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Preface

This document is my PhD thesis, which is a partial fulfillment of the requirements
for the degree Doctor of Philosophy (PhD) at Telemark University College, Nor-
way. From August 1st 2008 to July 31st 2011, I held a PhD scholarship position
at Østfold University College, Norway, which provided me salary during the PhD
study.

The research of this PhD study has focused on data preprocessing, empirical
modeling, state estimation for the purpose of measurement noise filtering, and
process control. Real-life applications are emphasized, in particular applications
to the Czochralski (CZ) crystallization process. The research on the CZ process is
based on a real-life CZ process at SINTEF Materials and Chemistry in Trondheim,
Norway. The PhD thesis also includes work based on the copper refining process at
Xstrata Nikkelverk in Kristiansand, Norway. During this PhD study, two journal
articles and five conference papers have been published. Two of the conference
papers were drafted during my master thesis. These two papers were finished and
presented at a conference during my PhD study. Hence, the two papers are partly
achievements of the master thesis and partly achievements of the PhD study.

Xstrata Nikkelverk and Dr. Tor Anders Hauge are acknowledged for providing
logged process data from the copper refining process at Xstrata Nikkelverk and
for allowing these data to be used in two conference papers.

SINTEF Materials and Chemistry is acknowledged for giving access to the or-
ganization’s CZ process and for allowing logged process data to be used in scientific
publications. Dr. Eivind Johannes Øvrelid, Bendik Sægrov, and John Atle Bones
have been most helpful. In particular Bones’ contributions have been decisive for
running experiments at the CZ process and for improving process sensors at the
plant. Bones is currently taking his master degree, and he will work with the CZ
process in his master thesis. I wish him the very best luck!

I am very grateful for the financial support of my PhD study from NorSun AS,
Østfold Energi AS, and the Norwegian Research Council. This support has been
used for conference fees, a publication fee, travels, books, and software.

I am very grateful to Østfold University College for providing me the PhD schol-
arship. The research leader at Faculty of Engineering, Dr. Ole Kristian Førrisdahl,
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has been very kind and helpful. He has given me large freedom and flexibility, while
following my work closely to ensure I had decent progress in my PhD study.

The cooperation with NorSun AS, Prediktor AS, and SINTEF Materials and
Chemistry is very much appreciated. Although the cooperation with NorSun and
Prediktor has not been very close, I knew I had excellent knowledge and experience
to rely on when needed.

During the PhD study, I have published two articles in the open-access journal
Modeling, Identification and Control (MIC). I have also published in total five
papers at the conferences SIMS 2008, SIMS 2009, and SIMS 2010. I am very
grateful to the reviewers of MIC and SIMS for their efforts and their constructive
feedback. I also acknowledge the organizers of the SIMS conferences. I am par-
ticularly grateful to MIC and its editor, Professor Geir Hovland, for providing an
open-access journal with a low publication fee.

I am very grateful to my supervisors during the PhD study. The main su-
pervisor has been Professor Bernt Lie at Telemark University College. The co-
supervisors have been Dr. Steinar Sælid and Dr. Helge Mordt, both at Prediktor
AS. Professor Lie, Dr. Sælid, and Dr. Mordt were also my supervisors during my
master thesis. Professor Lie was very important for me during my master thesis
and the first year of my PhD study. Although I have mainly stood on my own feet
during the last two years of the PhD study, Professor Lie has always been there
when I needed him. When needing advise or having questions, his knowledge,
experience, and helpfulness are priceless to any student.

Magnus Komperød

Sarpsborg, Norway
September 29th 2011



Summary

This PhD thesis presents research work within the field of systems and control
engineering, with emphasis on applications to real-life processes, the Czochralski
(CZ) crystallization process in particular. During the PhD study, two journal
articles and five conference papers have been published. All seven publications are
based on logged data from real-life processes or include examples based on such
data. For four of the publications, logged process data are essential. The seven
publications are referred to as Paper A through Paper G. The publications focus
on data preprocessing, empirical modeling, process control, and state estimation
for the purpose of noise filtering.

The Czochralski (CZ) crystallization process is a batch process that converts
multicrystalline materials into monocrystalline materials, i.e. materials that have
homogeneous crystal structures. Among the most important applications of the
CZ process is production of monocrystalline silicon. This is the only application
of the CZ process that has been considered during this PhD study. Monocrys-
talline silicon is used in solar cell wafers and in computers and electronics. Solar
cells based on monocrystalline silicon have higher efficiency than those based on
multicrystalline silicon.

During the CZ batch process, multicrystalline silicon is melted in a crucible.
The silicon is then solidified on a monocrystalline seed crystal, thereby growing a
crystal. The grown crystal is monocrystalline and is referred to as an ingot. There
are several challenges associated with modeling and control of the CZ process: (i)
The process dynamics is challenging to model using mechanistic (first principle)
modeling. (ii) The process has multivariable character. (iii) The process is time-
variant due to its batch nature. (iv) There are several difficulties regarding sensor
technologies. In particular the ingot diameter is difficult to measure online.

The candidate’s literature search indicates that most published research works
considering modeling and control of the CZ process are simulation studies, which
are not validated against real-life processes. Only one publication was found that
documents that a suggested control strategy works on real-life CZ processes. Dur-
ing the PhD study, the candidate had access to a real-life CZ process at SINTEF
Materials and Chemistry in Trondheim, Norway. As published research results
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vi SUMMARY

that are validated on real-life CZ processes seem to be rather sparse, the candi-
date focused his research on experiments at this plant.

Unfortunately, issues regarding sensor technologies forced the candidate to fo-
cus on other parts of the CZ process than initially planned. However, these issues
have also given useful experiences and provided ideas for further research. The
work of this PhD study has focused on the heating element power and the tem-
perature of the molten silicon. The ingot diameter has not been considered, partly
because of unreliable diameter sensor, partly because the diameter depends on the
silicon temperature. Hence, it is reasonable not to consider the ingot diameter un-
til the heating element power and the silicon temperature are properly measured,
modeled, and controlled.

Logged process data from the SINTEF CZ plant are used extensively during
this PhD study. Paper D and Paper E consider empirical modeling of the heating
element power, Paper F suggests a cascade control strategy for improving tem-
perature control of the molten silicon, and Paper G presents state estimation for
the purpose of measurement noise filtering. Also, logged process data from the
SINTEF CZ plant are used as an example in Paper C.

Paper A and Paper B include work on logged process data from the copper
refining process at Xstrata Nikkelverk in Kristiansand, Norway. These data were
made available from the process by Dr. Tor Anders Hauge. Paper A presents
work on data preprocessing, using the Xstrata data as real-life examples. Paper B
considers system identification and compares two system identification algorithms
using process data from Xstrata. System identification is the science of developing
dynamic, empirical models based on process inputs and the corresponding process
outputs.

Paper A and Paper B were drafted during the candidate’s master thesis and
were published in the beginning of his PhD study. The other five publications
were written during the PhD study. The following text briefly summarize each
publication in the order they were published.

Paper A Preprocessing of Experimental Data for Use in Model Building and
Model Validation. By Magnus Komperød, Tor Anders Hauge, and Bernt Lie.
The paper was presented at the 49th Scandinavian Conference on Simulation
and Modeling (SIMS 2008) and is included in the conference’s proceedings.
The conference was held October 7th-8th 2008 at Oslo University College,
Oslo, Norway.

Two issues within data preprocessing are considered:

(i) Ljung (1999) shows an example of how model residuals can be used for
outlier detection. An alternative approach to this method is developed in
Paper A. The approach is based on identification of the innovation process
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directly from logged process data, i.e. without relying on process models.
It can be mathematically shown that the suggested approach turns out to
be a special case of the method presented in Ljung (1999). The suggested
approach is tested on real-life process data from Xstrata Nikkelverk.

(ii) The MATLAB command delayest is included in the System Identifica-
tion Toolbox. The command’s purpose is to estimate time delays between
process inputs and process outputs. Paper A shows both in a simulation
study and on logged process data from Xstrata Nikkelverk that delayest is
sensitive to several factors that limit its practical usefulness. Paper A sug-
gests an improvement of delayest that handles one sensitivity issue better
than the original method under certain ideal assumptions. However, also
this improvement has very limited usage on real-life process data.

Paper B Empirical Modeling: Approximating the DSR E Sub-Space System Iden-
tification Algorithm by a Two-Step ARX Algorithm. By Magnus Komperød,
Tor Anders Hauge, David Di Ruscio, and Bernt Lie. The paper was pre-
sented at the 49th Scandinavian Conference on Simulation and Modeling
(SIMS 2008) and is included in the conference’s proceedings. The conference
was held October 7th-8th 2008 at Oslo University College, Oslo, Norway.

This paper considers the DSR E system identification algorithm presented
in Nilsen (2006) and Di Ruscio (2008). The DSR E algorithm is developed
to give consistent model estimates both for process data logged in open loop
and for process data logged in closed loop.

Paper B shows that the DSR E algorithm can be approximated by a two-step
ARX algorithm. This two-step ARX algorithm is referred to as DARX. In
addition to the mathematical reasoning, the DSR E and DARX algorithms
are compared on real-life process data from Xstrata Nikkelverk. As expected,
the two algorithms identify identical models.

It is emphasized that DARX is too similar to DSR E to be considered a
“new” system identification algorithm. The purpose of DARX is to show
the similarity between DSR E and a two-step ARX algorithm. From the
candidate’s point of view, DARX may be easier to understand and to imple-
ment than DSR E. DARX has been developed only for single input / single
output (SISO) systems. It is believed that the algorithm can be extended to
multiple input / multiple output (MIMO) systems. However, the candidate
has not done any research on this topic.

Paper C Solution to an Implementation Issue for a Two-Step ARX Algorithm,
with Application to the Czochralski Crystallization Process. By Magnus
Komperød, John Atle Bones, and Bernt Lie. The paper was presented at
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the 50th International Conference of Scandinavian Simulation Society (SIMS
2009) and is included in the conference’s proceedings. The conference was
held October 7th-8th 2009 at DONG Energy, Fredericia, Denmark.

The second ARX step of the DARX algorithm presented in Paper B slightly
differs from the standard ARX form. This apparently prevents standard
ARX software from being used, such as the command arx of the MATLAB
System Identification Toolbox. A tailor-made ARX algorithm must then
be implemented for using DARX. Implementing this tailor-made algorithm
is not very difficult, but it significantly complicates the otherwise simple
implementation of DARX.

Paper C presents a rewriting of the second ARX step of DARX that allows
standard ARX software to be used. The paper compares various implementa-
tions of DARX by testing them on real-life process data from the CZ process
at SINTEF. The results of these tests back up the mathematical derivation
of the rewriting.

Paper D Empirical Modeling of Heating Element Power for the Czochralski Crys-
tallization Process. By Magnus Komperød and Bernt Lie. The article is
published in the open-access journal Modeling, Identification and Control
(MIC).

In the CZ process at SINTEF, the crucible containing the molten silicon is
heated by an electric heating element. The heating element power is ma-
nipulated by a triode for alternating current (TRIAC). There is a dynamic
relationship between the TRIAC input signal (control system output) and
the actual (measured) heating element power. The assumed reason for this
dynamics is that when the TRIAC input signal is increased, more power is
applied to the heating element, which increases the heating element’s tem-
perature over time. Increased temperature gives increased electric resistance,
which decreases the power.

Paper D considers system identification of the dynamics from the TRIAC
input signal to the measured heating element power. Both linear and non-
linear model structures are considered. To avoid overfitting the nonlinear
model, significant effort is done to minimize the number of parameters to
be identified. The best model identified is a Hammerstein model, i.e. a lin-
ear, dynamic transfer function, which input is processed through a static,
nonlinear function.

Paper E Adaptive System Identification of Heating Element Power for the Czochral-
ski Crystallization Process. By Magnus Komperød, John Atle Bones, and
Bernt Lie. The paper was presented at the 51st Conference on Simulation
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and Modelling (SIMS 2010) and is included in the conference’s proceedings.
The conference was held October 14th-15th 2010 in Oulu, Finland.

Paper E also considers system identification of the dynamics from the TRIAC
input signal to the measured heating element power, i.e. the same dynamics
as considered in Paper D. Paper E compares three linear ARMAX models
in terms of the best one-step-ahead predictions. The first model is non-
adaptive. The second model has four adaptive parameters. The parameters
are adapted using the MATLAB command rarmax (Recursive ARMAX) of
the System Identification Toolbox. This model is referred to as the adaptive
ARMAX model. The third model has adaptive gain, while the pole, the zero,
and the noise model are fixed. This model is referred to as the adaptive gain
model.

The adaptive ARMAX model performs better than the non-adaptive model
for some choices of the forgetting factor. However, the model’s performance
is very sensitive to the choice of the forgetting factor. The model’s main
disadvantage is that the model’s pole crosses the unity circle as a result of the
parameter adaptation. Hence, the model changes between being stable and
unstable. This issue makes the model useless for most real-life applications.

