presented to
training data, it uses an optimization algorithm to adjust the weights and biases of the
different neurons so it learns to react on input the way it is intended to.

Neural networks can be categorized in various architectures. Feed-forward networks,
recurrent networks, symmetrically connected networks and CNNs are among the most known
variants [30]. The simplest form, feed-forward network, passes information in one direction
only. Recurrent networks introduce loops that allow information flow in both directions.
Likewise, symmetrical connected networks guide data in both directions. However, in this
case weights are the same in both directions, making them easier to analyze. Symmetrical
connected networks with and without hidden layers are respectively called Boltzmann
Machines and Hopfield Nets.

2.5.2 Deep Learning with Convolutional Neural Networks

Because traditional Artificial Neural Networks like feed-forward networks handle their inputs
as individual variables, they perform poorly when being used with image data. Computers see
images as matrices where each pixel has a value between 0 and 255. The pixel value p,, = 0
represents black and p,, = 255 represents white. Color images consist of three stacked
matrices, one for each of the RGB (Red Green Blue) channels.

By feeding an image, the network would first have to flatten it to a one-dimensional vector,
letting each pixel in the image represent individual parameters. However, when considering
images, their individual pixels make no sense if not seen in a context of surrounding pixels.
Images are observed by their lines, edges and shapes. To extract this information, it is
possible to utilize an operation called convolution. A combination of convolution and a feed-
forward network introduces another architecture comprised by the term CNN.

Convolution is an integral operation that calculates to what extend two functions match as
they are shifted over one another. Considering matrices, convolution is a simple
multiplication-like operation where one matrix is shifted across another matrix. Notice that
this is called two-dimensional convolution. In CNN terms, a filter is shifted across an image.
Thus, the filter is simply a small matrix that sequentially is moved across each pixel of the
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image. The output matrix expresses to what extent the filter shape fits to shapes anywhere in
the image. Notice also that filters may be called kernels in other literature.

Figure 2.13 shows an example of how two-dimensional convolution works. In this case, the
original image is convolved by a filter that shifts the output image one pixel up. By definition
the filter is always flipped before being applied. The output matrix of a convolved image is
called a feature map. The pixel marked with a red square is called the initial pixel. The green
square is the area which is covered by the filter as it shifts over this pixel. At this moment the
overlapping pixels are separately multiplied and then summed together. Finally, the resulting
value is written to the associated initial pixel in the output image. Furthermore, this is done
for all pixels in the image. If the sum of the values in the filter is not exactly one, it should be
normalized to prevent the output to exceed the range 0-255. Normalization is done by
dividing all values in the filter by their total sum. A line of zeros along the outer edge of the
matrix can be added so the output matrix yields the same size as the original matrix. If the so-
called zero padding is not added, the output will be downsized. The larger the filter, the more
the output would be scaled down.

Different filters obviously give different feature maps, as shown in Figure 2.14. CNN’s are
based on the fact that common shapes in images of the same classes give similar feature maps
when convolved with the same filters. Hence, it is essential to use appropriate filters for
detection of the deciding features to distinguish images from different classes. However, the
filter weights are automatically tuned during the CNN training.
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Figure 2.13: An illustrative example of how 2D convolution works. The image to the left is
convolved by a simple shifting filter, making the output image shift one pixel up.
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Figure 2.14: Two examples of convolutions with different filters. Using (a) an edge
detection- and (b) a blur filter.

CNN’s consists of two main parts; feature learning and classification (see Figure 2.15). The
first part may consist of a various number of convolutional layers, each layer having a
different number of filters Fyy. The first convolutional layer extracts the most basic features,
like lines and curves. Adding on layers, there are consecutive extracted higher-level features,
ending up in full shapes and objects. Additionally, two consecutive operations usually follow
each convolution filter application; ReLU and pooling. ReLU stands for Rectified Linear
Units and is a simple linear activation function that sets all negative values to zero.

Pooling is a procedure to downsize the feature maps to ease the computational demand. Three
types exist; max-pooling, min-pooling and average-pooling. Similarly to convolution, a little
window is shifted across the matrix. For max-pooling, the highest value in the window is
passed to the respective initial pixels in the output matrix. For min-pooling, the lowest value
is passed on. And for average-pooling, the average value of all pixels within the window is
used. The number of pixels the window shifts each step is called the stride. Higher strides
make accordingly smaller output matrices.

When the features are extracted, the matrices are flattened and used as in a traditional feed-
forward neural network. This part may also consist of several hidden layers with a various
number of neurons and different activation functions. However, the last layer usually is
equipped with the softmax function and must have the same number of neurons as there are
classes. Finally, each of these output neurons express a class probability between 0 and 1.
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Figure 2.15: A schematic overview of a general CNN. The first part extracts the image
features by performing two-dimensional convolution in several layers. In the second part, the
feature-matrices are flattened to one-dimensional vectors and passed through a feed-forward

structure. The last layer outputs class probabilities between 0 and 1.

Each layer of filters is specified with a certain square filter size F; expressing its height and
width in pixels. Whereas F;, Fy, the number of neurons and hidden layers are user specified
parameters that make the CNN architecture, the actual filter values, weights and biases are
tuned during a training process called backpropagation [31]. As a network is initialized, these
parameters are randomly set, thus, it has no knowledge about what shapes it is supposed to
look for. Therefore, when presented for images, it gives no meaningful class probabilities in
the output layer. Using a supervised ML approach, the network is trained with labelled
images. Comparing the output probabilities with the correct label, the current error can be
calculated. The eventual goal of the training procedure will be to minimize this error as much
as possible. The error L is expressed by the loss function in eq. (2.4).

1
L= Z 3 (target — output)? (2.4

Backpropagation is an iterative procedure comprising four parts; the forward pass, the loss
function, the backward pass and the parameter update. The two first parts are already covered
by passing a batch of images forward through the network and calculating the error.
Accordingly, the backward pass determines which of the parameters must be updated to
minimize the error. This is done by calculating their respective derivatives. Finally, the
parameters are updated in the opposite direction of their gradient (see eq. (2.5)).

dL
P = Pota — n% (2.5)

. . . dL . —
Where p,;q Was the initial parameter, 7 is the learning rate and o the derivative of the loss

function with respect to the parameter. The initial learning rate is a user-specified training
parameter and determines how much the parameters are updated after every iteration. A high
learning rate may minimize the error faster, but can also result in too large steps,
consequently missing the optimum. Because image training datasets require a lot of memory,
they rarely can be passed through all at once. The dataset is thus divided into several batches.
By definition, when all batches have passed this procedure once, one epoch is reached. Thus,
if the dataset would consist of 5000 images, and the batch size is set to 1000, it would take 5
iterations to complete 1 epoch. The training duration is typically constrained by a maximum
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epoch count, a minimum gradient size or an error threshold. These training parameters are
also user-specified and stop the training process when either is reached.

For optimization of the training process, different kinds of backpropagation solvers are
available. Their main difference is the way they treat the learning rate. The three optimizers
available for use in MATLAB are SGDM, RMSProp and Adam. SGDM (Stochastic Gradient
Descent with Momentum) introduces a momentum, taking knowledge from past steps to
determine how to proceed. RMSProp (Root Mean Square Propagation) is a method suggested
by Geoffrey Hinton [32] adapting the learning rate according to a moving average over the
history of squared gradients. Likewise, the Adam (Adaptive Moment Estimation) optimizer,
keeps track of past squared gradients, but also stores an exponentially decaying average of
past gradients [33]. Thus, using both first and second order momentum.

2.6 Short Introduction to Genetic Algorithm

Answering questions on how to set the architectural parameters of DL networks, a parameter
optimization method such as Genetic Algorithms (GA) could be applied. GA is like neural
networks, also inspired by nature. This is a global optimization method, utilizing nature-like
pairing and mutation to breed out the best possible values for a given set of parameters. Just
as other optimization methods, it also needs an objective and fitness function but it usually
solves problems faster and more efficient [34].

GA starts by defining a population according to an assigned population size (see Figure 2.16).
Each of the individuals can be considered as chromosomes, consisting of single genes. A
chromosome is simply an array containing the parameters (genes) to optimize and is normally
randomly set during the initialization. All individuals in the population are tested by the
fitness function and the best ones are paired together. The offspring’s in the next generation
will thus contain a mixture of the best genes from their parents. Additionally, mutations are
implemented occasionally to create diversity and make sure that the global optimum is not
overlooked by preventing all individuals to fall into local optimums. A mutation can be done
by randomly mixing up the order of the genes within a chromosome.
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Figure 2.16: Illustrative examples of (a) one chromosome, (b) a population of chromosomes,
(c) pairing and (d) mutation.
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3 Experimental Set-Up

The work presented in this report is based on physical experiments performed on a
multiphase rig where the gas and liquid flow rates can be controlled separately. This chapter
presents the experimental set-up and the methods used when taking measurements with a

tomography sensor.

3.1 The Multiphase Rig with the ECT-system

All the experimental data utilized in this project were collected on the multiphase rig in the
process hall at the USN, campus Porsgrunn. Figure 3.1 shows a piping and instrumentation
diagram (P&ID) of the multiphase rig, where the red, blue and green pipes respectively carry
oil, water and air. Flows are blended in the mixing point upstream to the test section, and
divided downstream by separator tanks. In this way, the gas and liquid flow rates can be
individually adjusted to obtain different flow conditions across the test section. Note that this
study only utilize data from experiments performed with air and water flow. The oil section

was thus not used.

Air outlet
. Pre-separator
Test section tank
Air Inlet A Water/Oil/Air
- - i
A% mixture
Qil Inlet 3 — —r— \
Mixing point Transparent Tomography Water/Oil
Water Inlet Section Sensor Gamma mixture
Ray Meter

Separator
R 100

P 101

Water Tank
T 101

P 100

— Qil flow

—_— water flow Oil Tank
Air flow T 100

—_ Flow mixture

Figure 3.1: P&ID with sensors and actuators of the multiphase rig in the process hall at USN,
Porsgrunn (Figure from [35]). The test section with the transparent section for laser and
camera based measurements, including the tomography sensor, can be tilted £10° to the

horizontal.

A multimodal sensor suite is connected to the multiphase rig, comprising a GRM, several
different pressure transmitters and Coriolis meters measuring flow, viscosity, temperature and
density. These measurands were available in the first dataset used in this study, however this
study only focuses on data from the tomography sensor.

The test section is made of a 15-meter-long straight steel pipe with an inner diameter of 56
mm, allowing the flow to be fully developed when reaching the test section. Whereas this
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3 Experimental Set-Up

part of the rig (see Figure 3.2) can be adjusted with an angle of £10°, it was only used in the
horizontal position throughout this study.
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Figure 3.2: The test section with sensor placements and assigned lengths. Taken from [35].

The tomography sensor is part of an ECT system constructing cross sectional images of the
pipe’s content. The ECT-system used in this project is called TFLR5000 (see Table 3.1).
Whereas it is connected to a 12-electrode dual plane sensor, only one plane was used because
the system only takes a maximum of 8 measurement channels if used in dual plane mode.

Table 3.1: Data-flow and measurement related specifications of the TFLR5000 ECT-system
[36]. The system is delivered by Process Tomography Limited (PTL), UK.

Number of measurement channels @ 16 for single-plane / 8 for

dual-plane
Excitation signal 1-10 MHz
ADC 16 bit
Measurement range 0-2000 fF (femto-Farads)
Measurement resolution 0.005 fF
Measurement noise 0.01 fF RMS at 100 fps

0.02 fF RMS as 200 fps

Temperature stability 0.005 fF / degC

Data rate (fps) Up to 8 electrodes: 5000 fps
9-16 electrodes: 2500 fps

Primary software ECT32v3

Capacitance Binary data (.bcp) @ .bcp2

Figure 3.3 shows a sketch of the cross section of the pipe where the tomography sensor is
mounted. Based on the fact that different materials have different permittivities, the
capacitances between all electrode pairs vary with respect to the material distribution in the
pipe. During one time frame, an electrical potential is applied to each of the 12 electrodes at a
time, while the remaining 11 electrodes sense the resulting capacitances across the cross
section. Because we get 11 + 10 + 9 + --- + 1 = 66 independent measurements, the raw
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3 Experimental Set-Up

capacitances for one time frame are expressed as an upper triangular matrix containing 66
values, (see matrix in eq. (3.1)).

4

3 T 5
2 / \\5
,j air .- .‘\,‘ \

1 l! = | 7

X water .I,‘
12\ 3 / 8

=

11 )

Figure 3.3: Cross-section of the tomography sensor consisting of 12 electrodes measuring the
capacitances across the 66 different combinations.
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3.2 Experiments Performed on the Rig

The 27" July — 9" August 2017, for use in a previous project [3], a total of 144 measurements
were recorded on the multiphase rig at USN. 84 experiments where distributed across the
operational range of the rig. 58 experiments focused on the range close to the transitional
areas between some of the flow regimes. In this thesis these datasets are considered as the
training and transitional dataset respectively (see Figure 3.4). For normalization, two
additional measurements were performed, one with the pipe full of air and one with the pipe
full of water. The notes taken while carrying out the experiments are found in Appendix B.
During each experiment, the observed flow regime was noted.

Because the flow regimes were noted based on visual observation and the transitional regions
are hard to define, they vary somewhat for each dataset. This applies especially for the
stratified/wavy transitional area because the smallest oscillations are hard to detect. Looking
back on the high-speed videos and the ECT-images, the smaller waves are even harder to see.
However, this is discussed in more details in section 4.4. Because smaller oscillations were
considered as wavy at the time when the transitional dataset was recorded, this transitional
line is more to the left when comparing with the training dataset.
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Figure 3.4: (a) Distributed training- and (b) transitional datasets, showing the observed flow
regimes associated to the different combinations of air and water flow. Note the color coding
referring to diverse flow regimes and transitions. Also used in [3].

Each experiment contains 30 seconds of data from the ECT-system, 10 seconds from a high-
speed camera and 60 seconds from the multimodal sensor-suite connected to the multiphase
rig. Figure 3.5 gives an overview of sample rates f; and durations of the measurements.

