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Liver Element Profiles of Red Deer

with Special Reference to Copper, and Biological Implications

B. EGELAND, N. FIMREITE and O. ROSEF

Faculty of Arts and Sciences, Telemark University College, Norway

ABSTRACT

The objective of this study was to compare farmed with free-ranging red deer with respect to
levels and interactions of 18 selected elements. The study comprised liver samples of 43 free-
ranging animals collected from 6 hunting areas, and 52 farmed animals from 9 different herds
in Norway. About half of the farmed animals had lower Cu contents than 4 ppm and suffered
probably from Cu deficiency. The main structural differences between farmed and free-
ranging animals with liver Cu levels 4-40 ppm wm were by partial least square regression
analyses related to the higher Al-, Fe- and Mo-concentrations and the lower Cu-
concentrations in the farmed animals. This may indicate pronounced element imbalances in
the farmed deer since they also in general contained significantly lower levels of trace
elements compared to the free-ranging. Comparisons of Cu categories of farmed deer (<2
ppm, 2-3 ppm, 3-4 ppm, 4-5 ppm and > 5 ppm) with free-ranging deer revealed, however, that
differences in essential element concentrations diminished with increasing Cu categories of
farmed deer. Low Cu concentrations and high Fe concentrations in the farmed deer may have
ensued from relatively high absorption of Mo and Al by the farmed deer. We suggest that the
farmed deer are influenced by deleterious elements due to a higher rate of ingestion of soil

particles than are the free-ranging deer.

INTRODUCTION

Farming of red deer (Cervus elaphus) in Norway is a recently established activity based on a
Norwegian subspecies of free-ranging deer (C. e. atlanticus). Improving trace element
nutrition of grazing farmed animals, in a way that is cost efficient and meets consumer
perceptions and preferences, is a continuing challenge. Trace element disorders, whether in
deficiency or in excess, are generally not characterised by distinct pathological
abnormalities (7). Especially have the Cu contents of farmed animals been in focus because
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low Cu levels are found in farmed grazing animals in many countries including Norway.
Further, relations between liver Cu levels and deficiency symptoms have been documented in
many studies (2-14). Dietary Cu requirements vary greatly among species. The recommended
levels for one species may be toxic to another. For example, while 10 ppm Cu is the NRC
recommended dietary level for dairy cattle, 10 ppm can cause toxicity in sheep under certain
conditions (/5). Low Cu loads in the body may not only be a consequence of low Cu supplies
in the feed, but may also result from interactions with other elements. High concentrations of
e.g. Mo, Fe, Cd, Pb and Zn are known to induce Cu-deficiency (6). The present study was
conducted to assess both element levels and interactions in farmed and free-ranging red deer
and to evaluate if the element profiles in the farmed individuals reflect a possible satisfactory

state of mineral nutrition.

MATERIALS AND METHODS

During the years 1998 - 2000 forty-three livers of free-ranging red deer representing six
different hunting areas and fifty two livers of farmed red deer from nine different herds, were
collected by hunters and farmers respectively, and kept in freezers (below -18 °C) until
chemical analysis. All livers from free-ranging individuals were collected during the hunting
season (Sept. - Oct.), and all livers of the farmed individuals except five animals slaughtered
in spring, were provided during the autumn. The age, sex and haunt were recorded. From each
liver 1.0 - 2.0 g of tissue was sampled, weighed and mixed with 5 mL conc. HNOj3. The
samples were coded and then treated in random sequences. After reducing the samples to pulp
in a Milestone Mega 1200 microwave oven, they were diluted to standard volume. Each of
eighteen elements were analysed by inductively coupled plasma atomic emission
spectrometry (ICP-AES). Accuracy and reliability were controlled by use of the international
standard Bovine liver 1577b (17).

Statistical evaluations were performed by use of MS Excel and Analyse-It version 1.62.
Multivariate data analysis, i.e. Principal Components Analysis (PCA), and Partial Least
Square Regression (PLS) were computed by use of The Unscrambler ver 7.6 (CAMO ASA,
Oslo, Norway). Before performing the multivariate analyses the data variables were scaled to

unit variance, which means that all variables had the same numerical range of variations.

The data material was not normally distributed and had unacceptable skewness and kurtosis as

shown by Shapiro-Wilk W tests (/8). Thus, non-parametric tests were chosen to reduce risks
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of getting incorrect conclusions. Multivariate normalised data were achieved by eliminating
those elements that were poorly described by the models. In some cases even individual
results had to be defined as outliers to achieve multivariate normalising matrices. PLS is a
me:[hod for relating the variations in one response variable (Y-variable) to the variations of
several predictors (X-variables) with explanatory or predictive purposes. This method
performs particularly well when the various X-variables express common information, i.e.
when there are large amounts of correlations, or collinearities. The Y-variable contains a
column in the data-matrix with information on for example free-ranging or farmed deer, the
age of the animal, the sex of the animal or the habitat group. The X-variables contain all
individual chemical results from the analyses of 18 elements. The multivariate correlations
measure the amount of linear relationships among elements. The correlation is computed as
the square root of the covariance between the two elements divided by the product of their

variances.

By the comparisons between recorded element concentrations and those found published,
results given in dry mass are converted to wet mass by use of the average dry mass % of 73

livers of free-ranging red deer in Norway at 32.2 + 1.3 (SD) (/9).

If nothing specified, the significance level is 0.05 %.

RESULTS
Element levels

Farmed Deer vs. Free-ranging Deer

Comparisons of the medians of element concentrations in analysed farmed with free-ranging
red deer, revealed significant differences in fourteen of the eighteen elements (Table 1).
Farmed deer contained higher concentrations of aluminium (Al) and nickel (Ni), while the
free-ranging deer had higher concentrations of twelve elements as shown by Mann-Whitney
U-test (Table 1). No significant differences were found regarding iron (Fe), molybdenum

(Mo), sodium (Na) and lead (Pb) concentrations.

The samples from both free-ranging and farmed individuals were split into copper (Cu) level

categories as seen in Table 2.




Comparisons of Cu categories of Farmed Deer With Free-Ranging Deer

To identify the differences between various Cu categories of farmed deer and the free-ranging
deer comparisons by Mann-Whitney U-tests were applied. Exclusively free-ranging deer with
less than 40 ppm Cu were included to reduce possible influences such as toxic effects caused

by high Cu levels found in some free-ranging deer (Fig. 1).