The adaptive gain model outperforms the other models in terms of one-step-
ahead predictions. This model’s performance is very robust to the choice of
the forgetting factor. As the pole is fixed, the model is always stable. This
model can be implemented using the recursive least squares method, which
is easy to implement and has numerical advantages.

Paper F Rejection of Power Disturbances in the Czochralski Crystallization Pro-
cess Using Cascade Control. By Magnus Komperød, John Atle Bones, and
Bernt Lie. The paper was presented at the 51st Conference on Simulation
and Modelling (SIMS 2010) and is included in the conference’s proceedings.
The conference was held October 14th-15th 2010 in Oulu, Finland.

At the SINTEF CZ process, the crucible containing the molten silicon is
heated by the heating element discussed above. To produce high crystal
quality, tight control of the silicon temperature is most important. The tem-
perature was initially controlled by a single-loop PID controller. The con-
trolling element is the TRIAC input signal, which manipulates the heating
element power.

During experiments at the SINTEF CZ process, process disturbances were
discovered at the heating element power. That is, there are responses in the
heating element power that can not be explained by the TRIAC input signal.
These disturbances were sufficiently large to have a significant influence on
the silicon temperature.
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Paper F presents a cascade control strategy to effectively compensate the
power disturbances. The inner loop (slave control loop) is a power control
loop, which controls the heating element power using the TRIAC input sig-
nal as controlling element. The outer loop (master control loop) controls the
silicon temperature. The temperature controller sets the reference (setpoint)
to the power controller, which ensures that the power desired by the tem-
perature controller is actually applied to the heating element, regardless of
process disturbances. This cascade control strategy has been tested on the
SINTEF CZ process. The power controller rejects the power disturbances
quickly and effectively. A simulation study shows that the dynamics from
the reference of the power controller to the measured heating element power
is robust to parameter variations in the inner loop.

Paper G A Sensor Fusion Algorithm for Filtering Pyrometer Measurement Noise
in the Czochralski Crystallization Process. By Magnus Komperød, John Atle
Bones, and Bernt Lie. The article is published in the open-access journal
Modeling, Identification and Control (MIC).

As discussed above, tight control of the temperature of the molten silicon is
most important. At the CZ process at SINTEF, the temperature control is
based on a pyrometer that measures the temperature of a graphite ring. This
pyrometer is referred to as the graphite pyrometer. The pyrometer has little
measurement noise, but it has the significant disadvantage that it does not
measure the temperature of the molten silicon. Hence, it is the temperature
of the graphite ring that is actually controlled, not the temperature of the
molten silicon.

During one CZ batch another pyrometer was tested. This pyrometer mea-
sures the temperature of the molten silicon. This pyrometer is referred to as
the silicon pyrometer. This pyrometer is assumed to be accurate, but it has
much high-frequency measurement noise. There is quite a high correlation
between the graphite pyrometer and the silicon pyrometer.

Paper G presents a sensor fusion algorithm that merges the two pyrome-
ter signals. The algorithm produces a temperature estimate that has little
measurement noise, while giving significant less phase lag than traditional
lowpass-filtering of the silicon pyrometer. The algorithm consists of two sub-
algorithms: (i) A dynamic model is used to estimate the silicon temperature
based on the graphite pyrometer, and (ii) a lowpass filter and a highpass
filter designed as complementary filters. The complementary filters are used
to lowpass filter the silicon pyrometer and highpass filter the output of the
dynamic model. These filtered signals are then summed, giving the silicon
temperature estimate.
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Chapter 1

Introduction

1.1 Background

After a slight decrease in the world’s energy consumption in 2009, due to the
so-called financial crisis, the consumption increased by 5% in 2010 (Wikipedia,
2011). At the same time, mankind is worried about global warming, mainly due
to combustion of fossil fuels. The skepticism to nuclear power is significantly
increased after the earthquake and tsunami disaster in Japan, March 2011, which
caused the second largest nuclear accident in human history at the Fukushima
nuclear power plant.

Although it is not realistic to replace fossil fuel and nuclear power by renewable
energy in the near future, increasing energy prices and environmental concerns
favor development and industrial scale production of renewable energy sources. A
very interesting technology in this respect is solar cells, which convert solar energy
directly into electric energy.

Industrial scale energy production based on solar cells requires industrial scale
production of solar cell panels. A main component of solar cell panels is sili-
con wafers. Silicon wafers are produced from either monocrystalline silicon or
multicrystalline silicon. Monocrystalline materials are materials that have a ho-
mogeneous crystal structure through the entire material. Solar cells based on
monocrystalline silicon have higher efficiency than solar cells based on multicrys-
talline silicon. Monocrystalline silicon is also used in computers and electronics.

The Czochralski (CZ) crystallization process is a batch process for producing
monocrystalline materials. Among the process’ most important applications is
production of monocrystalline silicon. This is the only application of the CZ
process considered during this PhD study. The CZ process produces a rod-shaped
crystal that is referred to as an ingot. The produced ingot is cut radially to thin
discs that are used for solar cell wafers and in computers and electronics.

3



4 CHAPTER 1. INTRODUCTION

Producing high crystal quality using the CZ process is associated with sev-
eral challenges. These include challenges within the field of systems and control
engineering: (i) The process dynamics is difficult to model by mechanistic (first
principle) modeling. (ii) The process has multivariable character. (iii) The process
is time-variant due to its batch nature. (iv) There are several difficulties regarding
sensor technologies for online measurement of process variables.

This PhD thesis presents research work within systems and control engineer-
ing. Applications to the real-life process industry are emphasized, in particular
applications to the CZ process. The research on the CZ process is based on a
real-life CZ process at SINTEF Materials and Chemistry in Trondheim, Norway.
Also the copper refining process at Xstrata Nikkelverk in Kristiansand, Norway, is
considered in this PhD thesis. The work presented in the PhD thesis has focused
on empirical modeling, process control, and state estimation used for measurement
noise filtering.

1.2 Previous Work

A literature search reveals a large range of modeling approaches for the CZ process,
from very simple empirical models to complex mechanistic (first principle) models.
Lee et al. (2005) includes empirical models based on step responses. The process’
time-varying character is handled by using five different sets of models. The models
are alternated as the batch progresses.

Hurle (1993) presents a modeling work that results in simple transfer func-
tions. As these transfer functions are simple and have few parameters, they may
be subject to empirical parameter estimation. Such parameter estimation is not
demonstrated in the article.

Irizarry-Rivera and Seider (1997a) presents a complex mechanistic (first prin-
ciple) model. A main disadvantage of this work is that the model is not validated
on real-life process data. Irizarry-Rivera and Seider (1997b) presents model re-
duction of the model presented in the former publication for the purpose of using
the model for model predictive control (MPC). Irizarry-Rivera and Seider (1997b)
also considers parameter estimation. Again the contributions are not validated on
real-life CZ processes.

Park et al. (2008) presents work within mechanistic modeling of the heat trans-
fer and the ingot diameter in the CZ process. The article includes a trend plot
from a real-life CZ process and concludes that the model explains the real process
well. However, from the candidate’s point of view, both the real-life trend plot, the
simulation trend plots, and the connection between these plots are insufficiently
explained. It is therefore difficult for the reader to conclude how good the model
actually is.
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Gevelber et al. (2001) considers some issues within modeling and control of
the CZ process based on logged process data from a real-life CZ batch. How-
ever, neither the modeling work nor the control work are validated on real-life CZ
processes.

Only one of the papers considered during the literature search, Lee et al. (2005),
documents that a suggested control strategy works at real-life CZ plants. This
is a rather simple control strategy based on single-loop control, cascade control,
and feedforward trajectories. The article’s main contribution is a method for
developing a target temperature trajectory for the CZ process.

Hurle (1993) discusses some approaches for measuring the ingot diameter. The
candidate has not been successful in finding publications that cover sensor tech-
nologies for other process variables at the CZ process.

Except for Lee et al. (2005) and Park et al. (2008), no works on modeling
and control of the CZ process were found that have been validated on real-life
CZ processes. Lee et al. (2005) emphasizes the lack of advanced control strategies
tested on real-life CZ processes: “Although there have been several research efforts
to apply state of the art control techniques to the control of the CZ crystal growers
... no open report for the real implementation of the advanced techniques on the
commercial growers has been available thus far.”

The candidate did not find any published works on system identification of the
CZ process, except for the models developed in Lee et al. (2005). System identifica-
tion is the science of developing dynamic models empirically. The negative result
of the search for system identification work can perhaps be seen in connection
with the sparse amount of modeling works that have been validated on real-life
CZ processes: Both the validation of mechanistic models and the development of
empirical models depend on access to logged process data from real-life processes.

Summing up the results of the literature search, the main conclusion is that
there seem to be few published research works on modeling and control of the CZ
process that are validated on real-life processes.

Paper A and Paper B of this PhD thesis include work on process data from
the copper refining process at Xstrata Nikkelverk in Kristiansand, Norway. The
candidate’s only source of information regarding this plant is Hauge (2007) and
personal communication with the author of this reference. Hauge (2007) is a
presentation of the plant, which is not publicly available. The candidate has not
searched for scientific publications considering copper refining processes in general,
because this is not relevant for the work presented in Paper A and Paper B. Lie and
Hauge (2008) and Alic et al. (2009) present modeling works of the copper refining
process at Xstrata Nikkelverk. However, Lie and Hauge (2008) was presented at
the same conference as Paper A and Paper B, and Alic et al. (2009) was presented
later.
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The candidate’s work relies heavily on established disciplines within systems
and control engineering. The literature covering these disciplines is extensive.
The most important references for the candidate during his PhD study have been:
Ljung (1999) gives a comprehensive introduction to system identification and pro-
vides an extensive number of references for further reading. Strang (2003, 2006)
give good introductions to linear algebra, which is a very important topic in sys-
tems and control engineering. Chen (1999) and Rugh (1996) present linear system
theory. Haugen (2004) covers many interesting and useful topics within dynamic
systems. Brown and Hwang (1997) introduces random signals and Kalman fil-
tering. Lyons (2011) gives an introduction to digital signal processing. Process
control is covered in Seborg et al. (2004) and Haugen (1994, 2001). The latter two
books are in Norwegian.

1.3 Main Contributions

There have been several issues regarding sensor technologies at the SINTEF CZ
process. These issues forced the candidate to focus on other parts of the CZ
process than he would have done otherwise. However, the issues also gave valuable
experiences and were the motivation behind the research presented in Paper G.
The main sensor technology issues are the sensor for the temperature of the molten
silicon and the sensor for the ingot diameter. Also the power of the heating element,
which heats the molten silicon, is associated with significant sensor weaknesses.
The candidate’s research includes work on the silicon temperature measurement.
A SINTEF engineer and the candidate did some search to find a more reliable
sensor for the heating element power. A better sensor was found, however, due to
time constraints, the sensor was not replaced during the PhD study. The ingot
diameter measurement has not been considered.

The research work on the SINTEF CZ process has focused on the heating
element power and the temperature of the molten silicon. The ingot diameter
has not been considered, partly due to its sensor technology issue, and partly
because it depends on the silicon temperature. Hence, it is reasonable to finish the
work on measurement and control of the heating element power and the silicon
temperature, before the ingot diameter is considered. The main contributions of
this PhD thesis are:

1. Ljung (1999) shows an example of how model residuals can be used for outlier
detection. An alternative approach to this method is developed in this PhD
thesis. This approach is based on identification of the innovation process
directly from logged process data, i.e. without relying on process models.
Please refer to Paper A for an explanation of the term innovation process. It
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can be mathematically shown that the suggested approach turns out to be a
special case of the method presented in Ljung (1999). This work is presented
in Paper A.

Outliers in datasets can have very negative effects on the quality of empirical
models identified from these datasets. Such outliers will also affect validation
of models against logged process data. The latter issue affects all kinds of
models, not only empirical models.

This method for outlier detection is applied on process data from Xstrata
Nikkelverk and from the SINTEF CZ process in Paper A and Paper D,
respectively. The candidate assumes that the method can be used on process
data from any industry, as well as other applications where some measurable
variables are logged at fixed time intervals. However, the method assumes
that an autoregressive model (AR or ARX model) can give reasonable good
one-step-ahead predictions of the measured variables.

As the suggested method turns out to be a special case of a method pre-
sented in Ljung (1999), the suggested method is mainly of academic inter-
est. Depending on what software is available, the suggested method may be
somewhat easier to implement, because it identifies the innovation process
directly, without relying on process models.

From the candidate’s point of view, the demonstrations of the suggested
method on real-life process data from Xstrata Nikkelverk and the SINTEF
CZ process are useful contributions, as Ljung (1999) only presents a simula-
tion study. These real-life examples illustrate the usefulness of the method,
and they will hopefully inspire the readers to have outliers in mind when
working on real-life process data.