Lo [ |

30 seconds ECT-system 500 fps fomp oo o o
66 capacitances

10 seconds High Speed Camera 190 fps 1280480 pixels

60 seconds Multimodal sensor-suite 20- and 2 fps -

Figure 3.5: Data contained in each experiment of the training and transitional dataset, from
summer 2017. Also used in [3].

The 6™ — 12" March 2018 all the 84 distributed experiments were retaken to obtain a separate
dataset for model validation. This time only the ECT-data were recorded. 12 additional
experiments in the transition between stratified- and wavy flow were also performed as this is
a transitional range difficult to classify. At the time the validation dataset was recorded, even
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more experiments above the stratified area were considered as wavy. On the other hand, the
labeling of the three datasets agree better with respect to the other flow regimes.

Obviously, the labeling must be unified when used for training and validation applied on ML
algorithms.
Air

Water [kg/min] 0.10 0.16 0.25 040 050 0.63 0.79 100 158 251 3.98 5.01

79.43 #4 Stratified
63.10( #8 i #1 .Slus
39.81( #11  #12 | 4 5 3 Plug
25.12 { 2. H2: Wavy
15.85 7 0 #34 Annular
10.00 : #43 #44

6.31 1 #33  #54

3.08 #63  #64

251 4 #73  #H74

158 ! ; 483 #84

Figure 3.6: Distributed validation dataset, including more experiments around the
stratified/wavy transitional area.

To visualize how the five flow regimes can be observed through the transparent Plexiglas
section, an overview in Figure 3.7 is included.

Figure 3.7: Images of the typical look for each of the flow regimes: (a) stratified, (b) low
frequency wavy, (c) high frequency wavy, (d) annular, (e) end, middle and start of a plug, (f)
end, middle and start of a slug. The images are taken from the high-speed videos recorded
with the distributed training dataset, and were also presented in [3]. These images where
obtained from the transparent section shown in Figure 3.2, near the ECT-system.
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4 Preparation of Experimental Data

As a basis and preparation for consecutive analysis and ML, raw capacitance data from the
ECT-system are run through an image reconstruction algorithm and stacked according to a
selected buffer (see Figure 4.1). Also, the recorded datasets are labelled according to
limitations introduced by low Sy of the ECT images.
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Figure 4.1: A detailed overview of the steps addressed in this chapter. Raw capacitance data
from the ECT-system is run through several preparations before ending up in temporal
images fed to a CNN.

4.1 Image Reconstruction

The MatECT library, provided by the supplier of the ECT-system used in this research, was
used as a basis for implementing a MATLAB script for automated image reconstruction of all
the experimental data. MatECT is a package of m-files that easily can be modified by the user
before running them with MATLAB version 5.3 or later.

One of the functions in this package, namely recon.m, creates a GUI where the user can
reconstruct images with the linear back-projecting algorithm (LBP) [37] from one set of
capacitance measurements at a time. Using this function as a basis, a script that automatically
reconstructs and saves image-datafiles for a large number of different capacitance
measurements was created (see recon_multi.m in Appendix D). The algorithm uses the raw
capacitance data and a sensor sensitivity matrix to evaluate the final image data (see Figure
4.2). The sensitivity matrix is a sensor-specific map, calibrated for each of the electrode pairs
of the given sensor.

Raw capacitance data

9.550 -0.026 -0.826 -0.015 ©.005 ©.538 0.945 1.018 1.083 1.156 1.524
0.785 ©0.007 -0.013 -0.020 ©.006 ©.039 ©0.045 0.051 ©.054 0.034

1.273 0.008 -0.023 -0.025 -0.005 -0.001 ©.004 0.003 -0.012

0.720 -0.008 -0.028 -0.009 -0.006 -0.001 -0.001 -0.010

0.548 -0.019 -0.006 -0.001 ©.004 ©.004 -0.001

0.511 0.053 0.058 0.058 0.053 0.044

1.687 1.261 1.179 1.105 1.042

1.917 1.432 1.674 1.683 Image

1.664 1.377 1.683 .

1,577 1.458 Reconstruction

1.742 .
Algorithm

0SS Q06 O

Sensor sensitivity matrix

Figure 4.2: Overview of the reconstruction of images. Using raw capacitance measurements
from all 66 electrode combinations and a sensitivity matrix specific to the sensor, an image
describing the cross-sectional distribution of materials is reconstructed.
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4.2 Decisions on Buffering

In general, it makes no sense to classify each time frame individually. This would mean that
each time frame potentially could have different flow regimes. In reality it normally takes
time for a flow regime to develop and to be identified. E.g. because slugs only appear with
certain intervals, the time frames in between the appearing slugs may seem to represent a
continuous flow. However, considering this example the complete series of time frames
(including the intervals between the slugs) will in this study be defined as slug flow. Leading
to the following question; how large can the gap between each appearing slug be before it
makes no sense to define it as slug flow anymore? Should the intervals be 3 seconds, 30
seconds, 1 minute or even more? There is no straight-forward answer to this question as the
matter mostly is based on definitions and requirements with respect to the given application.
However, the way this question is handled depends on the time period regarded to identify
the flow regime (in this study referred to as a buffer).

As the ECT-system has a f; of 500 fps, a new image is taken every 2" millisecond. Thus, if
the buffer e.g. would be set to 3 seconds, this would represent a buffer length b; of 1500
frames. This length of time is assumed to give a decent fit to the distribution of most slugs
and plugs, and is therefore used as the default buffer for this research.

4.3 Stacking the Image Data Across Time

Flow phenomena can be expressed as elongated two-dimensional images by stacking
multiple time instances together. However, a requirement is that only a one-dimensional pixel
strip from each time instance is used (see Figure 4.3). The method generates time stretched
images that can be fed to a CNN directly. The constructed images have a height of 32 pixels
and a width that complies with b;. Some of the great advantages with this method are:

e The time dimension is eliminated in the CNN implementation. Accordingly, the
network does not require any form of memory as offered by e.g. LSTM networks.

e The buffer is fully controllable, making it easy to define the length of the intervals
between plugs and slugs before the flow is classified as continuous.

(start of slug appearance)

N\

buffer

e

Stacked image

One time instance

Figure 4.3: An illustration of how the two-dimensional stacked images are created. The x-
axis is a temporal dimension, while the y-axis is a spatial dimension.

The disadvantage by using this method is that only one pixelstrip is used from the original
images. Obviously, a lot of the data remain unused, and potential model information may be
lost. On the other hand, if sufficient classification accuracy is obtained, less data processing
will be required and response times may be faster. It would make sense to stack the complete
images, constructing a three-dimensional matrix. The problem with this approach is the
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complexity of implementing a three-dimensional CNN, as it is not by default supported in
MATLAB (see section 6.7.2).

In general, the main limitation with respect to accuracy may be the resolution given by the
ECT-system. Working with only 32 pixels across a pipe diameter of 56 mm, gives a Sp of

0.57 %. Thus, motions of phenomena below 1.75 mm are lost already at this point. Model

accuracy may, however, vary with respect to how the pixel strip from each time instance is
extracted. It could be composed of a column from the middle of the image. But because the
central pixels are further away from the electrodes at the tube’s circumference, they may
contain more noise and less accuracy. Therefore, it may be convenient to construct the strip
of pixels closer along the edges. Alternatively, it could be expressed by a vertical average.
How these choices affect the classification accuracy is demonstrated in section 5.3.

It can be shown that weaknesses introduced by the rather low-resolution images are to detect:

e The smallest waves along the stratified/wavy transitional area (see section 4.4).
o The little air bubbles in the slugs (see Figure 4.4). Some of the larger air gaps are,
however, seen.

—ee—— |
\ 4
(b)

Figure 4.4: Many of the details recorded by the high-speed camera, are not seen by the low-
resolution images of the ECT-system. (a) Whereas all the little air bubbles pass unnoticed, (b)
some of the larger air gaps are detected. Notice that these comparisons only show similar
phenomena, not necessarily the same slug.

The final images can also be manipulated with respect to color maps and color sensitivities.
All the stacked images in this section are created using the color map shown in Figure 4.5. It
is meaningful to create RGB-images and use color maps that clearly show the separation
surface of the phases. The color grades can also be chosen so that interesting details are
emphasized and noise is suppressed. Section 5.2 demonstrates that these choices make a
difference when aiming to improve the DL performance. Typical stacked images for all the
five flow regimes are plotted in Figure 4.6, which clearly illustrates the different phenomenon
as obtained by non-invasive sensing modality using ECT.

Figure 4.5: Color map that enhances the separation surface between the phases with a green
line.
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(@)
(b)
(©)
(d)
(e)

Figure 4.6: Typical appearance of stacked images from a central pixel strip with a buffer of 3
seconds, for (a) stratified, (b) plug, (¢) slug, (d) wavy and (e) annular flow. Notice that the
images are enlarged in the vertical axis for better visualization.

The stacked images are recorded with specific intervals, called a stride?. Like with b;, the
stride length s; depends on the given f; (see eq. (4.1) and (4.2)).

b, = buffer X f; 4.1
s; = stride X f (4.2)

Having a stride of 0.2 seconds and f; = 500 fps, gives s; equal to 100 frames. s; defines
numbers of time instances between the start of every new stacked image (see Figure 4.7).
Defining a stride shorter than the buffer images will overlap. The smaller the stride, the more
images are generated from each experiment, creating a larger dataset from the available ECT-
images. E.g. having a total number of frames in each experiment N = 14999, using b; =
1500 and s; = 100, will make a total number of stacked images Iy = 135 (see eq. (4.3)).

Iy = round down( l) +1 4.3

Sy

Accordingly, having performed 84 experiments, the complete dataset will contain

135 X 84 = 11340 stacked images. Thus, increasing s; to 1000 would decrease the dataset
to 1176 images. In this research the stride is used as a parameter to control the size of the
generated datasets.

Implemented in an online application, the stride would determine the refreshing rate of the
output classification.

2 Not to be mixed with stride defining steps in two-dimensional convolution, introduced in section 2.5.2.
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Figure 4.7: Four consecutive stacked images with a buffer of 3 seconds and a stride of 0.2
seconds. Because the stride is smaller than the buffer, the images overlap.

4.4 Decisions on Flow Regime Labeling

Many of the smallest movements seen while performing experiments on the multiphase rig,
are not possible to see in the ECT-images because of their low Si. Considering the
stratified/wavy transitional area, the labeling made while performing the experiments do
therefore not agree with what is seen in the recorded data. The CNN becomes confused when
being trained on many experiments that in the ECT-images appear stratified, but are labelled
wavy. To expect reasonable model performance, it is required that these experiments are
relabeled.

#70 #71

Original labeling New labeling

Stratified €—— —» Wavy

Figure 4.8: Examples from some of the stacked images on the border between stratified and

wavy flow. Some of the experiments classified as wavy by the original labeling (to the right

of the dotted line) have no visible oscillations in the ECT images. Therefore, a new labeling
is introduced (see the solid line). The experiment no. (#) correspond with Figure 4.9.

Demonstrating that this introduces a problem to the classification, two CNN’s were created,
being trained respectively on the original labeling and a new labeling based on what is seen in
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the ECT-images. The new labeling also utilizes experience from the validation dataset (see
Figure 3.6) and classifies more of the experiments between the stratified- and intermittent

flow as wavy. The new ECT-based labeling can be seen in Figure 4.9. Except the different
labeling on the datasets, both CNN’s are configured with the same settings (see Table 4.1).

Table 4.1: Settings for the stacked images and CNN's trained in this section

Stacked images Training parameters
b; 1500 Solver SGDM*
S 1000 Initial Learn Rate | 0.001
Pixel strip Central Max epochs 10
Color map I P B (2) Mini batch size 100
Architecture @ 15t layer 2" layer Shuffle Every epoch
Fn 30 50 *Stochastic Gradient Descent with Momentum
F, 5 3
Air
Water [kg/min] 251 398 5.01

79.43 Stratified

o

Plug

63.10
39.81
25.12 #25 Wavy

15.85

#33 #34 Annular
10.00| #35 #36 #37 #38 #39 #40 #41 #42 #43  #44
6.31| #45  #46  #47 .#48 #49 #50 #51 #52 #53  #54
3.08| #55 #56 #57 #58 #50 #60 #61 #62 #63  #64
2.51| #65 #66 #67 #68  #69 H70 H71  #72  #73  #74

1.58| #75 #76 #77 #78 H79 H8O  #B1  #B2 HB3 #84

Figure 4.9: New labeling based on observations in the low resolution ECT-images.

Figure 4.10 (a) shows that the CNN trained on the original labeling struggles to distinguish
some of the stratified and wavy experiments. It is assumed that it wrongly classifies some of
the wavy labeled experiments as stratified because no oscillations are visible. Worse is, that
the model learns that experiments without visible oscillations may be wavy, and in this case
consequently classifies experiment no. 75, 76, 77 and 79 wrong. The intuition of this may be
that these experiments, similar to the wavy flow, have lower water levels. Thus, the model
may have learned to base its classification more on the water level than on the actual
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oscillations at the surface. Applying the new labeling shows that errors are rather seen along
the transitional zones (see Figure 4.10 (b)).
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Figure 4.10: Worst and best model performance with (a) original labeling (from Figure 3.4
(a)) and (b) new labeling based on ECT-images (from Figure 4.9). The accuracy is not
increased by much, but the confusing false classifications within the stratified area are gone.
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5 Implementations and Results

This chapter presents and compares the results obtained with respect to varying approaches of
using two-dimensional stacked image data fed to a CNN. The labeling discussed in section
4.4 is used as a base for all the approaches in this chapter. Genetic algorithms are used to
create a decent CNN architecture for flow regime identification on stacked image data.
Accordingly, the colors are adjusted to enhance features and supress noise. Also, the image
data are modified by adapting the pixelstrip from each individual image passed to the stacked
image. Finally, f; is reduced to observe how this affects the model performance. The results
for each variation are given in terms of model accuracy.

As b; < N for the experiments carried out on the multiphase rig, Iy > 1 stacked images from
each experiment are generated. Accordingly, each stacked image is classified and contributes
to the overall model accuracy. However, illustratively only the worst and best classification
results for each case are presented.