{Cu} < 2 ppm--Higher levels of Ni (p=0.0445) coincided with lower levels of the 13
elements calcium (Ca) (p<0.0001), cadmium (Cd) (p<0.0001) , cobalt (Co) (p=0.0005),
chromium (Cr) (p<0.0001), Cu (p<0.0001), Fe (p<0.0001), potassium (K) (p<0.0001),
manganese (Mn) (p<0.0001) , magnesium (Mg) (p=0.0147), Mo (p=0.0001), phosphorus (P)
(»<0.0001), sulphur (S) (»p<0.0001), and zinc (Zn) (p<0.0001) in farmed deer with Cu levels
less than 2 ppm compared with free-ranging deer (Fig. 1).

{Cu} € [2,3> ppm--Higher levels of Al (p=0,0126) and Fe (p=0,0446) coincided with
lower levels of the 12 elements Ca (p=0,0005), Cd (p=0,0001), Co (p=0,0109), Cr
(p=0,0006), Cu (p<0.0001), K (p<0.0001), Mn (p=0,0155), Mg (p=0,0011), P (p=0,0006), S
(p<0.0001), selenium (Se) (p=0,0019), and Zn (p=0,0200) in farmed deer with Cu levels
between 2-3 ppm compared with free-ranging deer (Fig. 1). The median Fe level (213 + 99
ppm) in the farmed individuals of this increased by a factor of 4 compared with that (51+ 22

ppm) of the proceeding Cu category (Fig. 1).

{Cu} € [3,4> ppm--Higher levels of Al (p=0,0237) coincided with lower levels of the 7
elements Ca (p=0,0160), Cd (p=0,0359), Co (p=0,0441), Cr (p=0,0114), Cu (p=0,0001), K
(p=0,0212), and Mn (p=0,0434) in the farmed deer with Cu levels between 3-4 ppm
compared with free-ranging deer (Fig. 1). No other element level differences were revealed
(Fig. 1).

{Cu} € [4,5> ppm--Higher levels of Al (p=0,0003), Fe (p=0,0016), Mo (p=0,0553), and
Ni (p=0,0597) coincided with lower levels of the 5 elements Ca (p=0,0461), Cd (p=0,0003),

Cu (p=0,0001), K (p=0,0060), and Na (p=0,0315) in farmed animals with Cu levels between
4-5 ppm compared with free-ranging deer (Fig. 1).

{Cu} > 5 ppm--Higher levels of Al (p=0,0342), Fe (p=0,0302), Mo (p=0,0078), and Pb
(p=0,0571) coincided with lower levels of the 5 elements Ca (p=0,0103), Cd (p=0,0038), Cr
(p=0,0359), Cu (p=0,0002), and K (p=0,0100) in farmed deer with Cu levels above 5 ppm

compared with free-ranging deer (Fig. 1).




Effects of geographical sites, sex, age and Cu categories

Geographical sites--Comparisons of element levels between free-ranging animals captured
from different localities in Norway, revealed site differences in Cd (p=0.0009), Cu
(p=0.0038) and Pb (p=0.0011). Equivalent analyses of results from the different enclosures of
farmed deer revealed differences concerning Al (p=0.0098), Cd (p=0.0018), Cu (p=0.0095),
Fe (p=0.0015), K (p<0.0001), Mo (p=0.0115), and Na (p=0.0032).

Sex--No sex dependent significant differences appeared concerning the element levels

from either free-ranging or farmed individuals.

Age--No age dependent differences were found among the free-ranging deer. Farmed deer
comprised mainly of the two age categories: 1.5 and 2.5 years. The lowest age category had
significantly higher concentrations of Al (p=0.0450), while the oldest category had
significantly higher concentrations of Cd (p=0.0254), Co (p=0.0302), Cr (p=0.0027), K
(p=0.0254), Na (p=0.0008) and S (p=0.0254).

Cu categories of free-ranging deer--The 43 free-ranging deer were grouped in four Cu
categories (Table 2). The Cu categories revealed significant differences regarding Cd (p
<0.0001), Pb (p=0.0393), and Se (p=0.0031) as shown by Kruskal-Wallies tests, in addition
to the categorising element Cu. Concentrations of 14 elements did not differ significantly

among the four Cu categories (Fig. 1).

Cu categories of farmed deer--The 52 individuals were grouped in five Cu categories as
seen in Table 2. Due to the considerably lower Cu levels in farmed deer, the Cu ranges of the
categories had to be different from the categories of free-ranging deer (Table 2).The Cu
categories revealed significant differences with respect to 12 elements: Al (p= 0.0002), Ca
(p=0.0007), Cd (p= 0.0062), Cr (p= 0.0162), Fe (p= 0.0004), K (p= 0. 0002), Mn (p=
0.0019), Mo ( p< 0.0001), Na (p=0.0382), P (p=0.0004), S (p= 0.0050), and Zn (p<0.0001)
as shown by Kruskal-Wallies test, in addition to the categorising element Cu. None of the

other element concentrations varied significantly among the 5 Cu categories (Fig. 1).
Element profiles

Free-ranging deer

All individuals--Three clusters of mutually positively interacting elements were formed by
the principal component analysis (PCA) of all free-ranging deer, comprised by: 1) the
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essential macro trace elements S, P, and Mg, 2) Cd, Cu, Pb and Se and 3) Al, Ca, and Zn. The
two former clusters were also recognised from some of the PCAs of different Cu-categories of

free-ranging deer (Fig. 2,3).

Cu < 40 ppm--The PCAs of free-ranging deer with less than 40 ppm Cu revealed only
positive element interactions, except the negative relations between Cu and Mn and between
Mo and Na (Fig. 3 A,B). The main structural variations in the liver chemicals coincided with
individual differences regarding total element contents (Fig. 3 A,B). Cu had low influences in

these models.

Cu > 40 ppm--Many negative element interactions appeared as shown by the PCAs of
free-ranging deer with higher Cu than 40 ppm (Fig. 3 C,D). In both of the models, Cu was
localised in opposed positions to the essential elements, indicating antagonistic relations. But
the interactions among Cd, Cu, Pb and Se differed evidently between the two PCAs (Fig 3
C,D). By the PCA of animals with Cu levels 40-70 ppm all the positively interacting elements
Cd, Cu, Pb and Se were jointly in opposed positions to essential elements. In the PCA of
animals with higher Cu levels than 70 ppm, solely Cu, Na and Fe held these positions,
concomitant as Cu by this model interacted negatively with Cd, Pb and Se, while Fe appeared

as an antagonist to Mn, and Na as an antagonist to K (Fig. 3D).