2. The command delayest is included in the MATLAB System Identification
Toolbox. The command estimates time delays between process inputs and
process outputs. This PhD thesis shows in a simulation study and on pro-
cess data from Xstrata Nikkelverk that the command is sensitive to several
factors, which limit its practical usefulness. The PhD thesis suggests an
improvement of delayest that handles one sensitivity issue better than the
original method under certain ideal assumptions. However, also this improve-
ment has very limited usefulness on real-life data. This work is presented in
Paper A.

From the candidate’s point of view, it is important for the users of the
MATLAB System Identification Toolbox to be aware of the weaknesses of
the command delayest. The candidate advises to validate the time delay
estimates computed by delayest against process knowledge or against other
methods for time delay estimation.
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Paper G also include some discussion on time delay estimation, using another
estimation approach than delayest. The method used in Paper G also gives
variable time delay estimates depending on parameters that ideally should
not influence the estimates.

3. DSR E is a system identification algorithm developed to give consistent pa-
rameter estimates both for process data logged in open loop and for process
data logged in closed loop. This PhD thesis shows that the DSR E algorithm
can be approximated by a two-step ARX algorithm. This two-step ARX al-
gorithm is referred to as DARX. In addition to the mathematical reasoning,
the DSR E and DARX algorithms are compared on real-life process data
from Xstrata Nikkelverk. This work is presented in Paper B.

From the candidate’s point of view, DARX may be easier to understand
and to implement than DSR E. DARX has been developed only for single
input / single output (SISO) systems. It is believed that the algorithm can
be extended to multiple input / multiple output (MIMO) systems. However,
the candidate has not done any research on this topic.

The second ARX step of the DARX algorithm slightly differs from the stan-
dard ARX form. This apparently prevents standard ARX software, such
as the command arx of the MATLAB System Identification Toolbox, from
being used. A tailor-made ARX algorithm must then be implemented in
order to use DARX. Implementing this tailor-made algorithm is not very
difficult, but it significantly complicates the otherwise simple implementa-
tion of DARX. This PhD thesis presents a rewriting of the second ARX step
of DARX that allows standard ARX software to be used. To validate that
the rewriting is correct, various implementations of the DARX algorithm are
used to identify a transfer function at the SINTEF CZ process. This work
is presented in Paper C.

The purpose of DARX is mainly to show the similarity between DSR E and
a two-step ARX method. DARX is too similar to DSR E to be considered a
new system identification algorithm. DARX is also quite similar to a system
identification algorithm presented in Ljung (1999).

4. At the CZ process at SINTEF, the crucible containing the molten silicon
is heated by an electric heating element. The heating element power is
manipulated by a triode for alternating current (TRIAC). There is a dynamic
relationship between the TRIAC input signal (control system output) and
the actual (measured) heating element power. In this PhD thesis system
identification is used to model the dynamics from the TRIAC input signal
to the measured heating element power. Paper D presents modeling work
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based on linear and nonlinear system identification. Paper E presents work
on adaptive system identification.

The assumed reason for the dynamics from the TRIAC input signal to the
measured heating element power is: When the TRIAC input signal is in-
creased, the heating element power increases instantaneously. There is a
time constant from the heating element power to the heating element tem-
perature. As the temperature increases, the electric resistance also increases,
which decreases the electric power.

The candidate has not seen this dynamics been described in other scientific
publications. If the dynamics has not been considered before, it is assumed
to be of some interest for the CZ research and the CZ industry. Including this
dynamics in the modeling work will affect the model order of the dynamics
from the TRIAC input signal to the temperature of the molten silicon.

5. At CZ processes, tight control of the temperature of the molten silicon is most
important for achieving high crystal quality. At SINTEF the temperature
was initially controlled by a single-loop PID controller. The controlling ele-
ment was the TRIAC input signal, which manipulates the heating element
power. Experiments at SINTEF reveal significant process disturbances to
the heating element power. These disturbances are most unfortunate for the
temperature control, and hence for the crystal quality.

This PhD thesis presents a cascade control strategy for compensating the
power disturbances quickly and effectively. The inner loop (slave control
loop) is a power control loop, which controls the heating element power
using the TRIAC input signal as controlling element. The outer loop (master
control loop) controls the temperature. The temperature controller sets the
reference (setpoint) to the power controller, which ensures that the power
requested by the temperature controller is actually applied to the heating
element, regardless of process disturbances. This work is presented in Paper
F.

Lee et al. (2005) is the only publication found that documents that a sug-
gested control strategy works on real-life CZ processes. Control of the heat-
ing element power is not discussed in this article, and is not included in a
process and instrument diagram (P&ID) that illustrates the applied control
strategy. Hence, to the candidate’s knowledge, Paper F is the only published
work where control of the heating element power is tested on a real-life CZ
process.

6. At the SINTEF CZ process a pyrometer is used as temperature sensor for
the purpose of controlling the temperature of the molten silicon. However,
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this pyrometer measures actually the temperature at a graphite ring, not in
the molten silicon. Hence, the temperature of the graphite ring is actually
controlled, not the temperature of the silicon. This pyrometer is referred to
as the graphite pyrometer.

During an experiment at SINTEF, a new pyrometer was tested. This py-
rometer measures the temperature directly in the molten silicon. The output
signal of the pyrometer seems reasonable based on the melting point of sili-
con, and based on measured temperature responses after steps in the TRIAC
input signal. Unfortunately, the pyrometer output signal has much high-
frequency measurement noise. This pyrometer is referred to as the silicon
pyrometer.

This PhD thesis presents a sensor fusion algorithm that takes the output
signals of the two pyrometers as inputs and computes an estimate of the
silicon temperature. The computed estimate attenuates the measurement
noise of the silicon pyrometer, while giving significant less phase lag than
traditional lowpass filtering. This work is presented in Paper G.

The candidate has not been able to find any scientific publications that
present work on attenuation of pyrometer measurement noise at the CZ
process. Hence, the algorithm presented in Paper G may be unique in its
application.

Papers A through G are presented in Part II of this PhD thesis. Papers A,
B, C, E, and F were presented at conferences and are included in the conferences’
respective proceedings. Papers D and G are published in the open-access journal
Modeling, Identification and Control (MIC). Papers A and B were drafted during
the candidate’s master thesis (Komperød (2008)). These papers were finished and
presented at a conference during the PhD study. The basic idea of Paper C was
also presented in the candidate’s master thesis. Paper C was written and presented
at a conference during the PhD study. For Papers D to G all the candidate’s efforts
were done during the PhD study. The candidate has not reached any significant
results that are not presented in Papers A through G.

From the candidate’s point of view, the most important work that has not
been considered during this PhD study is modeling of the dynamics (i) from the
heating element power to the silicon temperature, (ii) from the silicon temperature
to the ingot diameter, and (iii) from the ingot pulling speed to the ingot diameter.
When these dynamics are modeled, the models can be used for process control.
The sensor technology issues discussed above are the reason for not including this
research work in the PhD study.



Chapter 2

The Czochralski Crystallization
Process

The Czochralski (CZ) crystallization process is a batch process for converting mul-
ticrystalline materials into monocrystalline materials. A monocrystalline material
has a homogeneous crystal structure. The CZ process is named after its inventor,
the Polish scientist Jan Czochralski, who discovered the method in 1916. Lan
(2004) classifies the CZ process as one of three groups of melt growth technologies.
The other two groups are the Bridgman method and the zone-melting method.

Among the most important applications of the CZ process is production of
monocrystalline silicon. This PhD thesis considers only this application of the CZ
process. Monocrystalline silicon is used for solar cell wafers and in computers and
electronics. Solar cells based on monocrystalline silicon have higher efficiency than
those based on multicrystalline silicon.

The work on the CZ process included in this PhD thesis considers empirical
modeling (Paper D and Paper E), process control (Paper F), and state estimation
for the purpose of noise filtering (Paper G). In Paper C real-life process data
from the CZ process are used to compare different implementations of a system
identification algorithm. Mechanistic (first principle) modeling of the CZ process
is not considered in this PhD thesis. Section 1.2 presents some references on
mechanistic modeling of the CZ process.

2.1 Principle of Operation

Figure 2.1 illustrates the CZ batch process. The main components in the figure
are: (i) The crucible is a container holding the silicon. (ii) The seed crystal is used
to initiate the crystal growth. The seed crystal has the crystal structure that is to
be produced. (iii) The produced crystal, referred to as an ingot. The subfigures

11
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Figure 2.1: The main batch steps of the CZ process. Illustration from Wikipedia
(the illustration is released to the public domain by the copyright holder).

illustrate the main batch steps of the CZ process:

Subfigure 1 (leftmost) High-purity multicrystalline silicon is melted in the cru-
cible. Dopant impurity atoms, for example boron or phosphorus, may be
added to the silicon for producing n-type or p-type silicon.

Subfigure 2 When the silicon is melted, the tip of the monocrystalline seed crys-
tal is dipped into the melt.

Subfigure 3 When the tip of the seed crystal begins to melt, the seed crystal is
slowly elevated. As the seed crystal is lifted, the molten silicon solidifies on
the crystal. The seed crystal then grows radially and axially. During this
growing stage, the crystal structure of the seed crystal is extended onto the
solidifying silicon.

Subfigure 4 The produced crystal is referred to as an ingot. The ingot diameter
is controlled by manipulating the ingot pulling speed and the temperature of
the silicon melt. Stable growing conditions are essential for producing high
crystal quality. According to Lan (2004) ingots of diameter up to 16 inches
(approximately 400 millimeters) have been grown.

Subfigure 5 When the ingot has reached its desired length, or the crucible is
about to become empty, the crystal growth is terminated by slowly decreasing
the ingot diameter to zero.
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The CZ process is operated in an inert atmosphere, typical an argon atmo-
sphere. During the batch process, the seed crystal / ingot is rotated in one direc-
tion and the crucible is rotated in the opposite direction. The produced ingot will
later be cut radially into thin discs, which are used for solar cells and in computers
and electronics. Lan (2004) gives a survey on crystal growth, including the CZ
process, and provides an extensive number of references for further reading.

2.2 Control Objectives

The quality parameters of the silicon ingot include complex physical and chemical
properties, such as dislocation levels (violation of the desired crystal structure),
impurity content, and dopant distribution. These quality parameters describe the
ingot in microscopic perspective. Unfortunately, with today’s sensor technology,
it is not possible to measure these microscopic quality parameters online. The
candidate has neither found any publications where online estimation of these
parameters has been tested on real-life CZ processes. In addition to the microscopic
quality parameters, the ingot diameter is most important. If the diameter is too
large, there will be unnecessary cutting waste. If the diameter is too small, the
customers’ specifications are violated. The ingot diameter can be measured online
and is commonly used as a control objective.

The main reason for fluctuations in crystal quality parameters is variations
in growing conditions, such as variable ingot pulling speed and fluctuations in
thermal conditions, during the crystal growth. Therefore, control strategies for the
CZ process usually focus on maintaining stable growing conditions, in addition to
controlling the ingot diameter. Controlling the ingot diameter also contributes to
reducing fluctuations in the growing conditions, and thereby improving the crystal
quality. What are the optimal growing conditions vary through the progress of the
CZ batch (Irizarry-Rivera and Seider, 1997a; Lee et al., 2005).

2.3 Control Strategies

When developing control strategies, a most important choice is the sensors and
controlling elements (actuators), and their locations in the process. Without re-
ceiving reliable information of the process states, or without the ability to ma-
nipulate these states, even the most clever control algorithm will fall short. The
literature shows some variations with respect to the choice of sensors and control-
ling elements in the CZ process. Lee et al. (2005) presents a basic control strategy
for the CZ process. As pointed out in Section 1.2, Lee et al. (2005) is the only
publication found during the literature search which documents that a suggested
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Figure 2.2: A basic control strategy for the CZ process. The illustration is inspired
by Lee et al. (2005, Fig. 1). The shape of the heating element in the figure is not
meant to reflect the shape of the real heating element.

control strategy works on real-life CZ processes. This control strategy is illustrated
in Figure 2.2. The sensors are:

1. The ingot diameter [mm]. The diameter is measured at the melt / ingot
interface, because the diameter can not be changed once the silicon is solid-
ified.

2. The temperature [◦C] of the molten silicon.

The controlling elements shown in Figure 2.2 are:

1. The ingot pulling speed [mm/h].

2. The power [kW] to the heating element, which heats the crucible.

Please note that the ingot pulling speed, which is the output of the diameter
controller, is the process value of the growth controller. Hence, there is no sensor
for the ingot pulling speed.
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The sensors and controlling elements listed above are common for most control
strategies considered during the literature search. Some control strategies found in
literature also include additional sensors and / or controlling elements. However,
these control strategies are not documented to work on real-life CZ processes and
are therefore not further explored during this PhD study.

The control strategy shown in Figure 2.2 utilizes both single-loop control and
cascade control. The ingot diameter is controlled by the diameter controller (DC),
which is a single-loop controller. This controller has the measured ingot diameter
as sensor and uses the ingot pulling speed as controlling element. Increased pulling
speed gives decreased diameter.