A detailed overview and explanation of the software developed and created in MATLAB is
given in Appendix D, enabling the reader to recreate the scenarios and results discussed in
this report. Furthermore, all the software is included in Appendix D, E and F.

5.1 Optimizing Convolutional Neural Network
Architecture with Genetic Algorithms

The complexity of CNN’s makes it no easy task to intuitively decide their optimal
architecture for a given problem. Also, as mentioned in [38] and [39], with the current limited
understanding of DL models a lot of trial-and-error during the development of their
architectures is required. Whereas the referred papers present other approaches to solve the
challenge, this study utilizes Genetic Algorithms (GA). Using this method, the trial and error
procedure is automated, and the best performing models are developed further.

Inspired by and using some of the codes published in a video by Divyendu Narayan [40] a set
of functions that perform GA utilizing the ga-function [41] from the Global Optimization
Toolbox in MATLAB was assembled and implemented (see Appendix F). Figure 5.1 shows
an overview of the steps in the algorithm.
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Figure 5.1: Overview of the steps performed when optimizing CNN architecture with genetic
algorithms.

The GA implementation of this study is constrained to keeping the number of convolution
layers constant, and optimizing the architecture by manipulating Fy and F;. Also, the pooling
and fully connected layers are kept constant. In MATLAB, the layers of a CNN are defined
as shown in Figure 5.2. As an initial assumption, it is expected that two convolution layers
and 100 neurons in the fully connected layer are sufficient for the given task. Similarly, it is
assumed that max-pooling with a window size of 3 X 3 and a stride of 2 is appropriate. A
CNN defined as shown in Figure 5.2 can be visualized according to Figure 5.3. Fy
corresponds to the consequential number of feature maps, and F; determines their
dimensions. Also, notice that the RGB-channels of color images increase the number of
feature maps by a factor of three.

layers = [imagelInputlLayer([32,1500 3]) _——zero padding

s convolution2dLayer(4,7, 'Padding"',2 ;
1st convolution layer y (—’L’g__’_’_)_______ number of filters Fy,
reluLayer() N\*h————~————“‘_“\\\‘.
) . filter size F
maxPooling2dLayer(3, 'Stride’,2)
2nd convolution layer ——— > convolution2d Layer(3,5, 'Padding",2)
reluLayer() pooling window size
id
maxPooling2dLayer (3, 'Stride"’,2) -
fullyConnectedLayer(160)
reluLayer( ) \\___,_,_—— number of neurons
fullyConnectedLayer(5)
softmaxLayer

classificationLayer()];

Figure 5.2: Example of how the layers of a CNN can be defined in MATLAB.
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Figure 5.3: Visualization of a CNN defined as in Figure 5.2.

With 2 convolution layers 4 parameters have to be optimized (see the underlining’s in Figure
5.2). Therefore, each individual CNN can be expressed as a chromosome with 4 genes (see
Figure 5.4). The algorithm starts by creating an initial population of 40 CNN’s, all having a
randomized version of this chromosome. The parameters are, however, constrained according
toeq. (5.1).

Fynmax < 50
Fsmax = 10

(5.1)
The stacked images used for training and testing during the genetic algorithm are created
according to the settings in Table 5.1. The table also shows the training parameters used for
training of all individuals.

As the generations pass, only the best performing chromosomes are crossed and reproduce.
For diversity, some chromosomes are also randomly mutated. When completing 20
generations, the algorithm was terminated and the data analyzed. The chromosome’s
performances are compared by their respective scores, which is a number determined by the
fitness function of the algorithm according to eq. (5.2). Thus, the higher the accuracy, the
lower the score.

i . d N
1* convolution layer 2™ convolution layer

(e J=17]5)
S Vi J
Y Y
Number of filters Size of filters

Fy Fs

Figure 5.4: Example of a CNN with two convolution layers expressed as a chromosome with
four genes. Each of the four genes represent different architectural parameters.

score = 100 — accuracy (5.2)
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Table 5.1: Settings for stacked images and training parameters used in the genetic

algorithm.
Stacked images Training parameters
b, 1500 Solver SGDM
Sy 1000 Initial Learn Rate 0.001
Pixel strip @ Central Max epochs 5
Color map —(1) Mini batch size 100
Best: 9.52381 Mean: 11.6518
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Figure 5.5: Historical data of a population with 40 individuals over the course of 20
generations, taking approximately 11 hours to compute. (a) The best and mean score plotted
for each generation. (b) Each individual of all generations with their corresponding
architecture and score. The blue dots represent Fy and the red dots represent F;.

As seen in Figure 5.5, the first generations have individuals with randomly distributed
characteristics across the complete range constrained by eq. (5.1). However, slowly the
parameters start alliging as generations pass by and some parameter combinations give better
scores than others. Because this is a very time consuming process, enough generations to get
an overall clear improvement in the score could not be computed. On the other hand, Figure
5.5 (a) shows that the best performing individual in the 8" generation has a score clearly
better than the rest. This is confirmed by sorting all individuals with respect to their scores
(see Figure 5.6). Thus, instead of selecting the best performing individual from the last
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generation, the overall best performing individual was used in subsequent training sessions.
Table 5.2 shows the architectures of the five best performing individuals.

40 T T T T T T T T

E
§ 20 "N ]
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]

O i i I i i I i I
0 100 200 300 400 500 600 700 800 800

All individuals sorted wrt. performance

Figure 5.6: When sorting all individuals with respect to their performance, they form a
smooth trend, ending up in the best score.

Table 5.2: Architecture of the overall best performing individuals, with their respective
generation-count and score.

5 15t convolution 2 convolution
Five best T layer layer

pe r‘"Fo'r‘ming g Score

individuals é m, E Fy F,
1st 8 26 5 40 7 5.87
2nd 9 26 5 40 5 7.65
3rd 10 26 5 26 7 7.99
4th 17 40 5 47 7 8.25
5th 10 47 7 40 7 8.25

5.2 Color Adjustments

Instead of having the typical range [0, 255], the raw image data from the reconstruction
algorithm have p,, in the approximate range [—3, 2]. According to the color map used in
ECT32v3, p, > 1 is water, p,, < 0 is air, and the transitional surface is in between (see
Figure 5.7 (a)). When converting the raw image data to color images, p,, is mapped to the
range [0, 1], and the selected color map defines the intensity distribution across the three
RGB-channels, expressing each p,, with varying colors. Defining a color map similar to the
one used in ECT32v3, the surface area can be beautifully enhanced with a green line (see
Figure 5.7 (b)). However, instead of narrowing the dynamic area to [0, 1], the limits can be
extended to include more information about each of the phases.

As shown in Figure 5.8, the maximum- and minimum p,, in the raw image data vary with
respect to each experiment conducted on the multiphase rig. Whereas the maximum values
remain almost constant for all experiments, the minimum p,, increase to above —2 for

continuous flow. As the stratified/wavy transitions are the most difficult to identify, the limits

are set to [—2, 2], creating an opportunity for information enhancement in this area. Thus,
when applying a color map, it automatically is mapped across this range, allowing p,, = —2
and p,, = 2 to be expressed with the first and last color in the map respectively.
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Figure 5.7: (a) Screenshot from the ECT32v2 software, displaying the color map used. Some
values for p,, are also pointed out. (b) Converting the raw image data to an RGB image using
a similar color map.
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Figure 5.8: Distribution of max and min p,, for the training- and validation dataset with
respect to each experiment performed on the multiphase rig. Whereas the maximum p,, do not
change much, the minimum p,, increase when the flow rates of water and air in the pipe
decrease.

Three different color maps are compared in the following subchapters. Whereas the color
maps for the stacked images are switched, all the other parameters are maintained constant.
To generate a larger dataset, s; is decreased to 100. Also, the maximum number of epochs is
increased to 10. Doing so, the elapsed time to complete one training process is approximately
18 minutes. The most important parameters covering all the training sessions in this chapter
are given in Table 5.3.
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Table 5.3: Parameters set for stacked images, architecture and training. These settings are
maintained constant while switching color maps.

Stacked images Training parameters

b, 1500 Solver SGDM

Sy 100 Momentum 0.9

Pixel strip @ Central Initial Learn Rate 0.001
Architecture 1st layer 2™ layer Max epochs 10

Fy 26 40 Mini batch size 100

F; 5 7 Shuffle Every epoch

5.2.1 Color Map 1: Only Focusing on the Surface

The first color map is the same as used in all the previous training sessions. It appears similar
to the one used in ECT32v3, and draws only a green line at the transition between the two
phases. Examples of image data with the applied color map is shown in Figure 5.9.

stratified
plug
slug
wavy

annular

(a) (b)

Figure 5.9: Color map 1 applied on (a) one time instance and (b) the stacked image data,
including examples from each of the flow regimes. The green line emphasizes the surface
between the two phases, while the blue and red areas represent air and water respectively.

Feeding these images to the DL algorithm, the training process took about 15 minutes, and
looks promising (see Figure 5.10 (a)). Already within the first epoch, the training
classification accuracy lies around 90%, and continues to increase until it approaches 100%
in the two last epochs. However, these numbers only express how well the model performs
on the training dataset.

Introducing the separate testing dataset, the overall classification accuracy is 93.12%. Figure
5.10 (b) shows a plot of the worst and best classification results from the 135 stacked images
generated from each experiment. Although the overall results are satisfying, the model
strangely classifies some experiments in the middle of the stratified area as wavy. This is
assumed to be a consequence of the fact that still many of the stacked images with small
waves look very similar to the stratified images. Also, the model has some problems
distinguishing between slugs and plugs.
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Figure 5.10: (a) Training process for the first color map with respect to accuracy per iteration.
(b) Worst and best classification using the first color map, respectively having an accuracy of
88.1% and 95.24%. The overall accuracy was 93.12%. Errors deep within the area of a flow
regime are regarded as more critical than errors along the transitions.

5.2.2 Color Map 2: Surface and Smooth Gradients

Applying a light gradient in both ends of the color map, more details in each of the phases are
extracted from the raw image (see Figure 5.11). Notice also that the stratified and wavy
images have darker blue shades, implying that they are expressed with lower p,, than the rest.
This is in accordance with observations in Figure 5.8. Having these clear color differences,
should make it easier for the DL model to distinguish continuous flow regimes from
intermittent flow regimes.
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(a) (b)
Figure 5.11: Color map 2 applied on (a) one time instance and (b) the stacked image data.
Adding a light gradient in both ends of the color map, details from both phases is extracted.

The training process took about 27 minutes, being almost doubled from last training sessions
with focus on the surface only. Also, the accuracy with respect to the training dataset
approached 100% sooner and looked smoother (see Figure 5.12 (a)).
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Figure 5.12: (a) Training process for the second color map with respect to accuracy per
iteration. (b) Worst and best classification results using the second color map. The worst
classification has an accuracy of 89.29% and the best classification has, similarly to the
training sessions with focus on surface only, an accuracy of 95.24%. The overall accuracy
was 93.19%. Whereas the accuracy has not increased a lot, the wrong classifications mostly
lie along the transitions, which makes more sense.
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Testing the model, it performed with an overall classification accuracy of 93.19%. This is
slightly higher than what was obtained in the last training session. However, looking at the
results, it is observed that the wrong classifications mainly lie along the transitions (see
Figure 5.12 (b)). Especially the strange errors in the middle of the stratified area are not
present anymore. However, the model still has problems distinguishing plugs from slugs.

5.2.3 Color Map 3: Surface and Sharp Gradients

As the light color grades in the last training session had a slightly positive impact on the
overall accuracy, it is convenient to try and pull the outer colors closer together, creating
more drastic color transitions (see Figure 5.13).

L stratified
plug
- slug
wavy
i annular
(@) (b)

Figure 5.13: Color map 3 applied on the image data. The outer colors are pulled together,
created tighter color transitions in both gradients.

The training process shows that the accuracy reaches 100% after even fewer epochs than in
the last training session (see Figure 5.14 (a)). The total elapsed training time in this case was
only 17 minutes.

Testing the model shows that its overall accuracy is only 90.60%, which is clearly poorer
than in the previous sessions. However, looking at the plotted results, it is observed that the
images the model fails to classify correctly are mostly from the same experiments (see Figure
5.14 (b)). Also, taking into consideration the training process, it seems that the model is
overfitted. Reducing the number of epochs to 7 and retraining the model, did indeed increase
its overall model accuracy to 91.24%.
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Figure 5.14: (a) Training process when using color map 3. It stays close to 100% training
accuracy already in the 6™ epoch. (b) Worst and best performance using color map 3, having

a validation accuracy of 85.71% and 92.86% respectively.

5.3 Adapting the Pixelstrip

The selection of pixelstrip from each time instance determines dynamic information available
in the resulting stacked images. Being able to classify the smallest oscillations in wavy flow,

it is desirable to extract as much movement from the data as possible. In previous sessions,

only a simple vertical column of pixels in the middle of the images has been used (see Figure

5.15).

Figure 5.15: Central pixelstrip, used in all previous stacked images. The black dots represent

However, because the central part of the pipe is further away from the electrodes along its

the pixels that are extracted to the stacked image.

circumference, less dynamics are recorded in this area. In fact, oscillations on the water

49



5 Implementations and Results

surface are more visible along the edges of the images (see Figure 5.16). This might,
however, also be the consequence of a physical phenomenon. The best model accuracy with a
central pixelstrip was in section 5.2 found to be 93.19%. In the following sections it is tested
if accuracy can be improved by adapting the pixelstrip.

Based on the results in section 5.2, color map 2 is used in the subsequent training sessions
(see Table 5.4).

Figure 5.16: Four consecutive images from experiment no. 39, showing that oscillations on
the water surface are more visible at the edges of the images, in this case, especially on the
right-hand side.

Table 5.4: Parameters set for stacked images, architecture and training. These settings are
maintained constant while switching pixelstrip.