Farmed deer

All individuals--The analyses of all the farmed animals pointed out two discrete subgroups
of individuals (FSG 1 and FSG 2). FSG 1 comprised individuals with the lowest
concentrations of most of the analysed elements, except Na and Ni, while FSG 2 comprised
individuals with the higher element levels (Table 3). The formation of two discrete subgroups
and the structural variations of the elements Ca, Cu, Fe, Mn, Mo, S and Zn appeared along the

first principal component (PC1). Thus, these elements reflected best the differences between

the subgroups (Fig. 4).

By median tests there were no significant differences between the subgroups with respect to
the sex ratio, but animals of FSG 2 were significantly older (median=2.0 year) than

individuals of FSG 1 (median=1.5 years)(p=0,0362).

Farmed subgroup 1 (FSG 1)--None of the elements in FSG 1 were well explained by the
PCA (Fig. 5), but all of them, except Ni, were grouped together, which indicates positive

interactions.




Farmed subgroup 2 (FSG 2)--The variations of the elements Mg, Mo, S, and P were best
explained by PC1 (Fig. 5). The model revealed three clusters of elements: Cluster 1
comprised Cr, K and Na, Cluster 2 comprised Fe and Al, and Cluster 3 included the
remaining elements, but with the essential elements Mn, Mg, Mo, P, S, and Zn as most
influential. Elements within same clusters interacted positively, while elements from different
clusters were independent or negatively interacting. Element interactions between Cluster 1
and Cluster 2 were either weak or absent. However, both interacted negatively with the

essential elements within Cluster 3 (Fig. 5).

FSG 1 vs. FSG 2--Apparently the most biologically relevant differences between FSG 1
and FSG 2 refer to the Fe and Cu contents. The Fe levels (median +S.D.) of animals in FSG 1
(54 = 19 ppm) were significantly lower than the Fe levels (124 + 108 ppm Fe) of free-ranging
deer (p < 0.0001) while the Fe levels of animals from FSG 2 (212 + 121 ppm Fe) were
significantly higher than those from free-ranging deer (p < 0.0001). Simultaneously, the PCAs
of FSG 1 and FSG 2 described Cu quite differently (Fig. 5). By the PCA of FSG 1 Cu was
localised close to the most important model component (PC1) (Fig. 5) and hence Cu was an
important element in describing the structural variations from all elements in this subgroup.
Cu from animals comprising FSG 2, however, was by the PCA localised far from the most

important model component axis (PC 1-axis), emphasising the minor influence from Cu on
the model (Fig. 5).

Effects of Cu-categories on element profiles in farmed deer

{Cu} < 2 ppm--The elements Ni, Al, and Pb had no significant interactions with any other
elements by the bivariate analyses (Fig. 6 A). The remaining elements interacted more or less
positively. Comparing can recognise many similarities between PCA of FSG 1 and PCA of
farmed deer with Cu-levels lower than 2 ppm (Fig. 5 and 6A). The two models had, however,
different capacities to explain structural variations in the elements. PCA of FSG 1 explained
less than 50 % of the structural variations in the elements by the two first principal
components, while the PCA of the present Cu category of farmed deer described more than 50
% of the structural variations of all elements except Pb, Co, and Ni. Accordingly this model

produced more evident element relations.




{Cu} € [2,3> ppm--Bivariate analyses revealed significant and negative relations between
Cu - Na, and Ni - K (Fig. 6 B). The remaining elements comprised networks of more or less

positively interacting elements, except the independent elements Pb and Se.

{Cu} € [3,4 > ppm--In the PCA of this group of farmed deer 6 significant negative element
interactions appeared in addition to 10 positive interactions (Fig. 6 C). The main negative
interactions appeared close to the first principal axis (PC 1), which included 40 % of the total
structural variations in the data from this category. Hence, the negative interactions including
Al and Fe appeared as most important and both of them had opposed positions to essential
elements as Co, Cu, Na, Mg, P and S.

{Cu} € [4,5> ppm--The two first principal components (PC 1 + PC 2) expressed 39% and
31% of the total structural variations in the data (Fig. 6 D). Hence, both the components must
be considered by evaluating the element interactions. The results of the PCA indicated the
existence of four interactive element clusters. The cluster one which comprised Al, Cu, Fe,
Na, and Ni correlated negatively with the cluster two of Co, Mg, P, and S. In addition

negative interactions appeared between a cluster of Ca, Cd, Cr, K and Zn and the element Mo.

{Cu} > 5 ppm--The two first principal components (PC 1 and PC 2) described 39% and
33% respectively of the total structural element variations in this PCA. Hence, both the
components had to be considered by evaluating the element interactions (Fig. 6 E). The PCA
indicated the existence of four element clusters, which in couples interacted negatively. The
main negative interactions appeared along the first principal component axis, comprised Mo,
Mg, P, Ni and S at positive side and Na and Cd at the negative side of PC 1. The other
couples of clusters included Al, Fe, Mn, Pb and Zn along positive side of PC 2 and Cu, K, Cir,
and Co along the negative side of both PC 1 and PC 2.

Effects of different Cu levels on element interactions--An overall comparison of the
different PCAs of Cu categories of farmed deer, revealed the tendency: increased Cu levels in
the farmed deer coincide with decreased numbers of positive element interactions
concomitant with increased numbers of negative element interactions (Fig. 6). The changes in
the total element interactions from farmed deer revealed most evidently between individuals
with less than 3 ppm Cu and individuals with more than 3 ppm Cu because of the dissimilar
numbers of total negative interactions. Regarding the Cu interactions the greatest changes
appeared in farmed deer between individuals with less than 4 ppm Cu and individuals with

more than 4 ppm Cu because of the dissimilar numbers of negative interactions with Cu.
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Comparisons between farmed and free-ranging deer

Elements that best describe differences between farmed and free-ranging deer--To find
the elements that most significantly expressed the structural differences between free-ranging
and farmed individuals with Cu levels between 4 ppm and 40 ppm a PLS was applied. The Y-
variable contained information of the type of animal where "+1" identified the free-ranging
individuals and "-1" identified the farmed individuals. The X-variables contained the results
of the chemical analyses of 18 elements from each of the animals. Positive regression
coefficients indicate higher values for that element in the free-ranging than in the farmed deer,
and vice versa as regards negative regression coefficients. The resulting PLS model assigned
significantly positive regression coefficient for Cu, and significantly negative regression
coefficients for Al, Fe, and Mo (Fig. 7). The other elements displayed no significant

influences on the structural differences between farmed and free-ranging deer.