The purpose of the growth controller (GC) is to grow the ingot at a desired
ingot pulling speed [mm/h] defined by the growth reference, while allowing the
DC to use the ingot pulling speed as its controlling element. This is achieved
as the GC indirectly manipulates the DC: The GC is the master controller of a
cascade control loop. The cascade slave controller is the temperature controller
(TC), which controls the temperature of the melt by manipulating the heating el-
ement power. When the melt temperature increases, the ingot diameter decreases.
Hence, the DC will then detect a diameter control error and manipulate the ingot
pulling speed to compensate this error. The control strategy in Lee et al. (2005)
also includes feedforward trajectories for all three controllers. These feedforward
trajectories are not shown in Figure 2.2. Also Gevelber et al. (2001) considers
the importance of such feedforward trajectories. According to Irizarry-Rivera and
Seider (1997a) and Lee et al. (2005), PID controllers are the most used controllers
in the CZ industry.

From the candidate’s point of view, the control strategy of Lee et al. (2005)
described above seems to be sub-optimal: The GC indirectly controls the ingot
pulling speed as explained above. The path from the GC output to the ingot
pulling speed goes through the physical ingot diameter. Hence, a temporary con-
trol error of the ingot diameter is necessary for the GC to manipulate the ingot
pulling speed, because the ingot pulling speed is only manipulated by the output
of the DC. This problem can probably be reduced, ideally prevented, by using a
decoupler from the GC output to the ingot pulling speed. It is desired that the GC
output has influence only on the ingot pulling speed, not on the ingot diameter.
As both the temperature reference and the ingot pulling speed influence the ingot
diameter, it should be possible to manipulate the ingot pulling speed to cancel the
ingot diameter response caused by changes in the temperature reference. Such a
decoupler must be a dynamic function based on process models. Chapter 5 sug-
gests how to use a model predictive controller (MPC) to control the CZ process
based on the sensors and controlling elements included in Figure 2.2.
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2.4 The Czochralski Crystallization Process at

SINTEF

The candidate was fortunate to have access to a real-life CZ process at SINTEF
Materials and Chemistry in Trondheim, Norway. A picture of this process is shown
in Figure 2.3. The black cylinder (“barrel”), label (1), contains the crucible and
the heating element. To simplify the explanation, this cylinder will be referred to
as the barrel. The large, blue device, label (2), is the ingot lifting mechanism. A
flexible metal pipe, label (3), is hanging from the lifting mechanism. This pipe
has an “accordion structure”. When the picture was taken, the lifting mechanism
was near its upper position. The locking mechanism holding the seed crystal is
thus hidden inside the flexible pipe. Label (4) is a flange, which the flexible pipe
is attached to.

When a CZ batch is prepared, the barrel is lifted away, and the crucible con-
taining the multicrystalline silicon is placed on a rotating device. The barrel is
thereafter lifted in place. The seed crystal is fastened in its locking mechanism.
Next, the lower end of the flexible pipe is attached to the flange at the top of the
barrel. Finally, the heating element power is turned on and gradually increased.
After a few hours the silicon is molten. The ingot lifting mechanism is then run
to its lower position, dipping the tip of the seed crystal into the melt. Thereafter,
the batch progresses as illustrated in Figure 2.1.

Figure 2.4 illustrates the inside of the barrel (label (1) in Figure 2.3) seen from
above. The grey area in center, label (A), is the molten silicon contained in the
crucible, label (B). The crucible is placed on a rotating device, label (C), shaped as
a cylinder with bottom, and without top. The red color, label (D), is the heating
element. The next circle, label (E), is a graphite ring. The outer circle, label (F),
represents insulation and the outer wall.

The SINTEF CZ process can produce ingots of diameter up to 4 inches (ap-
proximately 100 mm). The maximum silicon charge in the crucible is 15 kg.

The CZ process at SINTEF is operated through a control system, developed
from scratch by the engineers at SINTEF. The control system is based on a per-
sonal computer (PC) running National Instrument LabVIEW. The applied control
strategy is identical to the one presented in Figure 2.2, except that the growth con-
troller and the growth reference are not present. Instead, the temperature reference
is set by the human process operator.

The heating element power is manipulated by a triode for alternating current
(TRIAC). The output of the temperature controller is the input signal to the
TRIAC. The heating element power is currently measured, but not included in
the control strategy. There is significant dynamics from the TRIAC input signal
to the measured heating element power. This dynamics is modeled in Paper D
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Figure 2.3: A picture of the CZ process at SINTEF Materials and Chemistry in
Trondheim, Norway. Label (1) is the cylinder (“barrel”) containing the crucible.
Label (2) is the ingot lifting mechanism. Label (3) is a flexible pipe. Label (4) is
a flange, which the flexible pipe is attached to.
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Figure 2.4: The barrel (label (1) in Figure 2.3) seen from above. Label (A) is the
molten silicon. Label (B) is the crucible. Label (C) is a rotating device on which
the crucible is placed. Label (D) is the heating element. Label (E) is a graphite
ring. Label (F) is the insulation and the outer wall.
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Figure 2.5: The suggested cascade control strategy to be used for quicker and more
effective compensation of the power disturbances.

and Paper E of this PhD thesis. During experiments at the CZ process, process
disturbances to the heating element power were discovered. That is, there are
responses in the measured heating element power that can not be explained by
the TRIAC input signal. These responses are known to be process disturbances,
not measurement errors, because there are corresponding responses in the temper-
ature. The candidate then suggested to use cascade control for quicker and more
effectively compensate these process disturbances. The cascade inner loop (slave
control loop) is a power control loop, which controls the heating element power
using the TRIAC as controlling element. The cascade outer loop (master control
loop) is a temperature control loop, which sets the power reference (setpoint) to
the power controller. The power controller then ensures that the power requested
by the temperature controller is actually applied to the heating element, regardless
of process disturbances. This cascade control strategy is illustrated in Figure 2.5.
Paper F of this PhD thesis presents this cascade control strategy, including tests
at the SINTEF CZ process.

It is desirable to measure and control the temperature of the molten silicon
in the crucible. However, the temperature sensor at the SINTEF CZ process is
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a pyrometer which measures the temperature at the outer surface of the graphite
ring (label (E) in Figure 2.4). This pyrometer will be referred to as the graphite
pyrometer. Using the graphite pyrometer for temperature control, the temperature
of the graphite ring is actually controlled, not the temperature of the molten silicon.
Hence, this sensor location is based on the assumption that stable temperature of
the graphite ring implies stable silicon temperature.

During a CZ batch, engineers at SINTEF and the candidate tested a new
pyrometer which measures the temperature directly in the molten silicon. This
pyrometer will be referred to as the silicon pyrometer. The signal from the silicon
pyrometer seems reasonable based on the melting point of silicon and based on
measured temperature responses to steps in the TRIAC input signal. Unfortu-
nately, the output of this pyrometer has much high-frequency noise. An intuitive
and feasible solution to this issue is to use a traditional lowpass filter. However,
this approach will give a significant phase lag over the filter, which is unfortunate
for the temperature control.

Comparison of the graphite pyrometer and the silicon pyrometer shows that
there is quite high correlation between the signals of the two pyrometers. The
silicon pyrometer has the disadvantage of much measurement noise, but it has the
advantage of measuring the temperature directly in the molten silicon. On the
other hand, the graphite pyrometer has the disadvantage of not measuring the
silicon temperature directly, but it has the advantages of little measurement noise
and quite high correlation with the silicon pyrometer. Based on these advantages
and disadvantages, the candidate has developed a sensor fusion algorithm that
fuses the measurement signals of the two pyrometers. The algorithm provides
an estimate of the temperature of the molten silicon. For a given lowpass filter
cut-off frequency, this estimate gives the same amount of measurement noise as
a traditional lowpass filter, but with significant less phase lag. This algorithm is
published in Paper G of this PhD thesis.

At the SINTEF CZ process, the ingot diameter is measured by a camera. The
camera is located outside the CZ process and observes the ingot / melt interface
through a small window in the barrel (label (1) of Figure 2.3). Because of the
intense heat radiation from the process, a shield is covering the camera, protecting
it from the heat radiation, while letting through enough light for the camera to
observe the ingot / melt interface. The camera is constantly taking pictures of the
ingot / melt interface. These pictures are sent to LabVIEW running on the control
system computer. LabVIEW then uses image processing to estimate the ingot
diameter. The camera is located above and somewhat to the side of the ingot as
illustrated in Figure 2.6(a). The main disadvantage of this sensor technology is that
the diameter measurement fails if the diameter decreases rapidly. The ingot / melt
interface will then be hidden behind the ingot as illustrated in Figure 2.6(b).
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(Figures 2.6(a) and 2.6(b) are somewhat simplified. An accurate illustration of
the measurement issue would require three-dimensional drawings.)

During experiments at the SINTEF CZ process, the candidate faced this diam-
eter measurement problem when making steps at the heating element power and at
the ingot pulling speed for the purpose of observing the corresponding response of
the ingot diameter. One can argue that if there are perfect reference tracking and
disturbance rejection in the CZ process, the diameter will not decrease during the
crystal growth (except for the last stage, where the diameter is decreased inten-
tionally). However, if the diameter actually decreases, the diameter measurement
signal may be erroneous. It is then difficult to predict how the diameter controller
will respond to the erroneous signal. As a worst case scenario the erroneous signal
may indicate too large diameter. The diameter controller will then decrease the
diameter further. The candidate has not done any effort to quantify how small
diameter reduction that may trigger this measurement error. It is desirable to have
a diameter measurement also during the last stage of the crystal growth, where
the diameter is intentionally decreased to zero.

The power to the CZ heating element is taken from the 3 × 400 VAC (three
phase, 400 Volt, alternating current) power grid. The power is manipulated us-
ing a TRIAC at each phase (for simplicity the three TRIACs are presented as
one TRIAC in this PhD thesis, because the TRIACs share the same input sig-
nal). After the TRIACs, the power is transformed to DC (direct current), which
is connected to the heating element. The sensor for the heating element power
measures only the electric current of one phase before the TRIACs. Hence, the
power measurement can not properly detect voltage variations at the power grid
nor asymmetry between the phases. Neither varying power loss in the rectifier
(the converter from alternating current to direct current) can be detected. These
issues are of course significant disadvantages, making the power measurement less
reliable.
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(b) The ingot / melt interface is outside the
camera’s vision.

Figure 2.6: The figure to the left illustrates correct diameter measurement. The
figure to the right illustrates how rapidly decreasing diameter causes erroneous
diameter measurement, because the camera can not observe the ingot / melt in-
terface.



Chapter 3

The Copper Refining Process

Paper A and Paper B of this PhD thesis were presented at the conference SIMS
2008 and are included in the conference’s proceedings. The papers were drafted
during the candidate’s master thesis (Komperød (2008)). Both papers include
examples based on logged process data from the copper refining process at Xstrata
Nikkelverk in Kristiansand, Norway. The present chapter gives a brief presentation
of this process. A more thorough explanation of the process is not relevant for this
PhD thesis. The candidate’s only source of information for this plant is Hauge
(2007), which is a presentation of the plant that is not publicly available, and
personal communication with the author of this reference. The candidate has not
done any literature search on copper refining processes in general, because this is
not relevant for the PhD thesis. The illustrations and most of the text in this
chapter are from the candidate’s master thesis (Komperød (2008)).

Xstrata Nikkelverk has an annual capacity of 86,000 tonnes of nickel, 40,000
tonnes of copper, 5,200 tonnes of cobalt, and 115,000 tonnes of sulphuric acid
(Hauge, 2007).

Figure 3.1 illustrates the copper refining process. Only the most relevant chem-
ical components are shown in the figure. From the roasting furnace, copper oxide,
CuO, enters the copper leaching process. Sulphuric acid, H2SO4, is added for
leaching the copper. The following chemical reaction is the most significant with
respect to the copper refining process (Hauge, 2007)

CuO + H2SO4 → CuSO4 + H2O. (3.1)

Hence, the copper is present as the salt copper sulfate, CuSO4, dissolved in water.
This solution is pumped to the filter presses. In the filter presses nondissolved
metal oxides, including CuO, are removed from the solution. Leaving the filter
presses, the solution enters the scrap columns. These columns are filled with
copper metal for cementation of metals like silver (Ag) and bismuth (Bi) and the
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Figure 3.1: Overview of the copper refining process at Xstrata Nikkelverk. Only
the most relevant chemical components are shown.

metalloid tellurium (Te). During cementation these metals and metalloids are
reduced through a reaction with the copper. Here the reaction between bismuth
and copper is shown (Hauge, 2007)

Bi4+ + 2Cu → Bi + 2Cu2+. (3.2)

In the filters downstream of the scrap columns, these newly reduced metals
and metalloids are removed. After this last filtering, the solution enters the elec-
trowinning. In the electrowinning the copper is reduced to metallic form through
the following reactions (Hauge, 2007)

Cu2+ + 2e− → Cu, (3.3)

SO4
2− + H2O → H2SO4 +

1

2
O2 + 2e−. (3.4)

The copper reduction, (3.3), takes place on a copper cathode where the reduced
copper metal accumulates. Not all the copper is reduced in the electrowinning
process. The remaining copper sulfate and the sulphuric acid are recirculated by
leading them back to the leaching process (Hauge, 2007).