Stacked images Training parameters

b, 1500 Solver SGDM

S 100 Momentum 0.9

Color map [—:I(Z) Initial Learn Rate 0.001
Architecture 15t layer 2" layer Max epochs 10

Fy 26 40 Mini batch size 100

F, 5 7 Shuffle Every epoch

5.3.1 Off-central Pixels

To collect more dynamic information in the stacked images, it may be convenient to
construct the pixelstrip by off-central pixels, where movement on the surface is more visible
(see Figure 5.17 (a)). Reviewing Figure 5.16, it is observed that oscillations are more visible
on the right-hand side of the image. The reason may be that there is a possibility that the ECT
sensor is not mounted perfectly straight to the horizontal plane, but is tilted slightly in the
clockwise direction.
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Figure 5.17: (a) Off-central pixelstrip, aiming to extract more dynamic information from the

raw images. Because oscillations are observed to be more visible on the right-hand side, the

pixelstrip is positioned accordingly. (b) Examples from each of the flow regimes show that
oscillations are more visible. Color map 2 used in calculations.

Generating datasets with this pixelstrip, a new CNN was trained (see Figure 5.18 (a)). The
training process took 18 minutes and seems promising, but also indicates that the model may
be overfitted.
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Figure 5.18: (a) Training process on dataset generated using an off-central pixelstrip.
Training accuracy stabilizes close to 100% after 6 epochs. (b) Worst and best model
performance using the off-central pixelstrip and 7 epochs of training. Accuracy is clearly
lower compared to the model using the central pixelstrip. Again, the model struggles mainly
to distinguish stratified and wavy flow.
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Testing the model, an accuracy of 87.97% is achieved. This is clearly less accurate than the
model using the central pixelstrip. As the model seems to be overfitted, it was retrained with
only 5 epochs, making the accuracy decrease to 86.37%. Supposing that the model now was
underfitted, the number of epochs was set to 7. An improved accuracy of 88.93% was
achieved. The worst and best classifications of the last model is plotted in see Figure 5.18 (b).
Several errors are observed within the stratified area.

5.3.2 Averaged Pixels

Instead of selecting 32 individual pixels from each time instance, all the pixels from an image
on the same horizontal level can be fused together using an average. Including only the pixels
within the pipe’s circumference, a vertical pixelstrip representing the average from each row
is created (see Figure 5.19).
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Figure 5.19: (a) Extracting a pixelstrip using an average across each row. (b) Examples from
each of the flow regimes using the averaged pixelstrip. Color map 2 used in calculations.

Training the model with this dataset took 17 minutes, and the training accuracy indicates that
model should not be overfitted (see Figure 5.20).
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Figure 5.20: Training process on the averaged pixelstrip dataset.

Surprisingly, the model performs even poorer than in the last case, with an overall accuracy
of 85.78 %. The plotted classifications show also this time that the model struggles to
distinguish stratified and wavy flow (see Figure 5.21).
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Figure 5.21: Worst and best model performance on the averaged pixelstrip dataset, having an
accuracy of respectively 82.14% and 88.1%.

5.3.3 Averaged Pixels Excluding Center

Aiming to avoid noise, the central part of the image can be excluded from the averaged
pixelstrip (see Figure 5.22 (a)). Since the dynamic movements seem to be enhanced in the
outer part of the pipe, the resulting stacked images may emphasize dynamic information
somewhat more than in the last case (see Figure 5.22 (b)).
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Figure 5.22: (a) Extracting a pixelstrip taking the average across each row, excluding the
central part. (b) Examples from each flow regime show that oscillations are visible, but that
the images are not so smooth, containing strange artifacts. Color map 2 used in calculations.

After 17 minutes of training (see Figure 5.23 (a)) the classification plot revealed the
remaining existence of errors deep within the stratified area (see Figure 5.23 (b)). Still having
a lower classification accuracy than the initial case, it did increase a bit from the previous
training session.
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Figure 5.23: (a) Training process from using an averaged pixelstrip, excluding the central
part. (b) Worst and best classification results using an averaged pixelstrip, excluding the
central part.

5.4 Decreasing the Sample Rate

Because the measurements from the ECT-system were taken with f; = 500 fps, all previous
training sessions have utilized the full potential to avoid unnecessary constraints. As a final
modification to the dataset, f; is decreased five times to observe how the classification
accuracy is affected.

Figure 5.24 reveals that the accuracy is decreased slightly when reducing f; to 250 fps. At
125 fps a minimum is observed, and interestingly accuracy improves as f; is further
decreased to 25 fps. Notice that small variations in accuracy may also be due to randomness
introduced by the training process (see section 6.1).
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Figure 5.24: Plot of classification accuracy with respect to f;. The accuracy is observed to
have a minimum at f; = 125 fps, but increases when f; is further decreased. Reducing f
from 500 to 25 fps, reduces the training time from approximately 17 to 3 minutes.
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Figure 5.25: Worst and best classification accuracy when using (a) f; = 125 fps and (b) f; =
25 fps, having an overall accuracy of 88.25% and 91.85% respectively.
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6 Discussion

Discussions of results and challenges that appeared during the course of this study are
gathered in this chapter. To observe inconsistence of classification accuracy, a model is
retrained without changing any of its parameters. Summarizing the results presented in
chapter 5, the different color maps and pixelstrips are compared by their classification
accuracy. Limitations introduced by the resolution of ECT images, affecting the decisions on
data labeling, are discussed. The resolutions are also reviewed in terms of Sg and Tk,
considering the consequences of decreasing f;. Finally, the results of this thesis are briefly
compared to earlier work and suggested tasks for further work are included.

6.1 Awareness of Variations in Training Results

Because of the complexity of DL networks, the exact accuracy of a model does vary when it
is retrained without changing any of its parameters. As the weights of neural networks are
randomly initialized, a certain randomness during the training process is expected. As it in
one incident was observed that the model accuracy fell from 93.01% to 89.53% when
retraining without changing any parameters, the same model was retrained five times to
observe how the results could vary (see Table 6.1). This specific model was introduced in
section 5.4, being applied on a dataset generated by color map 1, central pixelstrip and f;
decreased to 250 fps.

As this may question the results obtained in this thesis, it should be mentioned that the
models presented in section 5.2 and 5.3 were retrained two or three times to somewhat get an
idea of their average behavior before demonstrating the results.

Table 6.1: The same model retrained five times without changing any of the parameters,
showing that the accuracy varies with an estimated difference of approximately 3%.

Retrained model No. 1 No. 2 No. 3 No. 4 No. 5

Accuracy 92.02% 93.01% 89.53% 92.25% 90.31%

6.2 Decision of Color Map

The three cases presented in section 5.2 show indeed that the decision on which color map to
use, influences the consequential model performance (see Table 6.2). Clearly, when using
color map 3 the model accuracy becomes not as high as in the other cases. Reducing the
number of epochs increased the accuracy somewhat, but not enough to beat the alternatives.

Although the overall accuracies of color map 1 and 2 are almost the same, the actual errors
introduced in the second case are more reasonable and manageable than in the first case.
False classifications deep within the boundaries of stratified flow are seen as more serious
faults than errors along its transitional area.

Based on the results obtained in this section, it is assumed that the information extracted from
the raw images, by using smooth color gradients, can be useful when not taken too far.
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Table 6.2: Summary of the best model performances with respect to each of the color maps
considered in this chapter. Central pixelstrip used in the calculations.

Accuracy Worst Best Overall

Color map 1 88.1% 95.24% @ 93.12%
Color map 2 89.29% 95.24% 93.19%

Color map 3 86.9% 94.05% @ 91.24%

6.3 Decision of Pixelstrip

Although most of the pixelstrip compositions presented in section 5.3 may appear
meaningful, they do not supply good enough classification accuracy in the context they are
used. Table 6.3 shows that the original central pixelstrip gives the best results obtained so far.

The p, range [—2, 2] was chosen with respect to all pixels in all images, but could instead be
optimized with respect to the pixels in the subsequent pixelstrips only. This could possibly
have a positive impact on the model performance for pixelstrips that do not contain values for
p, filling out the range. The success of the central pixelstrip may be due to the light blue
shades in the image center.

Table 6.3: Summary of the best classification accuracies provided by the four different
pixelstrip models considered in section 5.3. Evidently the original central pixelstrip gives the
best results. Color map 2 used in the calculations.

Accuracy Worst Best Overall

Central pixelstrip  89.29% @ 95.24% 93.19%

G- cemiral 82.14% 89.29% 88.93%
pixelstrip

Averaged pixelstrip 82.14% 88.1% 85.78%

Averaged pixelstrip g3 339 gg j9%  g3.33%
excluding center

6.4 Limitations Caused by ECT Image Resolutions

Not having any clear-cut edge between the different flow regimes, makes it difficult to
conveniently assign the labels. However, because there neither are no numerical rules or
approaches for these decisions, they may vary with respect to the observer. The labeling may
even change with respect to the observer’s experience. By knowing this, it makes sense to
rather take into consideration the main purpose of ECT-based research and limitations of the

system.
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6 Discussion

Flow regime identification is typically used in two different applications; slug protection and
CFD modeling. In industrial plants, identification algorithms may be used in alarm systems to
avoid injury on pipes and process apparatus. In this case, the operator only has to distinguish
between slug and not-slug. In this context, having a low Si causes no significant limitations.
Whereas plugs and slugs are not perfectly distinguished, intermittent flow in general is
clearly identified.

CFD is a field of study for analysis and implementation of numerical models for problem
solving within fluid mechanics. Flow regime identification can here be used to fine tune
parameters of CFD-models describing materials flowing in a pipe. For this case, details of the
transitions between the flow regimes are of great importance. High model accuracy is thus
required. As mentioned in section 4.3, the low S of the ECT-system may therefore be a
crucial limitation for such applications. Also, introducing a new labeling as in section 4.4,
may not be desirable in this context.

6.5 Spatial versus Temporal Resolution

A high £, may in certain applications be a necessity and is therefore under many
circumstances highly requested [42]. However, a high temporal resolution Tz might not be to

any help if S does not follow up. As the smallest air bubbles and oscillations are not visible
pixels

mm

in ECT images having Sy = 0.57 , they will not be more visible if more of these images

are taken every second.

Referring to section 5.4, it is demonstrated that very little model accuracy is lost when
reducing f;. As Figure 5.25 reveals, it is observed that the accuracy reaches a minimum at

fs = 125 fps, but interestingly improves when f; is decreased below 125 fps. By lowering f;
and thus decreasing Ty, the stacked images become shorter in the y-axis and require less
computational effort when being applied on DL algorithms. Whereas the networks require
less time to be trained, there might also be a possibility that features in the images are easier
extracted. As CNN filters have limited sizes, they may first recognize waves when they are
within certain ranges. From the given results, it can be assumed that the network starts
recognizing a different set of features in the images as T is reduced.

6.6 Comparing Results with Earlier Work

In 2017 students at USN utilized inferential methods to obtain flow regime identification
from raw capacitance ECT measurements [3]. The first approach in this work demonstrated
the use of eigenvalues and FFT as proposed by Dupré [9]. Obtaining an approximated model
classification accuracy of 94%, it was slightly higher than the best results presented in this
thesis, namely 93.19%. Notice, however, that the earlier results were obtained using only one
dataset, being divided into two parts for training and testing respectively. As done in this
thesis, using two separate datasets for training and testing, the model is more strictly
evaluated with respect to generality. Directly using the raw capacitance measurements
requires less computational power and is expected to deliver faster response time, considering
the context of an online application. However, because the algorithms presented are specific
to the given phenomenon and physical dimensions, extensive analysis may be necessary to
adapt these models when being used with new multiphase rigs and ECT-systems. As ML is a
data driven approach, it learns to adapt to new environments by experience. Because
processing power becomes more and more available, environmental invariance may be
regarded as its most significant advantage.
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6 Discussion

The second approach in [3] presents the use of LSTM networks for flow regime
identification. Being a ML method, it shares similarities with CNNs. However, instead of
using a buffer, it relies on an internal dynamic memory. Being a strength, it may also
introduce a structure that is harder to analyze. Using temporal images offers control of the
buffer length, which can be considered as an advantage.

6.7 Suggestions for Further Work

As time limits constrain the ideas that can be implemented, this section presents some
suggestions for things that could be implemented in future work. Optical flow and 3D
stacking are both operations that would be applied to the image data before feeding it to a
CNN.

6.7.1 Applying Optical Flow to the Image Data

To extract information about motion in the image data and ease the ML, optical flow could be
applied. More precisely, [43] defines optical flow as “the distribution of apparent velocities
of movement of brightness patterns in an image” (Horn-Schunk method). The technique
calculates how objects move across the image by reading the pixel intensities. A requirement
is that f; is high enough to track the movements frame by frame. Figure 6.1 shows an
example of the information generated by optical flow on raw image data from the ECT-
system. This information could in a similar way to [44], be used as input to a CNN to identify
the different flow regimes.

Since this method detects the differences between one and one frame at a time, it could add
value to identification of continuous flows. As the transition from stratified to wavy flow
presents an increase of movement on the water surface, optical flow would presumably be
able to extract this information. However, intermittent flow would not be that straight
forward with this method. As the slugs and plugs only appear with given intervals, the CNN
would need to have memory abilities, like contained in LSTM-networks. On the other hand,
it may also be possible to introduce a buffer to optical flow, increasing the number of frames
between each calculation.

frame=2580

Vy

20

30

10 20 30

Optical flow Orientation

0 20 30 110 20 30 10 20 30

Figure 6.1: The different features extracted with optical flow using the Horn-Schunk method
plotted in MATLAB [45]. Based on how the pixel intensities of two consecutive images
change, the method calculates object movements and describes it by generating a field of

vectors.
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6 Discussion

6.7.2 Stacking the Image Data in Three-Dimensional Space

To extract as much information as possible from the raw data, the whole images could be
stacked across time. This would, though, introduce a third dimension for the stacked images,
expressing the temporal information (see Figure 6.2). Dealing with three-dimensional images
for DL in MATLAB complicates things a lot, as there apparently are no built-in
functionalities for this. The solution is to use third party software and MATLAB-compatible
libraries. One of the options is called MexConv3D [46], and is a mex implementation that
runs with the MatConvNet [47] toolbox in MATLAB. Unfortunately, employing these
implementations required deeper insight and more time than available in this project.
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Figure 6.2: Illustrative example of a three-dimensional stacked image. The measurements are
taken from experiment no. 8 (training dataset), and visualize the appearance of a slug.

