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Abstract—Open channel flow of complex fluids is found in
many offshore applications and is currently monitored using
Coriolis meters (good uncertainty with an expensive device)
and simple paddle meters (very poor uncertainty). Recent
publications in IEEE by the current authors indicate that the
flow of complex fluids in open channels can be estimated by
level measurements in the open channel by scanning the surface
of the fluids in the open channel with an array of ultrasonic
sensors. Complex fluids possess rheological properties dependent
on flow, density, pipe dimensions etc. As an interesting industrial
application of different types of sensors, this paper presents the
basic configuration of the sensors used in a pilot scale study
with some selected samples of complex fluids. A comparison of
the performances of the sensors using coefficient of variations
(CV) with respect to the mean values of the measurands is
given as a preamble before using them in the final mass flow
estimation. The group on multiphase studies in USN recently used
various statistical parameters in the identification of flow regimes
in multiphase flow studies as reported in the IEEE Sensors
Community. In addition, the measurand values are filtered using
different algorithms. The flow in the open channel is estimated
using a Radial Basis Neural Network (RBNN) with the levels
from the ultrasonic scanning array as inputs and the mass flow as
output. The paper summarizes the findings with some indications
of their implications to the offshore and other industries.

I. INTRODUCTION

In oil and gas industries, the drilling operation is one
of the important phases. During the drilling operation,
drilling fluid (so called complex fluid, showing rheological
behavior dependent on flow rate, density, dimensions etc.)
is continuously circulated to enhance the drilling operation.
However, it is challenging to monitor operations of control
of flow and density of these complex fluids under high
temperature and high-pressure conditions. One of the biggest
challenges while drilling is maintaining the wellbore stability.
For any kind of reservoir, there exist a certain pressure window
or the pressure range within which the drilling operation can be
operated safely. In the case of failure to maintain the pressure,
either there is a loss of drilling mud or there is an influx of
formation fluids into the drilling mud (often termed as *kick’),
[1]. These two problems reduce the safety factor, reliability,
and production. In extreme cases, it is highly dangerous, e.g.
the Deepwater Horizon explosion, [2].

One way of monitoring the operating pressure is by
using delta rule, which exploits the difference between

drilling mud inflow rate into the wellbore and drilling mud
outflow rate from the wellbore. In literature [3]-[7], different
sensors and sensor systems are presented for the inflow and
outflow measurements. In this study, the focus is on the
outflow measurement using an open channel with Venturi
constriction. Specifically, this work focuses more on the
Sensors measurements.

II. SYSTEM DESCRIPTION

A flow loop available at University College of Southeast
Norway (USN), Campus Kjglnes consist of mud tank,
pump, different types of sensors, and open channel with
Venturi constriction dedicated for flow measurement. The
flow loop is constructed in a collaboration with STATOIL
to study the possibility of using open Venturi channel for
flow measurement in the drilling operations. An extremely
simplified P&ID diagram with different sensors used in this
work is shown in Figure 1. The 3D view of the open
Venturi channel with three ultrasonic sensors over the different
locations of the channel is shown in Figure 2. In this study,
a model drilling fluid consisting of potassium carbonate (as
densifier) and xanthan gum (as viscosifier) is circulated in the
flow loop. The fluid has the density of 1153 kg/m? and the
viscosity of 23 — 100 cP for corresponding shear rates of
500 — 1 s~1. In a previous study by the current authors [8],
the multivariate data analysis showed that the fluid flow (mass
flow measured using Coriolis mass flow meter) depends on the
three ultrasonic level measurements positioned over the open
Venturi channel. Hence, we will focus on the fusion of the
data from these three sensors.

III. METHODS AND RESULTS

In this section, the statistical analysis of the different
sensor measurements is performed, two different types of
filters are studied, and the implementation of filtered sensor
measurements are tested using an empirical model.

A. Statistical Analysis of Sensor Measurements

To investigate the statistical properties of sensor
measurements, different experiments are performed with
the flow rates changing from 250 - 500 kg/min. For each
of the flow rates, the corresponding mean and standard
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Fig. 1: Extremely simplified P&ID for the flow loop with
the measurands used in the study. Schematic shows the hard
sensors in the system under study.

Fig. 2: An open channel with Venturi constriction and three
ultrasonic level sensors (LT-1, LT-2, and LT-3) at different
locations over the channel. LT-3 is the ultrasonic level
sensor placed right above the throat section of the Venturi
constriction. [8]

deviations of each sensor measurements are calculated.
Finally, the coefficient of variation (CV) is calculated using
the relation C'V = (standard deviation/mean)+100%. The
high value of CV indicates the high variations in the sensor
measurements. Hence, for a sensor to have a good accuracy
and precision, the CV value should be low or close to 0%.
Figure 3 shows the CV plot for all the sensors at different
mass flow rates.