Figure 3.2 shows a very simplified process and instrument diagram (P&ID) of
the copper refining process. The diagram shows only the measurements that are
relevant for Paper A and Paper B of this PhD thesis. These papers consider three
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Figure 3.2: Simplified process and instrument diagram (P&ID) of the copper refin-
ing process at Xstrata Nikkelverk. FT means flow transmitter (flow sensor), and
QT means quality transmitter (quality sensor). The quality transmitter measures
the concentration of sulphuric acid.

process inputs, u1, u2 and u3, and one process output, y. Input u1 is the mass
flow [tonne/hour] from the roasting furnace to the copper leaching process. Input
u2 is the volumetric recirculation flow [m3/hour] from the electrowinning to the
copper leaching process. Input u3 is the volumetric flow [litre/hour] of sulphuric
acid to the copper leaching process. Output y is the concentration of sulphuric
acid [gram/litre] in the solution before the electrowinning.

In Paper A, u1, u2, u3, and y are considered. In Paper B, only u1 and y are
considered (u1 is referred to as u in Paper B). In Paper A the logged process data
are used as real-life examples of outlier detection and time delay estimation. In
Paper B two system identification algorithms are used to identify models of the
dynamics from u1 to y. The purpose of this modeling work is to validate that the
algorithms give identical models. System identification is the science of developing
dynamic models empirically.

A mechanistic (first principle) model of this copper refining plant is presented
in Lie and Hauge (2008). In Alic et al. (2009) the plant is modeled using Modelica.
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Chapter 4

System Identification

This PhD thesis includes seven publications, Papers A through G, which all con-
sider topics within systems and control engineering. Each of the seven publications
includes references that provide the necessary background information. In general,
topics within systems and control engineering are extensively covered in easily ac-
cessible books. Section 1.2 presents some good books that have been used during
this PhD study. From the candidate’s point of view, there is no need to explain
common topics of systems and control engineering in this PhD thesis. However,
one exception will be made: System identification is to some extent relevant for
all seven publications. System identification is the science of developing dynamic
models empirically. A brief introduction to this topic is given in this chapter.

4.1 System Identification Methods

For many fields of science and engineering, including systems and control engineer-
ing, it is essential to understand and model the dynamic behavior of physical and
chemical processes. There are basically two different approaches for such modeling.
One approach is to describe the process in terms of laws from physics and chem-
istry, for example Newton’s laws and the laws of thermodynamics. This modeling
approach is known as mechanistic modeling or first principle modeling. The other
approach is empirical modeling, where the process’ dynamic behavior is revealed
through observations of the process, either during normal operation or through
experiments. Mathematical models are then developed from these observations.

Maybe the most used method for empirical modeling is the ordinary least
squares (OLS) method, which estimates parameters for describing the output vari-
ables as mathematical functions of the regressors (input variables). This method
was developed by Gauss as early as 1794. Several closely related methods exist,
such as principal component regression (PCR) and partial least squares regression
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(PLS-R). OLS, PCR, and PLS-R are based on the assumption that there are linear
relationships between the regressors and the outputs, or that these relationships
can be rewritten to linear forms. There are also methods for empirical modeling of
systems with nonlinear relationships between the regressors and the outputs, for
example the nonlinear least squares method and artificial neural networks (ANN).

System identification is the science of developing dynamic models empirically.
Hence, system identification is a special case of empirical modeling. System identi-
fication can be divided into two different approaches: (i) Black-box modeling and
(ii) grey-box modeling. Using black-box modeling, the human model builder needs
in principle no knowledge of the process at all. That is, the process is a “black
box” in the sense that only the process’ inputs and outputs are observed, while
the mechanisms that make the process’ outputs respond to the process’ inputs are
hidden to the model builder. Hence, the black-box model is developed based only
on the observations of the process inputs and the corresponding process outputs.

Using grey-box modeling, the human model builder combines process knowl-
edge with empirical modeling. Typically, a model structure is developed based
on mechanistic (first principle) modeling, where one or more parameters are un-
known. These unknown parameters are then estimated using empirical modeling.
A closely related approach is to use process knowledge to preprocess the process
inputs and / or outputs before applying a black-box method. Assume for example
that the process inputs are measured voltage and measured electric current to a
heating element, and that the process output is the temperature of water heated
by this heating element. It is then reasonable to multiply the voltage and the
current to obtain the electric heating element power. A black-box model which
takes the electric power as input and the water temperature as output is then to
be identified.

In general, both for black-box modeling and for grey-box modeling, the human
model builder must decide a model structure, which parameters are to be identified
by the chosen system identification method. Some system identification methods
can estimate the model order. Ljung (1999) divides system identification methods
into three basic approaches:

The Prediction Error Method The prediction error method (PEM) identifies
the model parameters as the ones that minimize the prediction errors. A
scalar optimization criterion, V (θ), defines exactly what is meant by “min-
imizing the prediction errors”. Here, θ is the parameter vector, which con-
tains all the parameters to be identified. Hence, PEM forms an optimization
problem, which aims at minimizing V (θ) with respect to the elements of the
vector θ. The most commonly used optimization criterion is probably
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V (θ) =
1

2

N∑
k=1

εT
k (θ)Λ−1εk(θ). (4.1)

Here, k is the sample number in the dataset. εk(θ) is the prediction error,
which is a column vector of the same dimension as the process’ output vec-
tor. For example, if the process has three outputs, which are stacked in an
output column vector of three elements, εk(θ) is also a column vector of three
elements, each element representing the prediction error of an output. Λ−1

is a weighting matrix. For the common case of single output systems, the
optimization criterion simplifies to

V (θ) =
1

2

N∑
k=1

εk(θ)
2. (4.2)

The prediction error, εk(θ), is often understood as the one-step-ahead pre-
diction error. That is, V (θ) is optimized to give the best prediction of the
process outputs at timestep k based on all information available at timestep
k − 1. However, in some cases one chooses to minimize the ballistic simu-
lation error instead of the one-step-ahead prediction error. That is, εk(θ) is
then the ballistic simulation error.

Ljung (1999) considers PEM to be the basic system identification method.
Among the main advantages of PEM is that the method can be applied to
any model structures, including tailor-made grey-box model structures. The
PEM method is extensively covered in Ljung (1999). The PEM method is
used in Papers D, E, and G of this PhD thesis.

The Correlation Method The correlation method identifies the model param-
eters as the ones that give zero correlation between the prediction errors,
εk(θ), and previous process inputs and outputs. The basic idea is that if this
correlation is nonzero, then parts of the prediction error can be explained by
previous inputs and outputs. If all relevant information in previous inputs
and outputs was properly picked up in the model, no such information would
have been left in the prediction errors. By relevant information, it is here
meant relevant for predicting the process outputs.

The correlation method is not considered in any of the seven publications
included in this PhD thesis. This method will therefore not be given further
attention here. The interested reader is referred to Ljung (1999, Sections 7.5
and 7.6) for an introduction to this topic.
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The Subspace Method The subspace methods are a family of closely related
system identification algorithms. These methods are based on the ordinary
least squares method and avoid iterative optimization algorithms that are in
the risk of being trapped in local minima. Subspace methods are thoroughly
explained in Van Overschee and De Moor (1995) and Katayama (2005).

Paper B of this PhD thesis considers the relationship between the subspace
algorithm DSR E and a two-step ARX algorithm. Paper C considers im-
plementation of this two-step ARX algorithm. Paper A is also somewhat
related to subspace methods.

4.2 System Identification Versus Mechanistic Mod-

eling

When a process is to be modeled, it must be decided whether to use mechanistic
(first principle) modeling, black-box modeling, or grey-box modeling. This section
discusses some of the main advantages and disadvantages of these three modeling
approaches. Hauge (2003, Section 3.3) also discusses mechanistic versus empirical
modeling.

Empirical modeling, including system identification, depends on logged data
of the process’ inputs and outputs. In some cases such data are not available, for
example because the plant is not built yet. For a black-box or grey-box model
to be identified successfully, the logged process data must be informative in the
sense that they contain information of the complete process dynamics of interest,
not only a subset of the process dynamics, for example only a narrow frequency
range. Some system identification methods, including some subspace methods,
give biased models if the process data are logged in closed loop. The term “biased
models” refers to models that have systematic parameter errors. On the other
hand, mechanistic models can be build even if no logged process data are available,
provided that all model parameters are known.

System identification identifies parameters in a given model structure. The
choice of model structure must be done by the human model builder. Using
black-box modeling, it is very common to apply linear model structures. There
also exist several flexible, nonlinear black-box model structures, for example the
Hammerstein-Wiener (HW) model structure, the non-linear ARX and ARMAX
model structures, and model structures based on artificial neural networks (ANN).
However, a common problem using such flexible, nonlinear black-box model struc-
tures is that the structures have many parameters to be identified. The dataset
used for identification must then be very informative to be able to identify all
parameters uniquely. Such model structures are usually identified using PEM,
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which is in considerable risk of being trapped in local minima when many param-
eters are to be identified. Paper D of this PhD thesis considers nonlinear system
identification using the HW model structure. In this article, a general, flexible
HW model structure is used to model a part of the SINTEF CZ process. Dur-
ing the identification, PEM is trapped in a local minimum and gives a very poor
model. This problem is avoided by developing a tailor-made HW model structure
with few parameters based on human inspection of the dataset. As the number of
parameters is significantly reduced, the PEM identification succeeds.

A main advantage of using grey-box modeling over black-box modeling is that
the model structure is developed based on process knowledge. In addition to
explain the process’ true physics, a grey-box model structure should not have too
many parameters to be identified.

Using black-box modeling, the internal states of the models do not have physical
meanings. Hence, black-box models can not be used to estimate unmeasurable
physical states. On the other hand, mechanistic models may be used for this
purpose, which is very useful in many applications.

Developing mechanistic models may be very challenging and time-consuming
tasks, even for clever scientists and engineers. In such modeling work, it is often
necessary to make assumptions. In many cases it may be difficult to verify that
these assumptions actually are valid. Also, mechanistic models may depend on
parameters that are unknown.

Even if a process has very complex physics, the dynamic behavior from the
process inputs to the process outputs may be rather simple. Black-box modeling
considers only the behavior of the process’ input-output dynamics, not the physics
causing this dynamics. Hence, black-box modeling may give a simple and quite
accurate input-output model, even if the process’ physics is very complex. This
black-box advantage is demonstrated on the CZ process in Lee et al. (2005). In
this article, the dynamics from the ingot pulling speed to the ingot diameter,
and from the heater temperature to the ingot diameter, are modeled using very
simple, linear, empirical models. The process’ time-varying character is handled
by identifying different models for five different operating points. The models are
then alternated as the CZ batch progresses. On the other hand, modeling these
dynamics using mechanistic modeling may be a very challenging task.

When developing models, it is important to keep in mind the models’ intended
usages. Many processes are very complex, and it may be necessary to use a very
complex model to give an accurate description of the process’ dynamic behavior.
However, if the model is to be used for online applications, such as model predictive
control (MPC) or state estimation, it is most important to be aware that a limited
amount of computations can be done for each update step. If the model is too
complex, the computations may be so demanding that the computer will not be
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able to keep up with the real process. Hence, for many online applications, simple
models have to be used, even if complex models of better accuracy are available.
Black-box modeling has the advantage that the model complexity is specified by
the human model builder through the chosen model structure.

When modeling a process using system identification, a noise model may be
identified in addition to the input-output model. A noise model takes the one-step-
ahead prediction errors as inputs and corrects the model states in order to improve
the one-step-ahead prediction for the next timestep. Noise models are extensively
used in the publications included in this PhD thesis. A further explanation of this
very interesting topic will not be given here, as it is assumed to be well known
in the systems and control engineering community. The topic is well explained in
Ljung (1999, Chapter 3).

During this PhD study, the candidate has chosen to work with empirical mod-
eling rather than mechanistic modeling. There are three reasons for this choice:
(i) Based on the candidate’s literature search, there seems to be very little pub-
lished research on empirical modeling of the CZ process. (ii) The published work
on mechanistic modeling of the CZ process often results in rather complex mod-
els. It may be difficult to use these complex models for online applications, such
as model predictive control (MPC) and state estimation. (iii) Among the publi-
cations considered during the literature search, only Lee et al. (2005) presents a
control strategy that is documented to work on real-life CZ processes. This article
uses simple, empirical models.



Chapter 5

Further Work

Papers D, E, F, and G of this PhD thesis contain sections for further work / further
research. These suggestions will not be repeated here. This chapter will focus on
further work at the Czochralski (CZ) crystallization process at SINTEF Materials
and Chemistry in Trondheim, Norway. As pointed out in Section 1.3, there are
some measurement issues at this CZ plant, which forced the candidate to focus on
other parts of the CZ process than he would have done otherwise.