6.7.3 Online Applications

For future studies, it would also be of interest to create an online implementation of the
identification system. This would be the next step of prototyping an operational system for
e.g. alarming the presence of slugs.

In practice, such an implementation would require online data reading from the ECT-system.
Whether this is possible, was not investigated during this study. ECT32v3 utilizes a specific
buffer file to accumulate a given number of past capacitance measurements. Developing
software that reads the buffer.bcp file would be a convenient approach as it is updated for
every time instance. Furthermore, the image reconstruction- and stacking algorithms would
follow before feeding the stacked images to a trained CNN model. Whether the complete
system is fast enough to have good enough response time would also be an essential question.
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7 Conclusion

7 Conclusion

It has been demonstrated that ML algorithms have potentials to identify multiphase flow
regimes using ECT images. Dynamics and flow phenomena has successfully been expressed
in elongated two-dimensional images by horizontally stacking vertical pixelstrips from
individual time instances. Image recognition algorithms were introduced by implementing
CNN’s for automatic flow regime identification.

Two datasets of ECT measurements comprising 84 experiments distributed across the
multiphase rig’s operational range were collected. The datasets were separately recorded,
allowing them to be used for training and testing, respectively. The experiments were labeled
according to the observed flow regimes but had to be relabeled because small oscillations
were overlooked in the low Si images.

GA proved to be a usable method to automatically evaluate a large number of CNN
architectures and score them according to classification accuracy. Using GA, a total of 800
architectures having two convolution layers with diverse Fy and F; were trained and tested
for a duration of 11 hours in total. The best architecture was found to have Fy = 26 and F; =
5 in the first layer and Fy = 40 and F; = 7 in the second layer.

DL models were trained and tested on different variations of the original datasets by
manipulating the appearance of the temporal stacked images. Experimentation with different
color maps revealed that classification accuracy was highest when adjusting the colors with
smooth gradients, exposing details in both phases. Comparing outcomes from five different
pixelstrip compositions, including off-central and averaged pixels, unveiled that a plain vertical
strip of pixels from the middle of the image facilitated the highest model accuracy. Whereas
averaged pixelstrips gave the lowest classification accuracy (85.78%), the central pixelstrip in
combination with a color map incorporating gradients gave the highest overall classification
accuracy of 93.19%. Most of the errors in the best performing model were found along the
stratified/wavy and plug/slug transitional area. The wavy/annular and continuous/intermittent
transitions were, however, correctly classified. Referring to the poorer performing models, both
using a color map without gradients and off-central or averaged pixelstrips caused the presence
of classification errors deep within the boundaries of the stratified flow regime.

The most significant limitation using image recognition for flow regime identification was

considered to be the resolution of the ECT images. Using a 12-electrode ECT sensor on a pipe

pix;ls. Since the small air bubbles in slugs and

with diameter 56 mm, gave Sg = 0.57

oscillations along the stratified/wavy transition have dimensions below this range, these are not
seen in the consequential reconstructed images. On the other hand, having f; = 500 fps gave
a Tr much higher than necessary. Decreasing f; to 25 fps the classification accuracy had a
minor reduction from 93.19% to 91.85%. In fact, the classification accuracy was observed to
reach a minimum at f; = 125 fps, but improved again as f; was decreased further. Thus, using
ML image recognition algorithms for multiphase flow regime identification it is concluded that
a higher Sy, is required, and thus more electrodes around the pipe’s circumference is a necessity.

Comparing with inferential fusing methods presented in earlier work [3], the algorithms
demonstrated in this thesis may require more processing power but introduce flexibility when
considering modality and adaptiveness to other systems. These methods for data driven
modeling open for new possibilities in any tomographic application. The power of ML relies
on improvement by experience.

61



References

References

M. J.M., G. G.A. and A. K., “A flow pattern map for gas-liquid flow in horizontal
pipes,” Int. Journal of Multiphase Flow, 1974.

V. Hernandez Perez, “Gas-liquid two-phase flow in inclined pipes. (Figure 2.5),”
University of Nottingham, 2008.

R. Johansen, T. G. Qstby, A. Pathan, A. Dupré and S. Mylvaganam, "Flow Regime
Identification in Multiphase Flows using Tomometric- and Inferential Methods,"
University College ot >outneast-Norway, rorsgrunn, 2017.

a. R. M. C. R. N. Bartholomew, "Measuring Solids Concentration in Fluidized
Systems by Gamma-Ray Absorption," ACS Publications, Houston Tex., 1957.

M. S. Beck and R. A. Williams, “Process tomography: a European innovation and its
applications,” 1996.

C.G.X.R. T.D. S. a. M. S. B. S. M. Huang, "Design of sensor electronics for
electrical capacitance tomography," IEEE, 1992.

Y.L.Z. W.D.T. C.-G. X. S. H. C. L. Wugiang Yang, "Multiphase Flow
Measurement by Electrical Capacitance Tomography," IEEE, Manchester, 2011.

R.Y.S. V.M. C. M. S. M. Chaminda Pradeep, "Electrical capacitance tomography
(ECT) and gamma radioation meter for comparison with and validation and tuning of
computational fluid dynamixcs (CFD) modeling of multiphase flow," IOP
Publishing, Porsgrunn, 2014.

A. Dupré, G. Ricciardi, S. Bourennane and S. Mylvaganam, “Electrical Capacitance
Based Flow Regimes Identification - Multiphase Experiments and Sensor
Modelling,” 2017.

R. Y. S. M. Chaminda Pradeep, "Neural Network-Based Interface Level
Measurement in Pipes Using Peripherally Distributed Set of Electrodes Sensed
Symmetrically and Asymmetrically," IEEE, Porsgrunn, 2012.

T. e. 0. e. Britannica, "Electrical impedance," June 2008. [Online]. Available:
https://www.britannica.com/science/electrical-impedance. [Accessed April 2018].

A. H. Fielding, "An introduction to machine learning methods," , 1999. [Online].
Available: https://link.springer.com/content/pdf/10.1007/978-1-4615-5289-5 1.pdf.
[Accessed 7 3 2018].

R. R. Kline, "Cybernetics, Automata Studies, and the Dartmouth Conference on

Artificial Intelligence," IEEE Annals of the History of Computing, vol. 33, no. 4, pp.
5-16, 2011.

62



[27]

References

A. L. Samuel, "Some Studies in Machine Learning Using the Game of Checkers.,"
Springer, New York, 1959.

A. Munoz, "Machine Learning and Optimization," Courant Institute of Mathematical
Sciences, New York.

J. F. Puget, "What is Machine Learning?," IBM, 18 May 2016. [Online]. Available:
https://www.ibm.com/developerworks/community/blogs/jfp/entry/What Is Machine
_Learning?lang=en.

T. M. Mitchell, Machine Learning, ed., vol. , , : The Mc-Graw-Hill Companies, Inc.,
1997, p. .

A. . Ivakhnenko, Cybernetic Predicting Devices, ed., vol. , , : Naukova Dumka, 1965,
p. .

R. Dechter, "Learning while searching in constraint-satisfaction-problems," Artificial
Intelligence Center, University of California, Los Angeles, 1986.

Y. . LeCun, "LeNet-5, convolutional neural networks," , . [Online]. Available:
http://yann.lecun.com/exdb/lenet/. [Accessed 8 3 2018].

ImageNet, "Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)," 2012.
[Online]. Available: http://www.image-net.org/challenges/LSVRC/2012/results.html.
[Accessed 8 March 2018].

A. . Krizhevsky, I. . Sutskever and G. E. Hinton, "ImageNet Classification with Deep
Convolutional Neural ...," Advances in Neural Information Processing Systems, vol.
1, no., p.,2012.

"Parallel Programming and Computing Platform," , . [Online]. Available:
http://www.nvidia.com/object/cuda_home new.html. [Accessed 8 3 2018].

A. Deshpande, "The 9 Deep Learning Papers You Need To Know About," 24 August
2016. [Online]. Available: https://adeshpande3.github.io/The-9-Deep-Learning-
Papers-You-Need-To-Know-About.html.

M. Nielsen, "Neural Networks and Deep Learning," December 2017. [Online].
Available: neuralnetworksanddeeplearning.com/index.html. [Accessed May 2018].

M. Copeland, "What’s the Difference Between Artificial Intelligence, Machine
Learning, and Deep Learning?," NVIDIA, 29 July 2016. [Online]. Available:
https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-
machine-learning-deep-learning-ai/. [ Accessed May 2018].

N. . Siddique and H. . Adeli, "Introduction to Computational Intelligence," , 2013.
[Online]. Available:
http://onlinelibrary.wiley.com/doi/10.1002/9781118534823.ch1/summary. [Accessed
932018].

63



[29]

[30]

[37]

[39]

[40]

References

G. . Palm, "Warren McCulloch and Walter Pitts: A Logical Calculus of the Ideas
Immanent in Nervous Activity," , 1986. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-642-70911-1_14. [Accessed 9 3
2018].

J. Hopfield, "Neural networks and physical systems with emergent collective
computational abilities," April 1982. [Online].

J. Le, "The 8 Neural Network Architectures Machine Learning Researchers Need to
Learn," KD nuggets, February 2018. [Online]. Available:
https://www.kdnuggets.com/2018/02/8-neural-network-architectures-machine-
learning-researchers-need-learn.html. [Accessed May 2018].

A. Deshpande, "A Beginner's Guide to Understanding Convolutional Neural
Networks," 20 July 2016. [Online]. Available: https://adeshpande3.github.io/A-
Beginner%?27s-Guide-To-Understanding-Convolutional-Neural-Networks/.

G. Hinton, "Lecture 6a Overview of mini-batch gradient descent," University of
Toronto, [Online]. Available:
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides lec6.pdf. [Accessed
2 May 2018].

S. Ruder, "An overview over gradient descent optimization algorithms," 15 June
2017. [Online]. Available: http://ruder.io/optimizing-gradient-descent/.

Tutorialspoint, "Genetic Algorithms - Introduction," [Online]. Available:
https://www tutorialspoint.com/genetic_algorithms/genetic algorithms_introduction.
htm. [Accessed 10 April 2018].

C. Pradeep, “Tomographic Approach to Automatic and Non-Invasive Flow Regime
Identification,” Telemark University College - Faculty of Technology, 2015.

tomography.com, “THE TFL R5000 FLOW ANALYSER AND ECT SYSTEM,”
August 2009. [Online]. Available:
http://www.tomography.com/THE%20TF5000%20FLOW%20ANALYSER%20AN
D%20ECT%20SYSTEM.htm.

PROCESS TOMOGRAPHY Ltd., "AN ITERATIVE METHOD FOR IMPROVING
ECT IMAGES," April 1999. [Online]. Available:
http://www.tomography.com/pdf/apnote4.pdf.

T. Elsken, J.-H. Metzen and F. Hutter, "Simple And Efficient Architecture Search for
Convolutional Neural Networks," ARXIV, 2017.

M. Liu, J. Shi, Z. Li, C. Li, J. Zhu and S. Liu, "Towards Better Analysis of Deep
Convolutional Neural Networks," ARXIV, 2016.

D. Narayan, "Genetic Algorithm Optimization of Convolutional Neural Network

Architecture," YouTube, 20 August 2017. [Online]. Available:
https://www.youtube.com/watch?v=IV8gqnVujj Y. [Accessed April 2018].

64



References

MATLAB, "ga," MATLAB, [Online]. Available:
https://se.mathworks.com/help/gads/ga.html. [Accessed April 2018].

M. M. L. Saied, "Electronic hardware design of electrical capacitance tomography
systems," The Royal Society Publishing, 2016.

B. K. P. Horn and B. G. Schunk, "Determining Optical Flow," Massachusetts
Institute of Technology, 1980.

K. Simonyan and A. Zisserman, "Two-Stream Convolutional Networks for Action
Recognition in Videos," Visual Geometry Group, University of Oxford.

M. Kharbat, "Horn-Schunck Optical Flow Method," MathWorks, 23 January 2009.
[Online]. Available: https://se.mathworks.com/matlabcentral/fileexchange/22756-
horn-schunck-optical-flow-method. [Accessed May 2018].

P. Sun, "Matlab mex implementation of the basic operations for 3D (volume)
Convolutional Neural Network," GitHub, 21 November 2016. [Online]. Available:
https://github.com/pengsun/MexConv3D. [ Accessed March 2018].

The MatConvNet Team, "MatConvNet: CNNs for MATLAB," 2014-2017. [Online].
Available: http://www.vlfeat.org/matconvnet/. [Accessed March 2018].

65



Appendices

Appendix A: Task Description

Appendix B: Notes from performing experiments on the multiphase rig
Appendix C: Description of Software Developed in MATLAB
Appendix D: MATLAB Scripts

Appendix E: MATLAB Functions

Appendix F: MATLAB GA Script & Functions

References

66



Appendix A

TASK DESCRIPTION



Appendix A Task Description Page 1 of 2

University College
of Southeast Norway

Faculty of Technology, Natural Sciences and Maritime Sciences, Campus Porsgrunn

FMH606 Master's Thesis

Title: Machine learning algorithms in characterisation of materials and identification of flow
regimes using multimodal sensor suite in multiphase flow studies

HSN supervisor: Saba Mylvaganam

External partner: Statoil and University of Manchester

Task background:

Multimodal sensor suites for multiphase flow is found increasingly in the oil and gas &
process industries. USN has the latest equipment on multimodal and capacitance based
tomography. Recently, a modern Gamma ray based measurement system has been added
to the sensor suite on the multiphase flow rig. There will be close collaboration with
manufacturers of process tomographic equipment in the UK. Currently, USN is collaborating
with University of Lodz, Poland, University of Stavanger, Norway and University of
Manchester, UK.