Element levels in selected group--To smooth out some possible effects of the different Cu
levels between farmed and free-ranging animals, selective comparisons were performed by
exclusively including individuals of both groups with Cu concentrations between 5 and 25
ppm. This was performed by use of the Mann-Whitney U-tests. Despite the performed narrow
selections of animals from both groups, significantly higher levels were revealed in the
selected farmed deer concerning Al (p= 0.0145), Fe (p= 0.0309), Mo (p= 0.0180), and Pb
(p=0.0025), and significantly lower levels of Ca (p=0.0394), Cd (p= 0.0146), and Cu (p=
0.0009) compared with the free-ranging individuals. None of the other element concentrations

differed significantly.

Farmed subgroup FSG 1 vs. free-ranging deer--Comparisons of the element medians
obtained from animals in FSG 1 with element medians obtained from free-ranging deer by the
Mann-Whitney U-tests revealed higher concentrations of Ni (p=0,0099) in the FSG 1 group.
No differences between FSG 1 and free-ranging deer appeared in Al (p= 0,8777), Na
(p=0,9014), and Pb (p=0,4793). All of the other elements were lower from FSG 1 compared
with the free-ranging deer (p<0.0001).

Farmed subgroup FSG 2 vs. free-ranging deer--Comparisons of this subgroup with free-
ranging deer revealed higher concentrations of Al (p<0.0001) and Fe (p<0.0001) in the FSG
2 subgroup. The concentrations of Ca (p<0.0001), Cd (p<0.0001), Co (p=0,0399), Cr




(p<0.0001), Cu (p<0.0001), K (p<0.0001), Mn (p=0,0212), Mg (p=0,0007), S (p=0,0076),
and Se (p=0,0029) were all lower in FSG 2. None of the other element levels differed.

DISCUSSION
Flement levels

Free-ranging deer

The Cd, Mo, Pb and Fe levels measured in this study were similar to those that have been
reported in other studies in red deer, while the levels of Cu, Se, and Zn were somewhat higher
(19-26). The levels of Co, Mn, Mg, and Ni were apparently in accordance with results
obtained from other ruminants (/, 19, 21, 23, 26-32). The levels of Al, Ca, Cr, K, and P
measured in the present study were somewhat higher than those recorded in moose (4/ces
alces), reindeer (Rangifer tarandus), goat (Capra hircus), and sheep (Ovis ovis and Ovis
anios) (1, 28, 30, 31, 33-36). No comparisons could be performed on Na and S due to lack of

relevant data.

Of the forty-three free-ranging deer from the present study 93 % had adequate Cu levels in
accordance with the classification by Wilson and Grace (/7). Whether the recorded Cu levels
may cause toxic effect is a difficult decision because each of the dietary elements Zn, Fe, Cd,
and Mo may interact with Cu metabolically, and thus complicate the establishment of a
definite maximum tolerable Cu level (/6). The liver may accumulate large amounts of Cu
before signs of toxicity appear (37). The median Cu level of animals (n=11) with Cu levels
above 70 ppm was 82.7 ppm wm (Fig. 1). In most adult mammals the Cu concentrations in
the liver are normally < 30 ppm wm (38). In cattle (Bos taurus), the hepatic concentration of
Cu can be high, and especially high concentrations have been found in livers of sheep (39).
According to Frgslie (40) 50 - 150 ppm of Cu in fresh sheep's liver indicate moderate
overloading, and > 150 ppm Cu can induce haemolytic crisis. No Cu levels toxic to sheep
were found in free-ranging red deer in the present study. But there are species differences in
toxicity and it has been suggested that accumulation of Cu in the liver of moose from Finland

is caused by poor ability to regulate Cu metabolism (38).

No individuals from the present study had liver Se concentrations below the assumed
deficiency level of 0.05 - 0.1 ppm Se wm (26). Cd, Cu and Pb demonstrated consistent site-

related trends in the livers of the free-ranging red deer. Unequal Cd levels in animals from
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different geographical locations are previously found (47) and in reindeer for Cd, Cu and
Pb (42).

Farmed deer

The median levels of Cd, Fe, Mo, Pb and Se were within the range expected from previous
work in red deer (19-21, 25, 26), but Pb and Cd concentrations were lower than those found in
red deer in Spain (24). P concentrations were at same levels as found from livers of goat (35).
The levels of Ni and Pb were within levels previously found in moose, goat and

reindeer (30), while Cu and Zn were lower (I, 28, 30, 35, 43). The levels of Mg were also

lower than those found in moose (/) and goat (33).

The levels of Al, Ca, and Cr were higher and Mn lower than previously found in other species

such as moose (Z, 28, 30, 43), reindeer (30, 33), goat (35) and sheep (30)

Cobalt does not normally accumulate in the foetal liver of ruminants, and McNaught (44)
suggested that 0.013 - 0.0192 ppm wm or less in the livers of sheep and cattle indicate Co
deficiency (converted to wet from dry mass), and that 0.026 - 0.039 ppm Co wm indicate a
satisfactory Co status (44, 45). Only one of the farmed red deer had lower Co concentrations

than the suggested threshold of Co deficiency.

The two studies by van Koetsveld (46) and Egan (47) revealed that ruminant liver Mn values
below 10 ppm and 6 ppm dm, respectively, indicate deficiency, which on wet mass basis is
equal to about 3.2 and 1.9 ppm wm respectively. Only 7 farmed deer of the analysed 52 had
liver Mn concentrations exceeding 3.2 ppm and 37 % of the livers had lower Mn
concentrations than 1.9 ppm. Underwood (48) believed that Mn concentration in the liver is a
useful but not an entirely reliable indicator of deficiency, unless the deficiency is severe. The
storage capacity of the liver for Mn is limited compared with its capacity to retain Cu, Fe, and
Se, and the reproductive processes are particularly susceptible to lack of Mn (49). The low Cu
levels found in the present study are reported in Rosef et al. (/4). No comparisons could be

performed on Na and S due to lack of relevant data from literature. Element interactions

Free-ranging deer

All individuals--By the multivariate analysis two apparently independent clusters of
elements were formed (Fig. 2). One of them comprised elements known to be stored in livers

and thereby promote harmful effects when percent abundantly such as Al, Cd, Cu, Pb and
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Se (13, 50-55). The other cluster comprised essential elements not known to be extensively

stored in livers, such as Co, Cr, K, Mg, Pand S (49, 56, 57) (Fig. 2).