This chapter focuses on measuring, modeling, and control of the heating ele-
ment power, the temperature of the molten silicon, and the ingot diameter. The
candidate recommends to start the work with the heating element power, because
the other two variables strongly depend on the heating element power. In Sec-
tion 2.4 it is explained that the present sensor for heating element power can not
properly handle voltage variations at the power grid nor asymmetry between the
phases. Because the heating element power is essential for temperature control
and diameter control, the candidate strongly recommends to install a power sen-
sor which properly compensates for voltage variations and asymmetry. Modeling
and control of the heating element power are discussed in Papers D, E, and F of
this PhD thesis and will not be further discussed here.

The next issue is to measure the temperature of the molten silicon. Paper G
suggests a sensor fusion algorithm, which fuses the signals from two pyrometers in
order to estimate the silicon temperature. As pointed out in Paper G, more work
is required to model the nonlinear and time-varying character of the process for
the sensor fusion algorithm to work properly over a wide temperature range.

The ingot diameter measurement seems to work well except at rapidly decreas-
ing diameter. This issue is explained in Section 2.4. The candidate has not worked
with sensor technologies for measuring the ingot diameter. He has therefore insuf-
ficient knowledge to further discuss this issue. Hurle (1993) provides a discussion
on ingot diameter measurement.

When the sensors for heating element power, silicon melt temperature, and
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ingot diameter operate properly, the candidate recommends to do some positive
and negative steps in the heating element power at different temperatures, at
different ingot diameters, and at different levels of melt in the crucible. The
measured temperature and diameter responses will probably reveal much useful
information about the dynamics from the heating element power to the silicon
melt temperature and to the ingot diameter, including possible nonlinear and
time-varying process characteristics, length of the dominant time constants, and
time delays. Similarly, it is recommended to do steps in the ingot pulling speed
to observe the ingot diameter response. There may also be some dynamics from
the ingot pulling speed to the melt temperature, as changed silicon solidification
rate [kg/h] will change the heat power [kW] released due to heat of solidification.
It is essential that the temperature controller and the diameter controller are in
open loops (manual mode) during these experiments. Otherwise, the closed loops
dynamics will be observed, not the process’ dynamics.

The further modeling work will highly depend on the conclusions of the step-
response tests. From the candidate’s point of view, it is important to keep the
models simple as they are to be used for control purposes. As logged process data
are available, it seems reasonable to include these data in the modeling work by
applying a black-box or grey-box approach. For black-box or grey-box modeling,
it may be necessary to run experiments with a wider range of excitations than
only steps.

When process models are available, the next issue is process control. Control
of the heating element power is discussed in Paper F. It seems reasonable to use
the control strategy presented in Lee et al. (2005, Section 2) as a starting point
for controlling the silicon melt temperature and the ingot diameter, because this
control strategy is used in the commercial silicon industry and is not very complex.
This control strategy is also briefly discussed in Section 2.3 of this PhD thesis.

From the candidate’s point of view, a significant weakness of the control strat-
egy of Lee et al. (2005, Section 2) is that it seems not to take the process’ multi-
variable character properly into account. The control strategy has two references:
(i) the ingot diameter and (ii) the ingot pulling speed. There are also two con-
trolling elements: (i) the heating element power and (ii) the ingot pulling speed.
Hence, the ingot pulling speed is both a reference and a controlling element. (In
Lee et al. (2005) and in Section 2.3 of this PhD thesis, the reference of the ingot
pulling speed is referred to as the growth reference.) The main dependencies of the
process are illustrated in Figure 5.1. The dynamics from the ingot pulling speed
to the melt temperature is not included in the figure, because this is assumed to
be weak.

In Lee et al. (2005) the ingot diameter is controlled using the ingot pulling
speed as controlling element. It is assumed that manipulating the ingot pulling
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Figure 5.1: The main dependencies in the CZ process. The green color (to the left)
represents controlling elements. The blue color (to the right) represents variables
to be controlled.

speed gives faster response to the ingot diameter than manipulating the heating
element power, and that this is the reason for using the ingot pulling speed as con-
trolling element for the diameter controller. After manipulating the ingot pulling
speed to compensate a diameter error, the ingot pulling speed will be off its refer-
ence. This can only be compensated by manipulating the heating element power,
which will change the diameter. This introduces a new diameter error, which the
diameter controller corrects by manipulating the ingot pulling speed. Hence, a
well-calculated change of the heating element power will indirectly bring the in-
got pulling speed back to its reference at the expense of a temporary diameter
error. From the candidate’s point of view, it seems sub-optimal to introduce a
temporary diameter error to bring the ingot pulling speed back to its reference.
Section 2.3 suggests solving this issue using a decoupler. Later in this chapter, a
model predictive controller (MPC), which also handles this issue, is suggested.

It seems reasonable to assume that more variations in the heating element
power give more variations in the temperature gradients of the silicon melt. Fur-
ther, it seems reasonable to assume that varying temperature gradients conflict the
desire of stable growing conditions, which are essential for producing high crys-
tal quality. Hence, limiting power variations should be taken into account when
developing the control strategy and tuning the controller parameters.

There are several possible ways to implement the improvements suggested
above. From the candidate’s point of view, a reasonable approach will be to de-
velop a model predictive controller (MPC). The model to be used in the controller
should have the heating element power and the ingot pulling speed as inputs.
The outputs should be the ingot diameter and the silicon melt temperature. The
candidate suggests to include the following quantities in the MPC optimization
criterion:

1. The deviation between the ingot diameter and its reference (for limiting the
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diameter error).

2. The deviation between the ingot pulling speed and its reference (for keeping
the growth rate close to its reference).

3. The time-derivative of the heating element power (for limiting variations of
temperature gradients in the silicon melt).

4. The time-derivative of the silicon melt temperature (for providing stable
growing conditions).

Weighting the square of these quantities, the optimization criterion at timestep t,
Jt, which is used to compute the controller outputs at timestep t + 1, will then be
on the form

Jt =
t+N∑

k=t+1

[
w1

k(dk − dref
k )2 + w2

k(vk − vref
k )2 + w3

k

(
Pk − Pk−1

Δt

)2

(5.1)

+w4
k

(
Tk − Tk−1

Δt

)2
]

.

Here, N is the prediction horizon. wi are weights. d is the ingot diameter. v is the
ingot pulling speed. P is the heating element power. T is the temperature of the
silicon melt. Δt is the time between each update of the controller outputs. The
superscript “ref” refers to the reference (setpoint).

In Figure 5.1 it may seem somewhat strange that the ingot pulling speed is both
a controlling element and a variable to be controlled. Please note how smoothly
this issue is solved using an MPC controller. In Figure 5.1 the dynamics from
the ingot pulling speed to the silicon melt temperature is not drawn, because it
is assumed to be weak. However, if it turns out that this dynamics is significant
after all, it can easily be included in the MPC controller by including it in the
process model.

When a control strategy is implemented and properly tuned at the SINTEF
CZ process, one should consider to include feedforward trajectories in the control
strategy. Lee et al. (2005) and Gevelber et al. (2001) consider the importance of
such trajectories.



Chapter 6

Conclusions

This PhD study has focused on data preprocessing, empirical modeling, state es-
timation for the purpose of noise filtering, and process control. Applications to
real-life processes are emphasized, in particular the Czochralski (CZ) crystalliza-
tion process. The work on the CZ process is based on a CZ plant at SINTEF
Materials and Chemistry in Trondheim, Norway. Logged process data from the
copper refining process at Xstrata Nikkelverk in Kristiansand, Norway, is used in
a minor part of the research work.

When using logged process data for empirical modeling, outliers in the dataset
may cause poor model quality. Also when using logged process data for model
validation, outliers may result in erroneous conclusions. Ljung (1999) shows that
model residuals can be used for outlier detection. This PhD thesis presents an
alternative approach to the method of Ljung (1999). This approach is based on
identification of the innovation process directly from logged process data, i.e. with-
out relying on process models. It can be mathematically proved that the approach
presented in this PhD thesis turns out to be a special case of the method presented
in Ljung (1999). The suggested approach was tested on a dataset from Xstrata
Nikkelverk. Three outliers were detected in the dataset. These outliers were re-
placed by interpolation between their neighboring samples. After replacing the
outliers, the innovation process was re-identified. Replacing the outliers reduces
the mean squared innovation process by more than 80%. Hence, if this dataset was
to be used for empirical modeling, replacing these outliers would strongly improve
the model quality. The approach suggested in this PhD thesis was also used on a
dataset from the SINTEF CZ process. At this dataset two outliers were detected.

System identification is the science of developing dynamic models empirically.
Several commonly used system identification algorithms require the human model
builder to specify the time delays between the process inputs and outputs. The
System Identification Toolbox for MATLAB includes the command delayest,
which estimates such time delays. This PhD thesis shows that the time delay

37



38 CHAPTER 6. CONCLUSIONS

estimates produced by the command are sensitive to several factors which limit
the command’s practical usefulness. This conclusion is based on a simulation
study, as well as on logged process data from Xstrata Nikkelverk. The PhD thesis
suggests an improvement to delayest, which handles one sensitivity issue better
than the original command under certain ideal assumptions. However, also this
improved command has very limited usefulness when applied on datasets logged
from real-life processes.

DSR E is a system identification algorithm developed to give consistent model
estimates both for process data logged in open loop and for process data logged in
closed loop. This PhD thesis shows mathematically that the DSR E algorithm can
be approximated by a two-step ARX algorithm. This approximation is referred
to as DARX. The DSR E and DARX algorithms are compared on logged process
data from Xstrata Nikkelverk. As expected, the model developed by DARX is
identical to the model developed by DSR E. DARX is too similar to DSR E to
be considered a “new” system identification algorithm. The purpose of DARX
is to show the similarity between DSR E and a two-step ARX algorithm. From
the candidate’s point of view, DARX may be easier to understand and easier to
implement than DSR E. DARX has been developed only for single input / single
output (SISO) systems. It is believed that DARX can be extended to multiple
input / multiple output (MIMO) systems. However, such an extension has not
been considered in the PhD thesis. The second ARX step of DARX slightly differs
from the standard ARX form. This apparently prevents standard ARX software
from being used, such as the MATLAB command arx of the System Identification
Toolbox. This PhD thesis presents a rewriting of the second ARX step of DARX,
such that standard ARX software can be used also for this ARX step.

At the SINTEF CZ plant, the crucible containing the molten silicon is heated
by a heating element. The heating element power is manipulated using a triode for
alternating current (TRIAC). There is a dynamic relationship between the TRIAC
input signal (control system output) and the actual (measured) heating element
power. The PhD thesis presents system identification of this dynamics. Initially,
linear model structures were used. The results of this work revealed that the
dynamics is somewhat nonlinear. The candidate therefore used the Hammerstein-
Wiener model structure. As no independent dataset was available for model val-
idation, significant effort was put into reducing the number of model parameters,
in order to avoid overfitting. A good compromise between model fit and few pa-
rameters was achieved in a Hammerstein model. This model has only one more
parameter than a linear output error (OE) model. Still, the Hammerstein model
reduces the mean squared ballistic simulation error by a factor of six compared
to the linear OE model. The Hammerstein model was extended by adding a
noise model. This extended Hammerstein model reduced the mean squared one-
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step-ahead prediction error with 42% compared to a linear ARMAX model. The
extended Hammerstein model has one more parameter than the ARMAX model.

This PhD thesis also presents work on adaptive (recursive) system identification
of the dynamics described in the previous paragraph. Three ARMAX models, each
having four model parameters, are compared in terms of the mean squared one-
step-ahead prediction error. The first model is non-adaptive. The second model
is adaptive in all four model parameters. This model is referred to as the adaptive
ARMAX model. The third model has adaptive gain, while the pole, the zero,
and the noise model are fixed. This model is referred to as the adaptive gain
model. The choice of making only the gain adaptive is justified from the results of
the system identification work described in the previous paragraph. The adaptive
ARMAX model performs better than the non-adaptive model for some choices
of the forgetting factor. However, the adaptive ARMAX model’s performance is
very sensitive to the choice of the forgetting factor. An even more serious issue
of this model is that the parameter adaptation switches the model between being
stable and unstable. This issue makes the model useless for many applications.
The adaptive gain model outperforms the non-adaptive model and the adaptive
ARMAX model. The adaptive gain model is also very robust to the choice of the
forgetting factor. As the model’s pole is fixed, the model will always remain stable.

As explained above, at the SINTEF CZ plant the crucible containing the molten
silicon is heated by a heating element, which power is manipulated by a TRIAC.
Tight control of the silicon temperature is essential for producing high crystal
quality. Initially, the temperature was controlled by a single-loop PID controller,
using the TRIAC as controlling element. During experiments at the CZ process,
process disturbances were observed at the heating element power. That is, there
are responses in the power that can not be explained by the TRIAC. These power
disturbances influence the silicon temperature. This PhD thesis suggests a cas-
cade control strategy, which quick and effectively rejects the power disturbances.
The cascade inner loop (slave control loop) controls the heating element power,
using the TRIAC as controlling element. The cascade outer loop (master control
loop) controls the silicon temperature. The temperature controller sets the ref-
erence (setpoint) to the power controller. The power controller’s ability to quick
and effectively reject the power disturbances is demonstrated on the SINTEF CZ
process.