Task description:

The focus in this project is the multimodal tomometry (electrical impedance, wave
phenomena, conventional sensors) in studying various features of multi-phase flow and may
also incorporate time series data from a gamma meter and some conventional sensors. The
focus will be on exploiting patterns in the actual time series of raw data from the array of
multimodal sensors or their other mathematical properties with machine learning
techniques. Considerable work has been done at USN earlier using machine learning
algorithms. The present thesis should strive to add value to existing results and findings
achieved particularly by students and staff at USN and collaborating partners of USN.
Machine learning along with real times processing of time series, data mining approach,
wavelets, and matrix methods are some keywords associated with this project. The goals for
the present master thesis project are the following:

1. A brief overview of potential material characteristics identifiable using non-invasive
sensory interrogation

2. A concise overview of flow regimes with clear description of the transition zones

3. Survey of multimodal process tomometry with focus on its applications to
multiphase flow generally, and specially on characterisation of materials and
identification of flow regimes

4. Understanding and describing the basic features of the process multimodal systems
in the Sensor Lab/Process Lab at USN including the programs developed by
collaborators of USN and PhD students.

Address: Kjglnes ring 56, NO-3918 Porsgrunn, Norway. Phone: 35 57 50 00. Fax: 35 55 75 47.
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5. Generating data sets using multi-phase flow rigs at USN and analysing them for flow
regime, bubble and slug studies with focus on flows which are stratified wavy with
mixed interface

6. Online data acquisition and processing with multi-modal sensor suite

7. A brief survey of flow regimes in multiphase flow in tabular form with own sketches
and at least some own photos/videos using USN flow rigs.

8. Analysis of data with focus on some aspects of material characterisation and
developing techniques to identify wavy flow

9. Submitting a report using the guidelines and template of USN with systematically
archived data sets and software

Student category:

This work is suitable for both II1A and PT/EET students with some interest in mathematical
techniques. As the work entails continuous lab work and program development, students
need to be at USN throughout the term. It is mandatory that students have weekly meeting
with at least one the supervisors in the lab. Previous experience in using process
tomography is however mandatory.

Practical arrangements:

Necessary hardware and software will be provided by USN. Work will be performed in
Sensor Lab and Process Hall where the multiphase flow facilities are available. However,
possible interaction with process tomography research groups in Norway and abroad is also
envisaged. Students need to familiarise themselves with the earlier work done at USN and
collaborators of USN in the field. Some data sets from real industrial measurements may be
available in the final stages of the thesis work. The goals and tasks may be modified to suit
the background of the student.

Signatures:
Student (date and signature):

Supervisor (date and signature):

Address: Kjglnes ring 56, NO-3918 Porsgrunn, Norway. Phone: 35 57 50 00. Fax: 35 55 75 47.
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NOTES FROM PERFORMING
EXPERIMENTS ON THE MULTIPHASE RIG

1 Notes of the distributed training experiments
2 Notes of the transitional experiments

3 Notes of the distributed validation experiments
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Appendix C

DESCRIPTION OF
SOFTWARE DEVELOPED IN MATLAB

1 Scripts
2 Functions

3 Computer Specifications
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Description of Software Developed in MATLAB

As this study was implemented in MATLAB, this chapter lists up all the developed m-files
with their functionalities and dependencies. All the programs are attached in Appendix D, E
and F, letting the reader recreate the results presented in this report. An overview over all the

programs is given in Figure 1.

—, = O el )
{W—Wﬂ% 0 | ? p»  ECT3™3
plotResultData.m / .bcp
i ¥
GA :
. — — P CNN_Network.m recon_multim <« —— MatECT
functions
\ ]
P—— |® ime
o «
stackDatam  q—__ __—  readData.m
makePixelStrip.m — — dataStruct
- = /
createRGB.m 1 /
setColormap.m
Figure 1: Overview over the program implementation of the study.
1. Scripts

For the raw data collection from the ECT-system, the program ECT32v3 was used. The
following programs are m-scripts organized with several sections. Thus, using the “run
section” button in the MATLAB editor GUI, the user may separately run the different parts of

the scripts one at a time.
e recon_multi.m: Using the MatECT package, this script automates the image
reconstruction of multiple raw capacitance (.bcp) files. The script consists of the
sections given in Figure 2.

Start program (opens recon.m)
Set sensitivity matrices

. Set capacitance file (.bcp) (Loop through
. Reconstruct image ) all capacitance
Save image (.img) files)

Figure 2: The sections of the recon_multi.m script.

uih WN PR

e readData.m: This script reads all the individual image data files into MATLAB and
organizes them in a struct. Figure 3 shows the sections contained in this script.
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1. Read all image data files (.img)
2. Edit names
3. Sort struct after names

Figure 3: Sections of the readData.m script.

Page 2 of 7

For this study, two separate structs are created, respectively for the training- and
testing dataset. The structs consist of six fields, namely: image, name, water, air,
regime and numRegime, where each row represents one experiment (see Figure 4).
Image holds the image data for all 14999 frames organized as three-dimensional
matrices. The names are arranged to store the experiment number and belonging
dataset. The setpoints for each experiment are given in the water and air field. Finally,
the label names and numbers are saved respectively in the regime and numRegime

fields.

Fields

s R - R B = e ]

G T O AT P T [P S
(=T, B S TS R S R -

& image

32x32% 14999 double
32x32x14999 double
32%x32x% 14999 double
32x32x14999 double
32x32x 14999 double
32x32x 14999 double
32x32x14999 double
32x32x 14999 double
32x32x74999 double
32x32x 14999 double
32x32x 74995 double
32x32x14999 double
32x32x 714999 double
32x32x 14999 double
32x32x 14999 double
32x32x 74995 double

|_j name
wal_01'

_'vaI_UZ'
_‘ual_[B'
_’val_04'

‘val_05'
‘val_D6'

_'vaI_U?'
_‘vaI_US'
_’val_[}g'

wal_10
val_11'

_'val_1 2
_‘val_'l ¥
_’val_14'

‘val_15'
‘'val_16'

ij: water []:

79.4300

79.4300
79.4300
79.4300

63.1000
63.1000

63.1000
63.1000
63.1000

63.1000
39.8100

39.8100
39.8100
39.8100

39.8100
39.8100

air |_| regime [— numRegime

0.1000 Plug’
0.1600 'Slug’
0.2500 'Slug’
0.4000 'Slug’
0.1000 'Plug’
0.1600 'Slug’
0.2500 'Slug’
0.4000 Slug’
0.6300 'Slug’

1'Slug’
0.1000 Plug’
0.1600 Plug’
0.2500 Slug’
0.4000 'Slug’
0.6300 'Slug’

1'5lug’

Figure 4: Part of a dataStruct created with the readData.m script.

2
1
1
1
2
1
1
1
1
1
2
2
1
1
1
1

e stackData.m: This script implements the functionality described in section 4.3!. Based
on a given buffer size and stride, it stacks the individual image frames together across
time. As seen in Figure 5, the algorithm is arranged as nested loops that go through all
experiments and separately stack images by extracting pixelstrips from each
individual frame.

! Referring to the main report.
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Set parameters: dataStruct, buffer, stride,
labeling, colormap and pixelstrip

Call setcolormap.m and makePixelStrip.m
Loop through all experiments
Calculate number of stacked images
Loop through all stacked images
Initialize new stacked image
Loop through all frames
Extract pixelstrip
Add pixelstrip to stacked image
Call createRGB.m

Save stacked image

Figure 5: Overview over the steps of the algorithm in the stackData.m script. Its backbone are

three nested loops that go through all frames in all experiments.

CNN_ Network.m: Using the Neural Network toolbox of MATLAB, this script
creates, trains and tests a CNN for classification of flow regimes (see Figure 6). To
load all the images of the training- and testing dataset, the built-in imageDatastore
function is used. This function creates an object that points to the respective image
files on the local storage, without actually uploading them to MATLAB, avoiding
memory problems. When the network is trained and tested, the results can be
organized and plotted in the last sections. Because the buffer is way shorter than the
total experiment, each experiment contains several stacked images. To visualize the
model performance, the classification results for each stacked image are plotted one
by one. Wrong classifications are marked by a circle, and the individual accuracies for
each set of stacked images are given. Additionally, the worst and best results are
plotted in the last section.

This script utilizes the CUDA framework from NVIDIA to enable GPU-accelerated
processing.
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---- TRAINING: ----

1. Load training data

2. Define Layers

3. Define training options
4. Train Network!

---- TESTING: ----

5. Load Test Data

6. Classify test data

7. Test one at a time

8. Test all at once (gets overall accuracy)

---- PLOTTING: ----

9. Plot correct regimes data

10. Organization of Predicted results

11. Plot results from one image for each
experiment at a time (calls
plotResultData.m)

12. Plot worst and best results (calls
plotResultData.m)

Page 4 of 7

Figure 6: The sections contained in the CNN_network.m script. Being divided into three

parts, training, testing and plotting.

e ga script.m: This is the script that performs genetic algorithms as described in section
5.1%. All its sections are listed up in Figure 7. Similar to the last script, it loads the
datasets using the imageDatastore function. In the next step the numbers of
convolutional layers, maximum number of filters and maximum size of filters are set.
The functions create_initial population.m, crossover population.m and ga fitness.m
are included as function handles, to be used by the ga-function. In the third section,
the options like population size and maximum number of generations are set. Also,
the mutate population.m and myOutputFunction.m function is included. Finally, the
ga-function from the Global Optimization Toolbox is called. Because
myOutputFunction.m is set to save historical data from all individuals, the next part
can create plots which show information about all generations.

! Referring to the main report.
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———= GA ----

1. Load train and test datasets

2. Set CNN Parameters and function handles

3. Set Options for the Genetic Algorithm

4. Call the ga-function (Starts the algorithm!)

---- plotting ----

5. Organize historic data

6. Plot parameters and scores of all
individuals

7. Plot sorted scores

Figure 7: The section of the ga script.m. They are divided into two parts, GA and Plotting.

2. Functions

To make the scripts easier to read, some of the functionalities are put in separate functions.

setColormap.m: Based on its input, it creates the different colormaps described in
section 5.2!. This is done by interpolating between different RGB color-codes across
the range [0 255].

createRGB.m: This function uses the current colormap to create a three-channel RGB
image of a one-channel grayscale image. The maximum and minimum values are
scaled to respectively 2 and -2 (see section 5.2 in the main report).

makePixelStrip.m: Based on its input, this function returns the row- and column
indices for different pixelstrips. The strips are defined by distributing 32 ones in a
32%32 matrix of zeros. Their position determines which pixels that are to be extracted
in the pixelstrip.

plotResultData.m: Taking a struct with the classification results as input, this function
plots the classified regimes on a flow regime map similar to Figure 2.3 in the main
report. It gives different colors to each of the five classes and adds circles around
wrong classifications.

The functions developed for the genetic algorithm are all called and administrated by the ga-
function (see Figure 8). Their inputs and outputs are formatted according to what is required
by the ga-function.

! Referring to the main report.
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tempScript.m

layers = [

Training genConvnetConfig.m > L".Oﬂ\:‘()

dataset reLul() .

™ pooling()]
b _
—— =P ga fitness.m 4/
——————— )

myOutputFunction.m

create initial population.m

TrRe ok |
et P

mutate_population.m

Gn oo

crossover_population.m

Figure 8: Package of functions for genetic algorithms.

e create initial population.m: Creates a random initial population of chromosomes
according to the given population size.

e genConvnetConfig.m: Based on the parameters from a given chromosome, this
function creates a temporary script that defines the CNN architecture. The script looks
the same as presented in Figure 5.2'.

e ga fitness.m: The fitness function calls genConvnetConfig.m, and takes the
temporary script to create a CNN. Using a training dataset and a set of training
options it trains the network. Afterwards, the model is tested with a separate testing
dataset to obtain its score.

e crossover population.m: Crosses two and two parents chosen by the ga-function to
produce children for the next generation. The children are randomly given attributes
from each of the parents.

e mutate population.m: This function mutates chosen chromosomes by randomly
swapping the order of appearance for its parameters. Notice that the values for the
number- and sizes of filters are kept separate, not mixed.

e myOQOutputFunction.m: To keep historical data from the execution of the genetic
algorithm, an output function must be defined. This function saves the parameters and
score of all individuals during all generations in variables placed in the base
workspace.

3. Computer Specifications

The same computer was used for all the tasks of this study. As deep learning algorithms
require a lot of parallel processing power, using a good GPU is essential for accomplishing
heavy computational tasks within reasonable times. To obtain both mobility and processing

! Referring to the main report.
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power, the laptop Lenovo Yoga 720 15" [1] was chosen. As the computer is the core of the
deep learning tasks of this study, and may limit the ways CNN’s are trained and
benchmarked, the most important specifications are given in Table 1.

Table 1: Specifications of the computer used in this study.

Name Lenovo Yoga 720 15"
GPU GeForce GTX1050
CPU InFel Core i7 (7t
generation) 7700HQ / 2.8 GHz
Number of Cores 4
RAM 16 GB DDR4 SDRAM
Storage device 512 GB SSD

References

[1]  Komplett, "Lenovo Yoga 720 15.6" Full HD touch," [Online]. Available:
https://www .komplett.no/product/951259/pc-nettbrett/pc-baerbar-laptop/2-i-1-
pc/lenovo-yoga-720-156-full-hd-
touch?gclid=CjOKCQjw8YXXBRDXARIsAMzsQuWwgyBcvb270K 1wKjFfMOFyd
tmQgXiWKoWoMyRphzTXrhl-
479¢GuAaApbZEALw_ wcB&gclsre=aw.ds&dclid=CLfHjavf190CFReUmgod304G
. [Accessed 26 April 2018].
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2 readData.m
3 stackData.m

4 CNN_Network.m
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1 recon_multi.m

§ ——m Recon Multi -----—-——-==---—————-

oo

(Created by Rafael Johansen 2018)

o° o oo

oe

The script consists of the following parts:
1) Start program (opens recon)

2) Set sensitivity matrices

(Loops through all capacitance files)

3) Set capacitance file

4) Reconstruct image

5) Save image

o° o0 o° o° oo

oo

$% 1) Start program
recon

global Var;

global hfig;

Page 1 0f 8

This script uses the MatECT package to automate the generation of
multiple image reconstructions from raw capacitance .bcp files.