Due to the recorded dissimilarity in element profiles between animals with less than 40 ppm

Cu and animals with more than 40 ppm Cu, the individuals were split in two groups:

{Cu} < 40 ppm--The relatively low influences by Cu in the PCAs of individuals with lower
Cu concentration than 40 ppm, may indicate that the individuals had adequate Cu supplies.
The potentially toxic elements Cd, Pb, Se, Ni and Al did not interact negatively with
nutritional elements, which may indicate that they did not suppress the metabolism of these
elements. The lower levels of Cd, Cu, Pb, and Se found in these individuals compared to

individuals with higher liver Cu levels may elucidate their low influences (Fig. 1,3A,B).

{Cu} > 40 ppm--Concomitant with higher Cu levels, the animals with Cu levels 40-70 ppm
also had higher levels of Cd, Pb and Se compared with animals from the proceeding group.
The storage of Cu are primarily in metallothioneins (MT) and superoxide dismutase
(SOD) (58). Normally, concentrations of MT are low in tissues; however, Cu, Zn, and Cd can
cause increases in tissue concentrations of MT (59). The sulfhydryl-rich structure of MT has
led to experiments designed to investigate its potential as a binding moiety and perhaps
detoxifier of hepatotoxins (60). In the literature many interactions including Cu, Cd, Pb and
Se are demonstrated, but the underlying mechanism is not fully understood. It has been shown
that Se has strong tendencies to complex with other metals, such as Cd and Cu, and thereby
exert protective effects against toxic influences (49, 6/-66). From a study of rats it was
concluded that the amount of Se in the diet determined whether or not an increase in dietary
levels of Cu affected the metabolism of Se (67). The presumed protective effect of Se against
Cd toxicity is from analyses of humans found to be the result of the diversion in their binding
from low to high molecular weight proteins (66). In general, the liver is thought to be the first
storage site for Cd where it may be bound to a MT, then transported to the kidney which is the
final and main storage site for Cd (68). Cd and, to a lesser extent Pb, have been shown to
affect both the metabolism and absorption of minerals and trace elements like Fe, Cu, and
Zn (69-75). It is assumed that MT induction is part of a defence mechanism in which cellular
metals are conserved during reduction in the dietary supply, and estimates suggest that MT is
a fairly rapidly turned over protein, but the exact functions of MT in livers remain to be
defined (76). Decreased food consumption might also be expected to concomitantly induce

liver MT (76). The appeared antagonisms between the potentially toxic elements Cd, Cu, Pb
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and Se and the essential elements P, S, Mn, Mo and Co seen from the multivariate analyses,
may have arisen as a consequence of the higher levels of the mentioned potentially toxic
elements compared to animals with less than 40 ppm Cu. Since turn over of MT is supposed
to happen rapidly and also dependent on the nutritional status of the animals, there may also
exist a homeostatic mechanism that reduce the MT content including the metals bound to it
when animals ingest adequate essential elements combined with reduced absorption of
potentially toxic elements. If so, the negative interactions may have appeared due to different

nutritional status of animals with more than 40 ppm Cu.

When dietary supply of Zn or Cu is sufficiently elevated, induction of MT is found to occur,
primarily in the liver and intestine with a succeeding accumulation or redistribution of these
metals in both tissues (76). Intracellular Zn and Cu are presumed partitioned in two general
ways, i.e. as components of metalloenzyme systems and, at least in the case of Zn, with
macromolecules, particularly membranes (76). Hence, this may explain the independence

between Cu and Zn recognised from animals with higher Cu levels than 40 ppm.

While all of Cd, Cu, Pb and Se interacted negatively with essential elements in animals with
Cu levels 40-70 ppm, the negative interactions of Cu with Cd and Se prevailed the structural
variations of animals with more Cu than 70 ppm. Because the two Cu categories solely had
different Cu levels, the concurrently changed Cu interactions may have arisen from this
difference. When Cu exceeds certain levels in the body, the MTs are thought to prevent the
development of Cu toxicity by binding Cu and slowing the release of Cu into the blood
stream (58). When MT and other ligands that normally sequester Cu are saturated, additional
Cu will complex with and damage microsomes and other proteins (38). The results indicate
that Cu levels above 70 ppm exert toxic influences, and the elucidation to this may be that the
mechanism of sequestering of Cu in these animals was saturated or inadequate. In these
animals both Cu and Fe also exerted negativé interactions with essential elements (Fig. 3 D).
Negative interactions between Fe and Mn, and between Na and K, as recorded from animals

in this Cu category, are also described in previous studies (77-79).

The significant and positive relations among Pb, Cd and Se, may be associated with published
findings of several Pb-binding fractions in the cytosol of livers, where most of the Pb was
associated with high molecular weight protein fractions (55). From animals with higher Cu
than 40 ppm, Pb was negatively correlated with Mo. It has been found that Pb affects

absorption or distribution of Se, and that dietary Pb influences the level of Mo in tissues (80-
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82). As dietary Se given to Pb-exposed rats was increased from 0.015 to 0.5 pg/g, tissue Pb
and urinary ALA concentrations decreased, and blood and liver ALAD activity

increased (35). With Se at 1.0 pg/g diet, tissue Pb concentrations increased, as did urinary
ALA and the inhibition of ALAD (55). These effects of high Se have been reported in other
work with rats (80). The described influences between Se and Pb may elucidate the revealed

positive interactions concurrently as the animals with more than 40 ppm Cu also had

relatively high levels of Se.

The recorded dependencies among element levels and interactions shown in present and
former works, render evident explanations on the element interactions difficult, because
transfer of knowledge on element interactions between studies presuppose equivalence in

element levels.