At the SINTEF CZ process, the pyrometer used for temperature control mea-
sures the temperature of a graphite material, not the temperature of the molten
silicon. This pyrometer is referred to as the graphite pyrometer. Hence, using
the graphite pyrometer for temperature control, the temperature of the graphite
material is actually controlled, not the temperature of the molten silicon. During
a CZ batch, another pyrometer was tested. This pyrometer is able to measure the
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temperature directly in the molten silicon. This pyrometer is referred to as the
silicon pyrometer. The output signal of the silicon pyrometer seems reasonable
based on the melting point of silicon, and based on the signal’s response to steps
in the heating element power. Unfortunately, this signal has much high-frequency
measurement noise. The noise can be attenuated using a traditional lowpass filter.
However, such filtering will cause phase lag over the filter, which is unfortunate
for the temperature control. This PhD thesis presents a sensor fusion algorithm
which estimates the temperature of the molten silicon. The algorithm takes the
silicon pyrometer and the graphite pyrometer as inputs. For a given lowpass filter
cut-off frequency, the algorithm’s temperature estimate has the same amount of
measurement noise as a traditional lowpass filter, but significantly less phase lag.
The sensor fusion algorithm works well within a limited temperature range. For
the algorithm to handle larger temperature changes properly, more work must be
done to understand and model the CZ process’ nonlinear character.

The results presented above have been published in two journal articles and
five conference papers. The conference papers are included in the conferences’
respective proceedings.
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Paper A

Preprocessing of Experimental
Data for Use in Model Building
and Model Validation

The candidate presented this paper at the 49th Scandinavian Conference on Sim-
ulation and Modeling (SIMS 2008). The paper is also included in the conference’s
proceedings. The conference was held October 7th-8th 2008 at Oslo University
College, Oslo, Norway. The paper was drafted during the candidate’s master the-
sis (Komperød (2008)). The paper was finished and presented at the conference
during the candidate’s PhD study. The method for outlier detection presented in
this paper is also applied in Paper D. After the paper, on page 59, a few consid-
erations of the paper are discussed.
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Abstract

A method for outlier detection based on the residual
of system identification is presented in [1]. An alter-
native approach to this method is derived in this pa-
per; outliers may cause large innovation processes (ab-
solute values). Hence, such outliers may be detected
by searching for samples having large innovation pro-
cesses. In [2] it is proved that the innovation pro-
cess can be identified directly from system input and
system output data, without relying on models. This
method is therefore well suited for outlier detection. In
[3] it is shown that the innovation process identified
by the method of [2] is identical to the residual of an
ARX identification. Hence, the method to be derived
in this paper can mathematically be proved to be a spe-
cial case of the method presented in [1]: If an ARX
algorithm is chosen for the system identification step
in the method of [1], then the method of [1] and the
method to be presented in this paper become mathe-
matically identical. The latter method is tested on ex-
perimental data from the copper refining process of Xs-
trata Nikkelverk, Kristiansand, Norway. The MATLAB
command delayest is used to estimate time delays
between system inputs and system outputs in a dataset.
A simulation study of delayest shows that the com-
mand is sensitive to: (i) The specified model order.
(ii) Stochastic elements in the dataset. (iii) Whether
all time delays are estimated during one execution of
delayest, or whether only one time delay is esti-
mated for each execution. delayest is also tested
on experimental data from Xstrata Nikkelverk. These
tests confirm that delayest is sensitive to the factors
listed above.

Keywords
Data preprocessing; Outlier detection; Time delay esti-
mation; Time delay identification.

1 Introduction
Modeling of dynamic systems is a most important part
of today’s science and engineering. Dynamic mod-
els serve many purposes. For example: (i) Training
of process operators, pilots, and astronauts. (ii) Ex-
ploring systems in a different time scale than physical
time. (iii) Testing systems by simulations before they
are manufactured. For example ships, airplanes, mis-
siles, and sub-sea oil installations. (iv) Model-based
control, such as LQG control, model-based predictive
control (MPC), linear and nonlinear decouplers, Smith
predictors, etc.

In those cases where the systems to be modeled already
exist and it is possible to log data from the systems,
it may be desirable to include such experimental data
in the modeling work. For mechanistic (first princi-
ple) modeling, experimental data may be used for pa-
rameter estimation. For empirical modeling (black-box
modeling), including system identification, the models
are built directly from experimental data. Experimental
data is also essential with respect to model validation.

Experimental data logged from real-life systems, such
as process industry, often requires preprocessing before
they can be used for model building and model valida-
tion. This paper considers two sorts of data preprocess-
ing that are frequently required on experimental data:

1. Outlier detection: In [1], a method for outlier de-
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tection is presented. This method is based on the
residuals of system identification: Samples having
particularly large residuals (one-step-ahead pre-
diction errors) should be inspected further as they
may be associated with outliers. An alternative ap-
proach to this method for outlier detection will be
derived in this paper.

2. Time delay estimation: The MATLAB command
delayest is included in the MATLAB System
Identification Toolbox. This command is used to
estimate time delays between system inputs and
system outputs in a dataset. A simulation study of
delayest is presented in this paper. A sugges-
tion for improvement that will make delayest
less sensitive to the specified model order is also
presented.

Both with respect to outlier detection and with respect
to time delay estimation, real-life examples from the
copper refining process at Xstrata Nikkelverk, Kris-
tiansand, Norway, will be presented. Three process in-
puts, u1, u2, and u3, and one process output, y, are con-
sidered in the examples. u1 is the mass flow from the
roasting furnace to the copper leaching process. u2 is
a recirculation flow from after the electro winning back
to the copper leaching process. u3 is the flow of sul-
phuric acid (H2SO4) to the copper leaching process. y
is the concentration of sulphuric acid before the electro
winning.

2 Notation and Definitions
The inputs to a system are collected in the input col-
umn vector, u ∈ R

r×1, where r is the number of in-
puts. The outputs from a system are collected in the
output column vector, y ∈ R

m×1, where m is the num-
ber of outputs. A sub-script to these vectors refers to
the sampling number. A super-script refers to the input
or output number. For example u2

k refers to input no. 2
at sample no. k.

The symbol τ refers to true time delay (number of sam-
ples). τ is in general unknown and is subject to estima-
tion. A super-script to τ , for example τ2, refers to the
time delay from input u2 to the output y. τ̂ refers to
time delay estimates. τ̄ refers to a time delay given as
argument to a system identification algorithm. τ̄ may
or may not be equal to the actual time delay, τ .

Def. 1 (Innovation Process). The system output, yk,
may be decomposed into two components: (i) The com-
ponent of yk that can be predicted from previous inputs,
u−∞, . . . , uk−1, and previous outputs, y−∞, . . . , yk−1,
assuming no model errors. This predictable component
of yk is referred to as ȳk. (ii) The complement of ȳk,
i.e. the component of yk that can not be predicted from
previous inputs and previous outputs. This is referred
to as the innovation process, εk. Hence, εk = yk − ȳk.

For bi-proper systems, i.e. systems having direct feed-
through from the input, uk, to the output, yk, the current
input, uk, may also be included in the prediction of yk.

For simplicity, only strictly proper systems, i.e. sys-
tems without direct feed-through from uk to yk, will be
considered in this paper.

The symbol ε is used for the true innovation process,
which in general is unknown. The symbol ε is used for
the identified innovation process. The identified inno-
vation process is in general not exactly identical to the
true innovation process.

Def. 2 (Orthogonal Projection). The orthogonal pro-
jection of G onto H , G/H , is defined as in Eq. (1) [2].

G/H
def= GHT (HHT )†H (1)

The super-script † refers to the Moore-Penrose pseudo-
inverse.

Def. 3 (Complement of Orthogonal Projection). The
complement of the orthogonal projection of G onto H ,
GH⊥, is defined by Eq. (2) [2].

GH⊥ def= G − G/H
def= G − GHT (HHT )†H (2)

Def. 4 (ARMAX Model Form). Eq. (3) defines the gen-
eral form of ARMAX models [1].

A(q)yk = B(q)uk + C(q)εk (3)

In Eq. (3), q is the time-shift operator of the Z-
transform, i.e. q−1 yk = yk−1. The symbol q is com-
monly used within the subject of system identification.
The symbol z is used in many other contexts. A(q),
B(q), and C(q) are polynomials. nA, nB , and nC are
the number of coefficients in the polynomials that in
general are different from 1. The A(q) polynomial and
the C(q) polynomial are monic polynomials, i.e. the co-
efficient of their highest order term is 1.

Def. 5 (ARX Model Form). Eq. (4) defines the general
form of ARX models [1].

A(q)yk = B(q)uk + εk (4)

A(q) is a monic polynomial.

3 Outlier Detection
Outliers may be data that for one sample, or for a few
samples, go to unlikely values, and then back to normal
values. Such outliers can usually be seen by plotting
the dataset. However, as shown in [1], outliers may also
be data that are not unlikely values, but rather average
values. These data can for example be outliers because
the derivative of the data changes unlikely fast, i.e. the
second derivative has unlikely large absolute value.

In [1, Example 14.1] the following method for outlier
detection is suggested: (i) Identify an empirical model
based on the dataset using a system identification al-
gorithm. In [1, Example 14.1], a 3rd order ARMAX
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model is used. (ii) Run a one-step-ahead prediction
simulation using the empirical model and the dataset.
(iii) Plot the one-step-ahead prediction errors from the
simulation to detect outliers: Large prediction errors
(absolute values) may be caused by outliers.

3.1 An Alternative Approach to a Method for Out-
lier Detection Presented in [1]

This subsection derives an alternative approach to the
method for outlier detection presented in [1]. This al-
ternative approach is based on sub-space system identi-
fication, in particular the work presented in [2].

Most real-life systems do have some innovation pro-
cess, ε. The innovation process is typically caused by
unmeasured process disturbances and / or measurement
noise. Assume that there is a measurement error in one
of the variables used to compute ȳk or in yk that is sig-
nificantly larger than the normal measurement noise.
This is likely to cause a mismatch between yk and ȳk

that is also significantly larger than normal. According
to Def. 1: Assuming that the model used to compute

ȳk has no modeling error, then the mismatch between
yk and ȳk is the innovation process, εk. Hence, mea-
surement errors may be detected by looking for samples
having unusually large innovation processes (absolute
values).

In [2] it is proved that for linear time-invariant (LTI)
systems, the innovation process, εk, can be identified
directly from previous inputs, u−∞, . . . , uk−1, and pre-
vious outputs, y−∞, . . . , yk−1, without relying on mod-
els. As infinite number of preceding samples can not be
used in any practical problems, only the J preceding
samples are used, where J is a user-specified param-
eter. The identified innovation process, εk, is the com-
plement of the orthogonal projection of current outputs,
yk, onto inputs and outputs from the J preceding sam-
ples, uk−J , . . . , uk−1 and yk−J , . . . , yk−1 [2]. This can
mathematically be written as Eq. (5). The matrices of
Eq. (5) are as presented in Eq. (6) to Eq. (8). K is the
number of columns of the matrices of Eq. (6) to Eq. (8)
[2, 4, 3]. (Eq. (5) to Eq. (8) are obtained by choosing
L = 1 and g = 0 in the derivation of [2], as shown in
[5, 4, 3].)

εJ|1 = YJ|1

[
U0|J
Y0|J

]⊥
(5)

YJ|1 = [ yJ yJ+1 . . . yJ+K−1 ] ∈ R
m×K (6)

εJ|1 = [ εJ εJ+1 . . . εJ+K−1 ] ∈ R
m×K (7)

[
U0|J
Y0|J

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u0 u1 . . . uK−1

u1 u2 . . . uK

...
...

. . .
...

uJ−1 uJ . . . uK+J−2

y0 y1 . . . yK−1

y1 y2 . . . yK

...
...

. . .
...

yJ−1 yJ . . . yK+J−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
(r+m)J×K (8)

The method for identifying the innovation process
given by Eq. (5) to Eq. (8) is equivalent to the first step
of the DSR E subspace system identification algorithm
[5, 4]. The DSR E algorithm is presented in [5, 4].
DSR E should not be confused with the DSR algorithm,
although DSR and DSR E are closely related.

The identified innovation process, εk, is plotted for all
timesteps, k (except for the first J timesteps, which are
used for initialization purposes). The upper subplot of
Fig. 1 shows an ε plot. Timesteps having particularly
large innovation processes (absolute values) can easily
be identified as peaks in the ε plot. These timesteps
and the surrounding timesteps are candidates for being
outliers and should be subject to further inspection.