% Make sure to set star frame to 0 and number of frames to 14999 in the GUI

%% 2) Set sensitivity matrices

smapPath = 'C:\Users\rafae\Documents\TFLR5000\smaps\"';
smapName = 'ssml2 32.sif';

Var.InverseFile = strcat (smapPath, smapName) ;

set (findobj (hfig, 'Tag', 'InverseFile'), "'string', smapName) ;
Var.ForwardFile = strcat (smapPath, smapName) ;

set (findobj (hfig, 'Tag', 'ForwardFile'), 'string', smapName) ;
%% Loop Through all capacitance files

path =
"C:\Users\rafae\Documents\Multiphase rig summer2017\Experiments\ECT\all bcp
IN";

files = dir(strcat(path, "*.bcp'));

$fileID = fopen(['lmageidata/', files (i files) .name]);

for £ = 13:1length(files)
% 3) Set capacitance file
fprintf ('Running file %s\n',files(f) .name);

fname = files(f) .name;
fpath = files(f).folder;
Var.CapacitanceFile = strcat (path, fname);

filename = Var.CapacitanceFile;

set (findobj (hfig, 'Tag', 'Capacitancelile'), 'String', fname) ;
% Copy of part of the function: local set output filenames

C

input filename=get (findobj (hfig, 'Tag', 'CapacitanceFile'),'String');

avi filename=strcat (input filename (1l:findstr (input filename, '.

tavi');

set (findobj (hfig, 'Tag', 'MovieFile'), 'string',avi filename);
img filename=strcat (input filename (1:findstr (input filename, '.

'ng');

set (findobj (hfig, 'Tag', 'ImageFile'), 'string',img filename);

% 4) Reconstruct image

recon ('generate', 1)

% 5) Save image
recon('make image file',1)

end

"))y

"))y
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2 readData.m

T b e Read Data ----———7—————-—"——————————————-— s
(Created by Rafael Johansen 2018)

This script is purposed to read and save ECT-image data in MATLAB as
structs.

o° o° o° o©
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\¢

oe

The script consists of the following parts:
1) Read all .img image data files

2) Edit names

3) Sort struct after name

o° oo

oe

%% 1) Read all .img image data files
files = dir('C:/Multiphase rig summer2017/Image data/exp/*.img');

for 1 files=1l:length(files)
fprintf ('Running file %s\n',files(i files) .name)

fileID = fopen(['C:/ Multiphase rig summer2017/Image data/exp/',
files (i files) .name]l);

data = textscan(filelID, '$f &f $f %f Sf $f %f %f Sf %f Sf
$f ¢f $f $f %f %f %f 2f %f Sf &£ 'CommentStyle', "##');
fclose (filelD);
N = length(data{l,1})/32; % Total number of frames
I = zeros(32,32,N);
for frame = 1:N
for column = 1:32
I(:,column, frame) = data{l,column} (((frame-1)*32)+1:frame*32);
end
end
dataStruct (i files).image = I;
dataStruct (i files) .name = files (i files) .name;

dataExp = dataStruct; % Assign the struct to save data to

%% 2) Edit names
$Remove .bpc suffix in name
for 1 = l:length (dataExp)
dataExp (i) .name = dataExp (i) .name (l:end-9);
end

%% 3) Sort struct after name
dataExp = nestedSortStruct (datakExp, 'name');
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3 stackData.m

————————————————————————————— Stack Data -—-————=7————————————————————— 3
This script takes image data from the structs generated in "readData.m"
and stacks them as 2D images according to a given buffer size.

(Created by Rafael Johansen 2018)

o° do o° o° oo

oo

script consists of the following parts:

Set parameters

Loop through all experiments

Loop through all stacked images per experiment
Loop through all measurements per stacked image
Save image to directory

oo

oo

o°

o°
—~ e~~~ —~
a s w N D
—~ = =0

oo

Q

%% Stack 2D images (Save as Images)

for turn = 1:2
switch turn % Assign the struct to retrieve data from
case 1
dataStruct = dataExp; % First turn, use training dataset
case 2
dataStruct = dataVal; ¢ Second turn, use testing dataset
end
SEEErrrrrrrrrrrrrrrrrrrrr (1) SET PARAMETERS | [ [ LILITIEEETIITTEETETITTETTTS

buffer = 3; % Buffer in seconds (Length of stacked images)
stride = 0.2; % Stride in seconds (Interval betweeen new stacked images)
1bl = '"ECT'; % Labeling -> OLD: original labeling,
ECT: labeling based on ECT-images
cmap = 'cmapl'; Colormap: cmapl, cmap2 or cmap3
pstrip = 'pstrip-central'; ¢ Pixelstrip: pstrip-central,
% pstrip-off-central, pstrip-mean,
% pstrip-mean-xcenter
fps = 100; % Frames per second: 500, 250, 125, 100, 50, 25

original fps = 500;
bufferLength = fps*buffer; Length of stacked image
stridelLength = fps*stride; % Offset between each stacked image
numImg = floor (length (dataStruct (1) .image(1,1,:))/
(stride*original fps)) - floor ((buffer*original fps)/
(stride*original fps)) + 1; Number of images
setColormap (cmap) ; Colormap is set
[iRow, 1iCol, M, pipeFilter] = makePixelStrip(pstrip); % Pixelstrip is made

oo

oo

oo

for experiment = 1:84 % (2) Loop through all experiments
fprintf ('Running experiment no. %i\n',experiment)
for a = l:numImg % (3) Loop through all stacked images per experiment
stackedImg = zeros (32,bufferlLength);
i=1;
for measurement = ((l:1:bufferlLength)+(a-1)*stridelLength)* (500/fps)

% (4) Loop through all measurements per stacked image
if strcmp (pstrip, 'pstrip-mean')
pixelStrip = mean (dataStruct (experiment) .
image (:, :,measurement) .*pipeFilter,2, 'omitnan');
elseif strcmp (pstrip, 'pstrip-mean-xcenter')
pixelStrip = mean (dataStruct (experiment) .
image (:, : ,measurement) .*pipeFilter,2, 'omitnan');
else
for row = 1:32
pixelStrip (iRow (row),1l) = dataStruct (experiment).
image (iRow (row) ,iCol (row) ,measurement) ;
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end
end
stackedImg(:,i) = pixelStrip;
i=1+41;
end
name = dataStruct (experiment) .name;
regime = flowRegimes (experiment) .regime;
destdirectory = sprintf (
'C:/IMG/%s_%s 1bl-%s buffer-%i stride-%s fps-%i %s/%s/',
pstrip,cmap, lbl,buffer,string(round(stride,2)), fps,
name (1:3),regime);
if (7 ~= exist(destdirectory, 'dir'))
mkdir (destdirectory); % create the directory

end
filename = sprintf('Ss a%i.png',name,a);
fulldestination = fullfile(destdirectory, filename);

rgbImg = createRGB (stackedImg) ;
imwrite (rgbImg, fulldestination); % (5) Save image to directory
end
end
end
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4 CNN_Network.m

G T CNN Network —-—-—-—-—-—-—-—-------—-————————————— 3
This script uses 2D images from the five different flow regimes to train
a Convolutional Neural Network for categorization.

(Created by Rafael Johansen 2018, inspired by MathWorks 2004-2015)

o° o° o° o©
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oe

The script contains the following parts:

—-——— TRAINING: —----

1) Load training data

2) Define Layers

2.2) Name layers

3) Define training options

4) Train Network!

—-——— TESTING: —----

5) Load Test Data

6) Classify test data

7) Test one at a time

8) Do it all at once

-—— PLOTTING: ---

9) Plot correct regimes data

10) Organization of Predicted results

11) Plot one image from each experiment at a time
12) Plot best and worst classification accuracy

o° o0 o® 0° o0 o° o A° A° AC o oA° o° o° o°

oo

$% 1) Load training data
categories = {'Stratified', 'Wavy','Plug', 'Slug', 'Annular'};

fName = 'pstrip-central cmap2 1bl-ECT buffer-10 stride-0.1 fps-50 %s';
dataset = 'exp';

folder = sprintf (fName,dataset);

root = 'C:\Users\rafae\Documents\Master Stacked Images\';

rootFolder = fullfile(root, folder);

imds = imageDatastore(fullfile(rootFolder, categories),
'LabelSource', 'foldernames'); % Load images

%% 2) Define Layers
bufferLength = 500; % Length of image
clear layers

layers = [imageInputlayer ([32,bufferLength 3])
convolution2dLayer (5,26, 'Padding',2)
relulayer ()

maxPooling2dLayer (3, 'Stride', 2)
convolution2dLayer (7,40, 'Padding', 2)
relulayer ()
maxPooling2dLayer (3, 'Stride', 2)
fullyConnectedLayer (100)

relulayer ()

fullyConnectedLayer (5)

softmaxlayer

classificationLayer()];

%% 2.2) Name layers
for 1 = l:length(layers)

layers (i) .Name = sprintf ('Layer no.
end

oo

it,1);
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$% 3) Define training options

opts = trainingOptions('sgdm',
'InitiallLearnRate',0.001,
'LearnRateSchedule', 'piecewise’',
'LearnRateDropFactor',0.1,
'LearnRateDropPeriod’', 8,
'L2Regularization',0.004,
'MaxEpochs', 4,
'MiniBatchSize',100,
'Verbose', true,
'Plots', 'training-progress',
'Shuffle', 'every—-epoch');

$% 4) Train Network! (Images)
clearvars net
[net, info] = trainNetwork (imds, layers, opts);

oo

% 5) Load Test Data (Images)
load('dataVal.mat"') % Load testing dataset
dataStruct = dataVal; % Assign struct

dataset = 'val';
folder = sprintf (fName,dataset);
root = 'C:\Users\rafae\Documents\Master Stacked Images\';

rootFolder = fullfile(root, folder);

imds test = imageDatastore(fullfile(rootFolder,categories),
'LabelSource', 'foldernames') ;

%% 6) Classify test data
labels = classify(net, imds test);

oo

$ 7) Test one at a time

i randi (length (imds_test.Files));
im = imread(imds test.Files{ii});
imshow (im) ;

- -

if labels(ii) == imds_ test.Labels(ii)
colorText = 'g';

else
colorText = 'r';

end

title(char (labels(ii)), 'Color',colorText);

%% 8) Do it all at once

confMat = confusionmat (imds_ test.Labels, labels);
confMat = confMat./sum(confMat,2);

accuracy = mean (diag(confMat));

disp (accuracy)

%% 9) Plot correct regimes data
pointsize = 40;
figure (2)
scatter ([dataStruct.air]', [dataStruct.water]',
pointsize, [flowRegimes.numRegime]','filled', "MarkerFaceAlpha', 1)

set (gca, "xscale','log")

set (gca, 'yscale','log')

grid on

xlabel ('Air flow rate [kg/min]")
ylabel ('"Water flow rate [kg/min]
colormap ([0 1 0; 0 0O 1; 01 1; 1

)
1 0;, 10 0])
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cb = colorbar;
set (cb, "YTick', [0 1 2 3 4])
t(cb, 'YTickLabel',str2mat ('Stratified', 'Slug', 'Plug', 'Wavy', "Annular')

%% 10) Organization of Predicted results

clearvars resultData

% Organize test data

% Get name of file and number of image

for image = l:length(imds test.Files)
dataString = char(imds test.Files(image));
position = strfind(dataString, '\val'); % Find occurences in string

position = position(end); % Choose last occurence
resultData (image) .fileName = dataString(position+l:end-4);
position = strfind(resultData (image).fileName, ' a');

resultData (image) .name = resultData (image).fileName (l:position-1);

resultData (image) .number =
str2num (resultData (image) .fileName (positiont+2:end)) ;
resultData (image) .correctlLbl = char(imds test.Labels(image));
end

% Predict test data

predictedLabels = classify(net, imds test);

for image = 1l:length (predictedLabels)
resultData (image) .predictedlbl = char (predictedLabels (image)) ;

end

% Add air and water values to each image
for image = 1l:length(resultData)
% Find water and air values for this image
for experiment = 1l:length(dataStruct)
if (strcmp(resultData (image) .name,dataStruct (experiment) .name))
resultData (image) .water = dataStruct (experiment) .water;
resultData (image) .air = dataStruct (experiment) .air;
end
end
end
% Add numeric labels
for 1 = l:length(resultData)
switch resultData (i) .correctLbl
case 'Stratified'
resultData (i) .numCorrectlbl = 1;
case 'Slug'
resultData (i) .numCorrectlbl = 2;
case 'Plug'

resultData (i) .numCorrectlbl = 3;
case 'Wavy'

resultData (i) .numCorrectlLbl = 4;
case 'Annular'

resultData (i) .numCorrectlbl = 5;

end
switch resultData (i) .predictedlbl
case 'Stratified'
resultData (i) .numPredictedLbl = 1;
case 'Slug'
resultData (i) .numPredictedLbl = 2;
case 'Plug'
resultData (i) .numPredictedlbl = 3;
case 'Wavy'
resultData (i) .numPredictedlLbl = 4;
case 'Annular'
resultData (i) .numPredictedlbl = 5;
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end

% Mark wrong predictions
if (resultData (i) .numCorrectlLbl ~= resultData (i) .numPredictedLbl)
resultData (i) .false = 1;
else
resultData (i) .false = 0;
end
end

%% 11) Plot one image from each experiment at a time

for number = l:max([resultData.number])

% Plot results

figure (2)

[rsltPlt,lclAccuracy (number)] = plotResultData (resultData,number);
end

%% 12) Plot best and worst classification accuracy

[bestAcc, iBest] = max(lclAccuracy);
[worstAcc, iWorst] = min(lclAccuracy);
figure (3)

subplot(1,2,1)

plotResultData (resultData, iWWorst) ;

subplot(1,2,2)

plotResultData (resultData, iBest) ;

set (gcf, 'units', 'points', 'position’', [150,150,1000,310])
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1 setColormap.m
2 createRGB.m
3 makePixelStrip.m

4 plotResultData.m
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1 setColormap.m

function setColormap (cmap)

% (Created by Rafael Johansen 2018)

% This function sets a colormap to similar to the one shown in the ECT32v2
software. The surface is enhanced with a green line, and details in the
two phases can be exposed with dark-to-light gradients. The intput cmap
determines what kind of colormap is set.

oo oo

oo

switch cmap
case 'cmapl'

T = [0, 0, 1
0o, 0, 1
0, 1, O
1, 0, O
1, 0, 0Ol

x = [0
0.5
0.6250
0.75
117

case 'cmap?2'

T = ([0, 1, 1
0, 0, 1
0, 1, O
1, 0, O
1, 1, 01;

x = [0
0.5
0.6250
0.75
1];

case 'cmap3'

T = [0, 1, 1
0o, 1, 1
0, 0, 1
0, 1, O
1, 0, O
1, 1, O
1, 1, 01;

x = [0
0.2
0.5
0.6250
0.75
0.85
11;

end

cmap = interpl (x,T,linspace(0,1,255));
colormap (cmap)
end
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2 createRGB.m

function rgb img = createRGB(img, minImg, maxImg)
% (Created by Rafael Johansen 2018)

s This function creates an RGB image from a grayscale image using the
% current colormap.

map = colormap;

minImg = -2;
maxImg = 2;
ncol = size(map,1l);

scaledImg = round(l+(ncol-1)* (img-minImg)/ (maxImg-minImg)) ;
rgb_img = ind2rgb (scaledImg,map) ;
end
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3 makePixelStrip.m

makePixelStrip (type)

pipeFilter] =

M,

[iRow, iCol,

function

(Created by Rafael Johansen 2018)
This function gives the row and column indices for different pixelstrips.