In animals with more than 40 ppm Cu most of the elements Cu, Cd, Se and Pb are probably
sequestered in binding fractions in the liver to reduce deleterious effects. By the comparisons
of farmed deer results with results obtained from free-ranging deer with less than 40 ppm Cu,

the strong influences of high levels of Cu, Cd, Se and Pb are avoided.

Farmed deer

All individuals--The findings of two discrete subgroups by the analyses of farmed deer,

resulted in separations of the individuals in subgroups FSG 1 and FSG 2 (Fig. 4).

Farmed subgroup 1 (FSG 1)--The animals in this subgroup had consistently lower levels
of all analysed essential elements both compared to free-ranging deer with less than 40 ppm
Cu and farmed individuals in ESG 2. The Cu levels of 1.5 = 0.7 ppm (mean + SD) found in
animals in FSG 1 are similar to those associated with Cu deficiency with extensive health
effects in red deer (3, 6-8, 10-13). Common clinical signs of Cu deficiency in domestic and
wild ruminants are loss of appetite and weight, leading to emaciation (83). Low Cu in the
body may affect the metabolism of many known Cu proteins, as: 1) the ferroxidase activity of
ceruloplasmin, 2) the monoamine oxidase enzymes, 3) lysyl oxidase and 4) the enzymes
cytochrome c oxidase and 5) SOD (I6). The effects by low Cu levels on element profiles may
therefore be influenced by many biochemical mechanisms. A study by Wolkers et al. (84) of
the effect of long-term dietary restriction on the composition of the liver in red deer, revealed
that malnutrition was associated with a reduction in the total body mass and a relatively large

reduction in protein and liver mass expressed by cell size as well as cell number. The most
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structured variations that appeared in FSG 1 coincided with the individual variations in the

total contents of elements, except Ni. This subgroup of farmed deer was probably underfed

caused by low Cu loads.

Farmed subgroup 2 (FSG 2)--The comparisons of FSG 2 with free-ranging deer revealed

concomitant findings of the:
o higher levels of Al, and Fe,

o negative interactions exerted by both Fe and Al on the essential elements, especially S,

Mo, Mg and P,
o lower levels of essential elements, as Ca, Co, Cr, Cu, K, Mn, Mg, S, and Se,
o relatively modest influence on the model by Cu, and

o negative interactions exerted by Na on essential elements (Fig. 5).

This group of farmed deer had mean Cu levels of 5.0 + 3.9 ppm (mean + SD), which indicates
that most of the animals had marginal but not deficient Cu levels (Table 3) (/7). However,
some individuals within the FSG 2 group also had Cu levels that could cause Cu deficiency
(Table 3). But as a group the Cu supplies did not appear as a critical factor in the multivariate

screening of the element profiles (Fig. 5).

Fe is an essential element required for the synthesis of haemoglobin and myoglobin and the
many Fe-containing enzymes, which are necessary for normal cellular function (83).
Nevertheless, when there is excessive accumulation in the body (Fe overload), Fe displays
toxic properties, producing widespread cellular damage owing mainly to the production of
toxic free radicals, which can cause lipid peroxidation and other oxidative damage to cellular
constituents (86, 87). Increased accumulation of tissue Fe has been associated with
pathogenesis in a variety of diseases although the extent of any toxicity will, in part, be
dictated by the localisation of the Fe complex within the cell, i.e., ferritin or haemosiderin, as
well as the ability of the cell to prevent the generation and propagation of free radical species
by the wide range of antioxidants and cytoprotective enzymes present in that cell (88, 89).
Because liver cells have high antioxidant protection they normally will be less susceptible to
Fe induced oxidative stress than cells with less protection (90). The animals in FSG 2 had
higher levels of Fe (239 + 121 ppm, mean + S.D.) than the free-ranging deer (145 + 108 ppm,

mean = S.D.). This in addition to the recorded negative interactions with Fe involved as
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shown by both the multivariate and the bivariate analyses, may indicate that Fe exerted
restrained influences on the metabolism of essential elements such as Mg, S and P. It is
assumed that Fe is regulated in the body by a mechanism where relatively high loads of liver
Fe stimulate synthesis of ferritin, at the same time as the ability of transferrin to bind Fe is
degraded (90). The Cu containing enzyme ceruloplasmin oxidises Fe**, which is first liberated
in this form from the depot tissue, to the Fe®* state and thereby makes possible its transfer to
transferrin (97). Hence the mobilisation of Fe from storage sites in mucosa and liver does not
occur at a normal rate during Cu deficiency with resulting anaemia as a consequence (92). It
has been found increased Fe storage in various organs of animals with Cu deficiency, while
the haematological parameters such as haemoglobin concentration, haematocrit, and
erythrocyte count were greatly decreased (93). Since ceruloplasmin responds fast to changes
in Cu supply, it is understandable that the deposition and mobilisation of Fe in the liver is
affected with similar speed (94-97). Fe accumulation resulting either from dietary Cu
depletion or from Zn-induced Cu-deficiency has been shown to normalise again with dietary
Cu supplementation (98, 99). Hence antagonistic interactions between Fe and Cu could be
expected from the multivariate models of farmed deer. In absence of such evident

interactions, however, other elements in addition might affect the interactions.

The relatively high Al loads found in some livers of farmed deer, at the same time as the
multivariate models revealed positive correlations between Al and Fe, makes it reasonable to
focus on Al. Coincidental increases in liver levels of Al and Fe have been reported in sick
moose from Sweden (/7), in sheep (100), and in rats (/01). The metabolism of Fe has been
shown to interact with that of Al in relation to intestinal absorption, transport in the blood
plasma, and the induction of lipid peroxidation and cellular damage, but Morgan (83) found
little evidence for interaction between Fe and Al metabolism in rats. Although Al has been
implicated in various neuropathological states with ageing due to its involvement in
neurotoxicity, the exact role of the metal ion is still unclear, but Al is not considered as an
essential dietary compound (102, 103). In a study of growing rats Boudey (/04) found that
side effects of small variations of Al intake can be enhanced when they are combined with
other mineral imbalances. One known consequence of Al toxicity is anaemia, due to the
inhibition of enzymes in the heme biosynthetic pathway (105). Even in absence of signs of
anaemia, ingested Al may depress haematopoiesis by affecting red blood cell production and
cell destruction (106). Both Al and Fe can bind to the protein transferrin, although transferrin

has a lower affinity for Al than for Fe, it is believed to be the major Al transport protein (101,
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107-113). Al has been shown to inhibit the ferroxidase (ceruloplasmin) activity and it has
been suggested that Al might prevent the unloading of transferrin Fe onto a specific tissue or
receptor or else be unloaded instead of Fe** (114, 115). Al is also suspected to promote
stimulatory effect on Fe®*- initiated lipid oxidation by inhibition of the autooxidation of the
ferrous ion (Fez+) (116, 117). The combined effects of relatively high liver Al concentrations
in some of the farmed deer, which may block the ferritin synthesis and relatively low levels of
available Cu, which may block the synthesis of ceruloplasmin, may exert disorders in the
metabolism of Fe. The higher levels of Al and Fe and their corresponding negative
interactions on essential elements e.g. Mg, Mo and S, as found from FSG 2 compared with
free-ranging animals, have not been reported previously as structurally differences between

farmed and free-ranging red deer.