In Figure 3, Coriolis mass flow readings have the lowest
percentage of CV, whereas ultrasonic level measurement above
the throat section of Venturi constriction has the highest
CV value. Three different ultrasonic level sensors with the
same systematic uncertainty (£0.25%) have different random
variations. It is due to the locations of the ultrasonic sensors
with respect to the open Venturi channel. The ultrasonic sensor
LT-2 has the lowest CV value among the level sensors because
the surface of the fluid below the sensor is laminar due to
the Venturi effect. The back propagation of hydraulic jump is
not fully developed around the position of ultrasonic sensor
LT-1. This creates some turbulence on the fluid surface below
LT-1 and hence has more random variations compared to
LT-2. However, the ultrasonic sensor LT-3 always measures
the turbulent fluid surface within the throat section of Venturi
constriction and hence has the highest random variations.

Coefficient of Variation with Mean of Different Sensors at Different Flow Rates
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Fig. 3: Coefficient of variation of different sensors at different
flow rates. The lowest value is seen in the CV of Coriolis
meter (an expensive choice). LT-3 shows the highest CV due
to flow related phenomena at the Venturi constriction.

B. Filtering Sensor Measurements

The statistical analysis above show that the time series
from the sensors have considerable stochastic behavior. As an
important step in preprocessing, the three sets of time series
from the sensors LT-1, LT-2, and LT-3 are needed to send
through some kind of noise filters. In this section, Moving
Average Filter (MAF) and first order Low Pass Filter (LPF) are
introduced. In MAF, an user-defined fixed number of previous
data are used to define the present filtered measurement.
MAF filter can reduce noise and restore the dynamics of
the sensor measurement. However, with a large number of
previous measurements, it suffers from the time-delay response
in the dynamics of the signal. In the case of a small number of
the previous measurement, it might fail to restore the dynamics
of the signal. Hence, there is a trade-off between restoring
dynamics and time-delay in using MAF.

Mathematically, the MAF gives equal weight/importance to
all the previous measurements. This approach is not applicable
for all types of measurements. For fast changing signals, large
importance should be given to recent measurements and small
weights should be assigned to old measurements. Low Pass
Filter is designed with an idea of varying weights to the
previous measurements based on the time of measurement.
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In our case, both types of filters can be used as the
measurement values do not show huge variations. Figure 4
shows a section of the time series before and after sending
it through MAF (with 10 previous measurements) and LPF
(with filter constant of 0.7) in the LT-3 ultrasonic level
measurements. The filtered signals look smoother than the
original noisy level measurement after the removal of many
spikes not necessarily due to the flow phenomena.

C. Case Study: Radial Basis Networks for Flow Estimations

To analyse the significance of the pre-conditioned sensor
measurements, we have trained a radial basis neural network
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Fig. 4: Moving Average Filter (MAF) and Low Pass Filter
(LPF) applied to the ultrasonic level measurement (LT-3)
above the throat section of Venturi constriction.

(RBNN) with three neurons and optimal spread based on
cross-validation. The network takes three ultrasonic level
measurements as inputs and mass flow rate as an output.
Figure 5 shows the comparison of flow rates estimated by the
unfiltered and filtered RBNN with the reference Coriolis mass
flow meter readings. RBNN with unfiltered inputs has noisy
flow rate estimations with root mean squared error (RMSE)
of 8.43 kg/min. Whereas, RBNN with filtered inputs has
comparatively smoother flow rate estimations with RMSE of
7.10 kg/min, which are preferable for further usage (for
example: controlling the pump, valve, etc.). Using RBNN, the
data from the array of ultrasonic sensors are fused successfully
to give reliable and accurate enough estimates of mass flow,
thus making the expensive Coriolis meter redundant and
leading to considerable reduction in maintenance costs.
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Fig. 5: The comparison of Coriolis mass flow readings with the
estimated flow rates using radial basis neural network (RBNN)
with unfiltered and filtered ultrasonic level measurements.

IV. CONCLUSION

Using multilevel scanning by an array of ultrasonic sensors
of the level of fluids in an open Venturi channel, good estimate
of the mass flow is obtained using a RBNN with three
ultrasonic level measurements as inputs and mass flow as the
only output. The time series of the levels from the array of
ultrasonic sensors are treated using moving average and low
pass filters before feeding the data to the RBNN. Due to flow
related phenomena in around the Venturi constriction, the level
observed right above the constriction by the sensor LT-3 shows
greater variations in CV values and in its unprocessed (raw)
time series. The three different ultrasonic level time series
from the sensors LT-1, LT-2, and LT-3 after low pass filtering
fed into the RBNN delivers good and reliable estimate of the
mass flow in the open Venturi channel. This result may lead to
simple open channel flow monitoring in offshore industries as
well as other industries having such channels for facilitating
the flow of complex fluids. A normal Coriolis meter for such
applications may cost many folds of the total cost of the
ultrasonic sensor arrays deployed in this feasibility study. With
special intrinsically safe measurement system, the price of
using and maintaining a Coriolis meter for this application
will be prohibitively high, hence the interest of the industrial
actors involved in this feasibility study launched to investigate
techniques leading to a simpler and cheaper solution.
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