A pixelstrip must contain 32 values,

32x32 zero-matrix M.

o
©

o

and is here defined by 32 ones in a

o
°

o
El

ones (32);

switch type

pipeFilter

'pstrip-central’

case
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'pstrip-off-central’
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'pipe-mean-xcenter'

case
pipeFilter =
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otherwise

end

Convert zeros to NaN

o
°

nan;

pipeFilter (pipeFilter==0)

Find indices with ones

°

o

= find (M) ;

iCol]

[iRow,

end
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4 plotResultData.m

function [rsltPlt,lclAccuracy] = plotResultData (resultData,number)
(Created by Rafael Johansen 2018)

This function plots the given result-dataset across the given flow
rates on the flow regime map.

o° oo

oe

rsltPlt = 0;
rsltPlt i = 1;
for 1 = l:length(resultData)

o

% Find indexes for the images to plot

if (resultData (i) .number == number)
rsltPlt(rsltPlt i) = i;
rsltPlt i = rsltPlt i + 1;

end

end

o)

% Calculate accuracy
glbAccuracy = 1 - sum([resultData.false])/length (resultData);

lclAccuracy = ...
1 - (sum([resultData(rsltPlt).false])/length(rsltPlt));
pointsize = 40;

scatter ([resultData (rsltPlt) .air] ', [resultData(rsltPlt) .water]',
pointsize, [resultData (rsltPlt) .numPredictedlbl] "',
'filled', "MarkerFaceAlpha', 1)

set (gca, "xscale','log")

set (gca, "yscale','log")

grid on

xlabel ('Air flow rate [kg/min]")

ylabel ('Water flow rate [kg/min]"')

title(sprintf ('Image no. %i (accuracy %s%s) ',number,
string (round(lclAccuracy*100,2)),'%"))

colormap([0O 1 O0; 0 O 1; 01 1; 1 1 0; 1 0 01)

cb = colorbar;

set (cb, 'YTick',[1 2 3 4 5])

t(cb, 'YTickLabel',

str2mat ('Stratified', 'Slug', 'Plug', 'Wavy', 'Annular'))

oo

Add circles for wrong classifications
numWrong = 0;
for i = rsltPlt
if (resultData(i).false == 1)
hold on
circle = scatter([resultData (i) .air]’,
[resultData (i) .water]',150,2,
'MarkerEdgeAlpha',0.3);
end
end
legend(circle, 'Wrong classification')
%colormap (circle, gray)
hold off

end
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1 ga_script.m

oo

————————————————————————— Genetic Algorithms -—--—-----—-—-—-—-—————————-— %
This script uses Genetic Algorithms to optimize the architecture of a
Convolutional Neural Network for classification of flow regimes.
(Originally taken from by Divyendu Narayan 2017, developed further by
Rafael Johansen 2018)

o° oo

oe

The script contains the following sections:

— GA —

1) Load train and test datasets

2) Set CNN Parameters and function handles

3) Set Options for the Genetic Algorithm

4) Call the ga-function (Starts the algorithm!)
-—-—- Plotting ----

o° do oo oe

oe

oe

5) Organize historical data
6) Plot parameters and scores of all individuals
)

o° do o° o° o°
|

o°

Plot sorted scores

%% 1) Load train and test datasets
categories = {'Stratified',6 '"Wavy', 'Plug','Slug', 'Annular'};

fName = 'cmapl rgm-ECT %s buffer-1500 stride-1000 ect';
dataset = 'exp';

folder = sprintf (fName,dataset);

root = 'C:\Users\rafae\Documents\Master Stacked Images\';
rootFolder = fullfile(root, folder);

trainData = imageDatastore(fullfile(rootFolder, categories), ...
'LabelSource', 'foldernames'); % Load images

dataset = 'val';

rootFolder = fullfile(root, folder);

testData = imageDatastore(fullfile(rootFolder,categories), ...
'LabelSource', 'foldernames') ;

%% 2) Set CNN Parameters and function handles
imgWidth = 1500;
imgLength = 32;

% Constraints
convlayers = 2;
convParams = 2*convlayers;

maxNumFilters = 50;
maxFilterSize = 10;

populationRange = max (maxNumFilters,maxFilterSize);

ga call create population = @(NVARS,FitnessFcn,options) ...
create initial population...
(NVARS, FitnessFcn,options,maxNumFilters,maxFilterSize);

ga call crossover population = @(parents,options,NVARS, FitnessFcn,
thisScore, thisPopulation) ...
crossover population(parents,options,NVARS, FitnessFcn,thisScore, ...
thisPopulation,convlayers) ;

call ga fitness = @(x) ga_ fitness(x,convlayers,trainData, testData, ...
imgLength, imgWidth) ;
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$% 3) Set Options for the Genetic Algorithm

options = optimoptions(@ga, 'PopulationType', 'custom', ...
'InitialPopulationRange', [1;populationRange]) ;
options = optimoptions(options, 'CreationFcn',ga call create population,

'CrossoverFcn',ga _call crossover population,
'MutationFcn', @mutate population,
'MaxGenerations',20, 'PopulationSize', 40,
'MaxStallGenerations',1000, 'UseVectorized', true);

options = optimoptions (options, 'PlotFcn', { @gaplotbestf @gaplotscores
@gaplotgenealogy @gaplotscorediversity});

options = optimoptions (options, 'OutputFcn', @myOutputFcn);

%options = optimoptions (options, 'UseParallel’, true);

$% 4) Call the ga-function (Starts the algorithm!)
numberOfVariables = convParams;
[x,fval, reason,output] =
ga(call ga fitness,numberOfVariables, [],[],[]1,[]1,[],[],[],options)

%% 5) Organize historical data

generations = length (gapopulationhistory(l,:));
population = length (gapopulationhistory(:,1));
counter = 1;
for generation = l:generations
for individual = l:population
h(counter,1l) = counter;
for 1 = 2:5
h(counter,i) = gapopulationhistory{individual,generation} (i-1);
end
h (counter, 6) = gascorehistory(individual, generation);
h (counter,7) = generation;
counter = counter + 1;
end
end

%% 6) Plot parameters and scores of all individuals
figure (2)

subplot (3,1,1)
plot(l:length(h),h(:,6),"'.black")
grid on

ylabel ('Score')

subplot(3,1,2)

title('lst convolution layer')
yyaxis left

pl = plot(l:length(h),h(:,2),".x");
grid on

ylabel ("Number of filters')

yyaxis right

p2 = plot(l:length(h),h(:,4),".b");
ylabel ('Size of filters')

subplot (3,1,3)

title('2nd convolution layer')
yyaxis left

pl = plot(l:length(h), h(:,3),".2");
grid on

ylabel ('"Number of filters')

yyaxis right

p2 = plot(l:length(h),h(:,5),".b");
ylabel ('Size of filters')

xlabel ("Individuals'")

%% 7) Plot sorted scores
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h = sortrows (h, 6, '"descend"') ;

figure (2)

plot(l:length(h),h(:,6),"'.black")

grid on

ylabel ('Score')

xlabel ('"All individuals sorted wrt. performance')
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2 create_initial_population.m

function x =

create initial population (NVARS,FitnessFcn,options,maxNumFilters,maxFiltersS
ize)

% This function creates a random initial population of chromosomes.

% (Created by Rafael Johansen 2018, inspired by MathWorks 2004-2015)

totalPopulationSize = sum(options.PopulationSize);

n = NVARS;

x = cell (totalPopulationSize,1);

for i = l:totalPopulationSize
x{1}(1:n/2) = round(rand(l,n/2)* (maxNumFilters-1))+1;
x{i} (n/2+1:n) = round(rand(1l,n/2)* (maxFilterSize-1)+1);
x{i}

end

end
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3 genConvnetConfig.m

function [] = genConvnetConfig(numConvlayers,convFilterNumInLayers,
convFilterSizeInlayers, imgLength, imgWidth)

This function creates a temporary script that defines the CNN structure,

setting up the layers.

(Originally taken from by Divyendu Narayan 2017, developed further by

Rafael Johansen 2018)

o° o oo

oe

if (exist ('tempScript.m','file'"))
delete tempScript.m
end

g = char(39);

fid = fopen('tempScript.m','w');
fprintf (fid, '$%\n'");

fprintf (fid, strcat('layers = [imagelnputlayer([',string(imgLength),"', ",
string(imgWidth), " 3]1)\n"));
for 1 = l:numConvlLayers

fprintf (fid, strcat ('convolution2dLayer (', ..
string(convFilterSizeInlayers(i)),"',"', ...
string(convFilterNumInLayers(i)),"',"',q, 'Padding',q,"',2)\n"));
fprintf (fid, 'relulayer ()\n');
fprintf (fid, strcat ('maxPooling2dlayer(3,"',q, 'Stride',q,"',2)\n"));
end
fprintf (fid, 'fullyConnectedLayer (100)\n'");
fprintf (fid, 'relulayer ()\n');
fprintf (fid, 'fullyConnectedLayer (5)\n");
fprintf (fid, 'softmaxLayer\n');
fprintf (fid, 'classificationlLayer ()];");
fprintf (fid, '%%/n'");
fclose (fid) ;
end
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4 ga_fitness.m

function scores = ga fitness(x,convLayers,trainData,testData, ...
imgLength, imgWidth)

This is the fitness funtion of the Genetic Algorithm. It takes the

temporary script from genConvnetConfig.m, to create a Convolutional

Neural Network. Using a training dataset and a set of training options,

o oo

oe

% it traines the network. Using a separate testing dataset it calculates
% the score of the network.
% (Originally taken from by Divyendu Narayan 2017, developed further by
% Rafael Johansen 2018)
scores = zeros(size(x,1),1);
for i = 1l:size(x,1)
clear Convnet
$ Defining the layers
convConfig = x{i};
genConvnetConfig(convlayers, ...
convConfig(l:convlayers), ...
convConfig(convlayers+l:2*convlayers),
imgLength, imgWidth) ;
run('tempScript.m');
% Specify the training options
options = trainingOptions('sgdm', ...
'InitiallearnRate',0.001,
'MaxEpochs',5, ...
'MiniBatchSize',100,
'verbose',1);
% Train the network using training data
Convnet = trainNetwork(trainData, layers,options);
YTest = classify(Convnet, testData);
TTest = testData.Labels;
% Calculate Accuracy
accuracy = 100*sum(YTest == TTest)/numel (TTest) ;
scores (i) = 100 - accuracy
end

end
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5 crossover_population.m

function xoverKids = crossover population(parents,options,NVARS,
FitnessFcn,thisScore, thisPopulation,convlayers)

% This function performs crossing of chromosomes. Each child is given

% random attributes from each parent.

% (Created by Rafael Johansen 2018, inspired by MathWorks 2004-2015)

nKids = length (parents)/2;
xoverKids = cell (nKids,1);

index = 1;

for i=1:nKids

parent (1l,:) = thisPopulation{parents(index)}; ¢ Parent 1
parent (2, :) = thisPopulation{parents(index+l)}; % Parent 2
index = index + 2;

child = zeros(1l,length(parent(l,:)));

for p = l:length(parent(1l,:))
% Choose random attributes from each parent
child(1l,p) = parent (round(rand)+1l,p);
end
xoverKids{i} = child;
end
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6 mutate_population.m

function mutationChildren = mutate population(parents ,options,NVARS,
FitnessFcn, state, thisScore,thisPopulation,mutationRate)

This function mutates chosen chromosomes by randomly swapping the order

of appearance for its parameters. Notice that the values for the number-

and sizes of filters are kept separate, not mixed.

(Created by Rafael Johansen 2018, inspired by MathWorks 2004-2015)

o oo

oe

oe

mutationChildren = cell (length (parents),1);
for i=1l:length (parents)
parent = thisPopulation{parents (i) };
numFilters = length (parent)/2;
child = parent;
perml = randperm(numFilters);
perm?2 = randperm(numFilters)+numFilters;
child(l:numFilters) = parent (perml);
child (numFilters+l:end) = parent (perm2);

mutationChildren{i} = child;
end
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7 myOutputFcn.m

function [state,options,optchanged] = myOutputFcn (options,state,flaqg)
> This function saves the parameters and score of all individuals during
all generations in variables send to the base workspace.
s (Created by Rafael Johansen 2018)
persistent history scoreHistory generation
optchanged = false;
switch flag
case 'init'

a0

oo

oe

generation = 1;

history = {};

history(:,generation) = state.Population;
scoreHistory = zeros(length(state.Score),1);
scoreHistory(:,generation) = state.Score;
generation = generation + 1;

assignin('base', 'gapopulationhistory',history);

assignin('base', 'gascorehistory',scoreHistory);
case 'iter'

history(:,generation) = state.Population;

scoreHistory(:,generation) = state.Score;

generation = generation + 1;

assignin('base', 'gapopulationhistory',history);

assignin('base', 'gascorehistory', scoreHistory);
case 'done'

history(:,generation) = state.Population;

scoreHistory(:,generation) = state.Score;

assignin('base', 'gapopulationhistory',history);

assignin('base', 'gascorehistory', scoreHistory);

end