Effects of different Cu levels of farmed deer

Comparisons of different Cu categories of farmed deer with free-ranging deer (Cu < 40 ppm)

revealed four tendencies;

o essential element level differences decline when categories of farmed deer with

increasing Cu levels up to 5 ppm are compared with free-ranging deer,

o higher levels of the potentially toxic elements Al, Fe, Mo, Ni, and Pb in farmed deer

with Cu levels above 4 ppm compared to free-ranging deer (Fig. 1),

o lower levels of Ca, Cd, Cu, and K in farmed individuals with more than 4 ppm Cu

than in free-ranging deer, and

o the significantly negative influences by Na on Mg, Mo and P in animals with more Cu

than 4 ppm.

The approximations in levels of essential elements between farmed and free-ranging
individuals with increasing Cu concentrations in the farmed deer may concurrently indicate
approximations between the two groups regarding the metabolism of the essential elements
(Fig. 6). However, in both the PCAs of farmed deer with Cu more than 4 ppm, also Na was
designated as an evident antagonist to the essential elements P, Mg and Mo which appeared
along the first principal component. Generally, Na and P are considered the minerals most

limiting to growth and reproduction of mammalian herbivores world-wide and earlier studies
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from the Netherlands, suggested that red deer, as a consequence of poor mineral availability,

were in Ca, P, and Na stress (21, 118, 119).

The analyses of farmed deer with Cu levels above 4 ppm indicated negative interactions
between Cu and S, Mo and Zn (Fig.1, 6 D,E). Earlier work has also documented that high
levels of Mo may exert negative influences on the metabolism of Cu (/3). Mo tends to
accumulate in plants grown in poorly drained soils, and in the rumen, S and Mo combine to
form a thiomolybdate complex, which is able to irreversibly bind Cu, rendering it unavailable
for absorption (/20). While it has been shown that thiomolybdate or derivatives reduce the
absorption of dietary Cu from the gut, there is also evidence that the compounds can be
absorbed and do affect Cu metabolism systematically (81, 121-125). In addition a number of
Cu enzymes, including ceruloplasmin, cytochrome oxidase, superoxide dismutase and
tyrosine oxidase have been shown to be inhibited (126, 127). The formation of
trithiomolybdate by ruminants is likely to be the key event in the biochemical pathogenesis of
the widespread Mo-induced syndromes (/28). While the changes which occur are complex
they can be best understood in terms of an alteration in the affinities for Cu of some of the
competing ligands which leads to a change in distribution of Cu between the different
systemic pools and an overall depletion (128, 129). The binding of Cu to thiomolybdates is
even stronger than that to metallothioneins, which are the principal Cu-binding protein in
tissue (/, 130, 131). When thiomolybdate forms, total Cu concentrations may overestimate the
functional Cu status in tissues, thus further complicating the diagnosis of Cu deficiency (132,
133). It has also been shown in lambs that Mo enhances the Cu excretion (/34). The
significant negative interactions Cu-Mo-S seen from farmed deer with Cu above 5 ppm (Fig.
6) are probably related to influences of thiomolybdates, and hence the Cu concentrations may
overestimate the functional Cu status in tissues (132, 133, 135). In the free-ranging deer,
however, no bivariate correlations between Cu and Mo revealed from the present analyses of

different Cu categories, probably as a consequence of low influences by thiomolybdates.

Ni occurs in low concentrations in all animal tissues and fluids without remarkable
concentration in any tissue or organ, but without any firmly established biological

functions (136, 137). However, it has been shown that Ni deficient animals had impaired
utilisation of Fe, concurrently with changed trace element profiles in livers (136). Ni interacts
synergistically with Fe to affect haematopoiesis in rats fed dietary Fe**-sulfate only, but not as

a mixture of Fe’*- and Fe**-sulfates (138, 139). On the other hand, when a ferric-ferrous
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mixture was supplemented to the diet, Ni deprivation elevated the liver content of Fe (/40). In
farmed deer Ni is positively correlated with Cu in animals with Cu levels 4-5 ppm, and both
elements correlated positively with Fe by the multivariate model of these animals. But these
interactions were not recorded from the other farmed animals and the mechanism underlying

these influences by Ni remains unknown.

Differences between farmed and free-ranging deer

The farmed animals with lower Cu contents than 4 ppm which comprised about half of the
analysed farmed animals in this study, suffered probably mainly of Cu deficiency. A PLS of
individuals with Cu concentrations between 4 and 40 ppm, revealed that the structural
differences between farmed and free-ranging deer were best expressed by higher Al-, Fe- and
Mo- levels and lower Cu-levels in the farmed deer (Fig. 7). This result in addition to the
recorded strong influences by Na on the essential elements in these animals may indicate that
the farmed animals have unsatisfactory composition of dietary minerals. Restrained effects on
the metabolism due to some of the described element interactions are probably not prevented
only by giving the farmed deer artificial Cu supplies. But some of the negative influences on
the essential elements seemed to be diminished by an increase of Cu levels in farmed
individuals with lower Cu contents than 4-5 ppm. In animals with higher Cu contents,
however, the screening of element profiles revealed much more complex relations, caused by
many negative element interactions including those apparently important influences exerted
by Al, Fe, Mo and Na. The differences between free-ranging and farmed red deer from the
present study share signs of equality with changes regarding Cu, Fe and Mo found in moose
from Sweden where Frank et al. suggested that the changes were mainly caused by increase in
the formation of thiomolybdates which bind Cu (4, 141). However, the higher levels of Al
found in the present study of farmed deer are not exclusively elucidated by the incidence of

thiomolybdate alone.

Management implications

The present comparisons of farmed with free-ranging red deer revealed pronounced
differences in the concentrations of most elements. In farmed animals with presumed
adequate levels of liver Cu (> 4 ppm) the levels of the potentially toxic elements Al, Fe, Pb,
Mo and Ni were considerably higher and the levels of the essential elements Ca, Cu, K, and

Na correspondingly lower than those in free-ranging deer. Why these differences appeared, is
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not clear. One possible explanation is ingestion of mineral particles from soil and water. Wild
ruminants may compensate for soil deficiency of particular micronutrients due to a more
varied diet than confined ruminants restricted largely to grass forage and thereby prevent
element deficiencies and imbalances (/42). Skipworth (/43) suggested that animals may
consume soils as a source of trace elements when vegetation lacks these elements. But from
many studies deliberate ingestion of soil by animals is related to Na hunger (144, 145). A
study on moose from areas where Na concentrations in terrestrial plants were significantly
below the dietary requirement, while levels were sufficient in aquatic plants but coincidental
with high concentrations of toxic heavy metals, the physiological need for Na was the
anticipated cause of overintake of heavy metals (/46). Consumption of submerging aquatic
plants by North American moose has also been linked to Na hunger (/47). Salt intake of
grazing animals is often influenced by environmental conditions (temperature, rainfall),
pasture management (grazing intensity, fertiliser application), and biological factors (maturity
stage, selective grazing, species or breed etc.) (/48). The strong negative relations that Na and
K exerted on the nutritional elements P, Mg, Mo and Zn in farmed animals (FSG 2) may be
elucidated by disturbances in Na-K relationsships leading to Na hunger in some of the

animals.

Animals may also ingest soil inadvertently as by soil particles adhering to the ingested plant
material (144, 149). Stark (150) suggested that the mean intake of soil by grazing animals
was likely to be about 10 % of total diet dry matter intake. In a study performed by Arthur and
Gates (I51) the soil ingestion by pronghorns (4ntilocarpa americana) represented more than
50 % of the daily dry mass intake of Fe and Na, and more than 30 % of the daily intake of Cr
and Mn, while vegetation ingestion resulted in greater than 90 % of the daily intake of Ca, Cu
and P. Estimated rates of soil ingested by free-ranging elk (C. elaphus), moose and mule deer
(Odocoileus hemionus) were less than 2 % of diet in dry mass in all three species (/44). This
may indicate that browsers like red deer in Norway, normally have low rate of soil ingestion.
Concurrently the evolution of these species may have resulted in less tolerance than species

normally exposed to higher rates of soil ingestion.

Soil ingestion depends on many factors including soil type, weather conditions, type of sward,
pasture availability, stocking rate, type of animal and grazing behaviour (/52). Higher
exposure to Al and Fe by ingestion of soil particles may occur at sites where heavy grazing

and trampling pressure concurrently have reduced the plant layers so the animals ingest
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increased mass of soil particles while grazing (92). In the domesticated species sheep, cattle
and swine soil was found to be the main source of exposure to environmental contaminants,
e.g. Pb (153-157). Ingestion of soil particles may also contribute to high Al concentrations in
the body as Al occurs abundantly in soil (/15). Al -hydroxide and -oxides are 100 - 1000
times more soluble at pH 4.2 than at pH 6.2 - 8.1. It has been suggested that Al might be more
readily absorbed in the stomach or proximal duodenum, and gastric pH might have a major
effect on Al absorption (115, 158). Direct soil consumption by grazing animals can result in
adverse effects due to high intakes of both Fe and Al (159). Lambs exposed to high dietary
levels of Fe and Al showed reduced food consumption (/59). Rosa also found that added
dietary P reduced hepatic Fe while high dietary Al increased liver Fe concentrations. These
interrelations among Al, Fe and P from lambs coincide with findings in the present study of
farmed deer, but not of free-ranging deer. The animals may also ingest Al and Fe by drinking
water with suspended soil particles or ingestion of aquatic plants from puddles in the

enclosures.

The relatively lower concentrations of Cd in farmed deer is probably related to nutritional
differences. Contaminated dust may accumulate on the plant surface over years (160, 161).
Free-ranging animals ingest to a larger extent older plants which may accumulate Cd in stems
and leaves, in contrast to farmed deer that feed mainly on young plants and hey with a growth

time of less than 2 months, resulting in lower ingestion of Cd (20).

The Cu-Fe interaction is of practical significance because in ruminants exposed to high Fe
intakes from the two sources, ingested soil or mineral supplements, the Fe will inhibit Cu
absorption (/32). In both cases the Fe is present largely in insoluble forms such as Fe oxides
and it has been assumed that compounds such as Fe,O3; were inert (62). However, Fe,03
inhibits Cu absorption when added to the diet of sheep, and Fe-rich soils have a similar
effect (163, 164). The message is clear: in areas where hypocuprosis is likely to occur, the risk
will be reduced by avoiding the use of mineral supplements of high Fe content, minimising
the use of bare winter pasture and avoiding the excessive contamination of silage with soil
during harvesting (/65). The latter point is confirmed by the observation that 30 per cent
reduction in the availability of Cu from silage to which soil was added raised its Fe
concentration by 2.35 g/kg dm (/62). The mechanisms for the Cu-Fe-antagonism is not fully
understood, and Suttle et al. (/64) showed the soil Fe effect to be S-dependent, like the Cu-

Mo antagonism, and associated with enhanced rumen S$* concentrations; they postulated
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formation of insoluble Cu$S following the trapping of S*" as FeS in the rumen (132).
Surprisingly, wild ruminants appear to be better adapted to low-Cu diets than most
domesticated ruminants, as the required level of Cu in the liver tissue of sheep and cows (35
mg/kg dm) is higher than that for deer (10-20 mg/kg dm) (3). This may in general be related
to a higher intake of soil particles by farmed animals combined with a less diversity of diet
qualities compared with free-ranging animals. Several studies on cattle and sheep have shown
that under lush vegetational conditions 1-2 % of their diet is soil, but when forage is sparse
the value may be as high as 18 % (166). Because free-ranging red deer ingest low rates of soil
particles they also may have developed low tolerances to such particles. If this is correct
farmed red deer may be considerably more vulnerable to sparse vegetational conditions than

domestic animals.
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