In [3] it is proved that the innovation process identified
by the method of [2], i.e. Eq. (5) to Eq. (8), is mathe-
matically identical to the residual from identification of
a strictly proper ARX model where nA = nB = J .
This residual can also be expressed as the one-step-
ahead prediction error when simulating the identified
ARX model on its own training dataset. Hence, the
method for outlier detection based on the identified in-
novation process, as presented above, is a special case
of the method explained in [1, Example 14.1]: If choos-
ing a strictly proper ARX model where nA = nB = J
in the system identification step of [1, Example 14.1],
then the two methods become mathematically identical.

With respect to the method of [1] and the method de-
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Fig. 1 The innovation process identified by Eq. (5) to
Eq. (8) before (upper subplot) and after (lower subplot)
outliers have been removed.

rived above, it is most important to be aware that these
methods identify samples having large identified inno-
vation processes / prediction errors. One should not
conclude that samples having large identified innova-
tion processes in general are equivalent to samples as-
sociated with outliers: (i) Large innovation processes
may be caused by other factors than outliers, for exam-
ple large, sudden process disturbances. In other words;
large innovation process at a sample indicates that this
sample and the surrounding samples should be objects
to further inspection. Whether it actually is an outlier,
and if so, how to handle it, is a decision to be taken by
the human data analyzer (or by other methods). (ii) The
identified innovation process may be significantly dif-
ferent from the true innovation process. For example,
the method of [1] and the method derived above assume
linear time-invariant (LTI) systems (unless a nonlinear
system identification method is used in the method of
[1]). Strongly nonlinear systems may cause large de-
viations between the true innovation process and the
identified innovation process. (iii) There may also be
outliers that do not cause particularly large innovation
process and are therefore not detected by these meth-
ods.

3.2 Outlier Detection on Industrial Data

This subsection presents a real-life industrial example
of the method for outlier detection presented in Sub-
sec. 3.1. The example is based on experimental data
from the copper refining process at Xstrata Nikkelverk,
Kristiansand, Norway. This process is briefly explained
in Sec. 1.

The innovation process identified in a dataset from Xs-
trata Nikkelverk is shown in the upper subplot of Fig. 1.
The innovation process was identified using Eq. (5) to
Eq. (8). The three largest peaks of the ε plot, indicated
by arrows, will be considered in this example. The ex-
act sample numbers of these peaks must be identified.
The zoom options of MATLAB figures may be used for
this purpose.

Fig. 2 The process output, y, zoomed in at the samples
marked by arrows in Fig. 1.

The subplots of Fig. 2 show the output, y, zoomed in
at the samples indicated by arrows in Fig. 1. The solid
lines in Fig. 2 show y before outliers were removed.
The samples indicated by arrows in Fig. 1 are all at
samples where the derivative of y changes very fast, i.e.
the second derivative has high absolute value. These
data were classified as outliers and were removed by
linear interpolations across them. These interpolations
are shown by dotted lines in Fig. 2. After these outliers
were removed, the innovation process was re-identified
using Eq. (5) to Eq. (8). The new ε plot is shown in
the lower subplot of Fig. 1. The three peaks marked
by arrows in the upper subplot are no longer present.
Hence, it is reasonable to conclude that these peaks
were caused by the outliers shown in Fig. 2.

Consider criterion V defined by Eq. (9).

V
def=

1
N

N∑
k=1

εk
2 (9)

In Eq. (9), N is the number of samples in the dataset
(minus the number of samples used for initialization
purposes and to compensate for time delays). Criterion
V is a commonly used model fit criterion within the
subject of system identification as ε is identical to the
one-step-ahead prediction error. The value of V was
reduced by more than 80% when removing the outliers.
Hence, removing the outliers resulted in significantly
better model fit.

4 Time Delay Estimation
When building models using system identification, time
delays from system inputs to system outputs may cause
problems if not handled properly. If the time delays are
not compensated for, a large number of model states
may be necessary to model the dynamics of the time
delays. Too many model states are unfortunate because
the identified models may be over-fitted. Over-fitted
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models may perform very well on their respective train-
ing datasets, but such models will in general perform
poorly on independent validation datasets. If the time
delays are known, they may be compensated for by
shifting the input dataseries with respect to the output
dataseries.

This section considers the MATLAB command
delayest, which is included in the MATLAB Sys-
tem Identification Toolbox [6]. This command serves
the purpose of estimating time delays from the system
inputs, u, to a system output, y, based on a dataset. The
command can only handle single output systems, i.e.
y ∈ R

1×1. Quoting [6]:

The delayest command estimates the time delay in
a dynamic system by estimating a low-order, discrete-
time ARX model with a range of delays, and then choos-
ing the delay that corresponding to the best fit.

Subsec. 4.1 presents a simulation study of delayest.
This subsection also includes a suggestion for improve-
ment of delayest. In Subsec. 4.2, delayest
is tested on experimental data from the copper refin-
ing process at Xstrata Nikkelverk; the estimates of
delayest are compared to the estimates of [7], which
are based on process knowledge.

The following properties of the time delay estimates
made by delayest will be considered: (i) The ac-
curacy of the estimates, i.e. how close the estimates are
to the actual time delays (or to the estimates of [7]).
(ii) Whether the time delay estimates are sensitive to
the model order specified to delayest. (iii) Whether
the time delays estimates are sensitive to stochastic el-
ements in the dataset. (iv) Whether the time delay es-
timates are sensitive to whether the system is consid-
ered as one 3 × 1 system or as three 1 × 1 systems.
In the 3 × 1 case, all three inputs, u1, u2 and u3, are
provided to delayest in one single execution of the
command. delayest then estimates τ̂1, τ̂2 and τ̂3 by
making ARX models based on u1, u2 and u3, and of
course y. In the 1 × 1 case, only one input is provided
to delayest at each execution. Hence, three execu-
tions are needed to estimate the three time delays. The
1 × 1 case is to be preferred with respect to computa-
tional efficiency [3].

4.1 Simulation Study of Time Delay Estimation

In the experiments presented in this subsection, two
models are used: (i) A single input, single output
(SISO) ARMAX model on the form of Eq. (10). This
model is referred to as model no. 1. (ii) A multiple in-
put, single output (MISO) ARMAX model on the form
of Eq. (11). This model is referred to as model no. 2.

A(q)yk = B1(q)u1
k + C(q)εk (10)

A(q)yk = B1(q)u1
k + B2(q)u2

k (11)

+B3(q)u3
k + C(q)εk

For the polynomials of Eq. (10) and Eq. (11), n =
nA = nB1 = nB2 = nB3 = nC = 6. Both mod-
els are asymptotically stable.

The experiment to be presented in the following aims to
explore the accuracy of delayest and which factors
the command are sensitive to. delayest is tested on
two datasets generated by simulations based on model
no. 2. The input data used in the simulations, u1, u2,
and u3, are based on experimental data from Xstrata
Nikkelverk. One dataset was generated as no innova-
tion process, ε, was applied to the simulation. This
dataset is referred to as the deterministic case. The
other dataset was generated as a white noise sequence
was applied for simulating the innovation process, ε.
This dataset is referred to as the stochastic case. Except
for the innovation process, the datasets were generated
under identical condition. After the simulations, the in-
put dataseries, u1, u2 and u3, are shifted with respect to
the output, y, so that τ1 = 20, τ2 = 30, and τ3 = 50.
The deterministic and the stochastic datasets are then
provided to delayest for estimation of the time de-
lays, τ1, τ2, and τ3.

delayest requires the user to specify intervals of
possible values for τ̂1, τ̂2, and τ̂3. delayest will
only consider these intervals when estimating time de-
lays. In the simulation study presented here, these in-
tervals are set to ±10 the true time delays: τ̂1 is spec-
ified to be in the interval [10, 30], τ̂2 is specified to be
in the interval [20, 40], and τ̂3 is specified to be in the
interval [40, 60]. delayest also requires the user to
specify n̄A, n̄B1 , n̄B2 , and n̄B3 of the ARX models to
be identified during execution of the command. The bar
symbol is here used to avoid confusion with the corre-
sponding values of the ARMAX models, i.e. Eq. (10)
and Eq. (11). In this simulation study, these values are
always chosen so that n̄A = n̄B1 = n̄B2 = n̄B3 . This
value will be referred to as n̄.

Fig. 3 to Fig. 6 show the estimates of delayest, τ̂1,
τ̂2, and τ̂3, plotted as functions of n̄. Fig. 3 shows the
deterministic 3 × 1 case, Fig. 4 shows the stochastic
3 × 1 case, Fig. 5 shows the deterministic 1 × 1 case,
and Fig. 6 shows the stochastic 1 × 1 case. These sim-
ulations show that the estimates of delayest are sen-
sitive to:

1. The value of n̄. If delayest was not sensitive to
the value of n̄, then the curves in Fig. 3 to Fig. 6
would have been horizontal lines.

2. Stochastic elements in the dataset. If delayest
was not sensitive to stochastic elements, then the
curves of Fig. 3 and Fig. 4 would have been iden-
tical. Likewise for Fig. 5 and Fig. 6.

3. Whether the 3× 1 approach or the 1× 1 approach
is used. If delayest was not sensitive to this,
the curves of Fig. 3 and Fig. 5 would have been
identical. Likewise for Fig. 4 and Fig. 6.

In the simulations presented in Fig. 3 to Fig. 6,
delayest estimates τ1, τ2, and τ3 exactly correct
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Fig. 3 Time delay estimates, τ̂1, τ̂2, and τ̂3, plotted as
functions of n̄ for the deterministic 3 × 1 case.

Fig. 4 Time delay estimates, τ̂1, τ̂2, and τ̂3, plotted as
functions of n̄ for the stochastic 3 × 1 case.

Fig. 5 Time delay estimates, τ̂1, τ̂2, and τ̂3, plotted as
functions of n̄ for the deterministic 1 × 1 case.

Fig. 6 Time delay estimates, τ̂1, τ̂2, and τ̂3, plotted as
functions of n̄ for the stochastic 1 × 1 case.
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only when the following three criteria are met: (i) The
correct polynomial orders are specified, i.e. n̄ = 6.
(ii) Stochastic elements are not present in the dataset,
i.e. ε = 0. (iii) The 3 × 1 approach is used. In any
other cases, delayest fails to make exactly correct
estimates for all three time delays.

In particular the deterministic 3×1 case, i.e. Fig. 3, and
to some extend also the other figures show that there is a
systematic error present: The time delay estimates tend
to decrease as n̄ increases. In the deterministic 3 × 1
case, τ̂2 and τ̂3 decrease as n̄ increase from n̄ = 6 until
τ̂2 and τ̂3 saturate at the lower ends of their specified
intervals, i.e. at n̄ = 16. Over the interval n̄ ∈ [6, 16],
n̄ has increased by 10 and τ̂2 and τ̂3 have decreased by
10.

In the following, a suggestion for improvement of
delayest is derived. This improvement makes
delayest less sensitive for the value of n̄. The im-
provement works only for deterministic, linear time-
invariant (LTI) systems. The derivation presented here
is based on a single input, single output (SISO) system.
In [3] it is shown that this improvement can easily be
extended to multiple input, single output (MISO) sys-
tems.

Based on model no. 1, a deterministic dataset was gen-
erated using an input sequence, u1, from a dataset of
Xstrata Nikkelverk. No innovation process, ε, was ap-
plied to the simulation. The input dataserie, u1, was
shifted with respect to the output dataserie, y, so that
τ1 = 20.

Please note the difference between the symbols ε and
ε. ε is the innovation process generated by a random
generator. In this derivation ε = 0. ε is the one-step-
ahead prediction error. In the following, ε refers to the
one-step-ahead prediction error as a model is simulated
on its own training dataset.

For a given dataset and a given system identification al-
gorithm, in this case ARX, the one-step-ahead predic-
tion error, ε, and inherently the model fit criterion, V , as
defined in Eq. (9), are functions of the parameters speci-
fied to the ARX system identification algorithm: (i) The
specified time delay, τ̄1, and (ii) the specified values of
n̄A and n̄B1 . In this derivation, n̄A and n̄B1 are always
chosen so that n̄A = n̄B1 . This value will be referred
to as n̄. Hence, ε = ε (τ̄1, n̄) and V = V (τ̄1, n̄).

Fig. 7 shows V plotted as function of τ̄1 for n̄ = 5, for
n̄ = 6, and for n̄ = 12. Please note that: (i) For n̄ = 5,
V does not reach zero for any value of τ̄1. (ii) For n̄ =
6, i.e. the same value as for model no. 1: V does reach
zero (< 10−28) for τ̄1 = τ1 = 20, i.e. for the correct
time delay, but not for any τ̄1 �= τ1. (iii) For n̄ = 12,
V is zero (< 10−28) for τ̄1 ∈ [14, 20]. Values below
10−28 are considered as zero as it is assumed that these
values differ from zero only due to numerical reasons.

Further simulations were run, which are not presented
in this paper. These simulations indicate that the ob-
servations presented in Fig. 7 can be generalized to the
following two statements; Statement (i): For n̄ < n, V

Fig. 7 V plotted as function of τ̄1 for n̄ = 5, for n̄ = 6,
and for n̄ = 12. The Y axis is logarithmic.

does not reach 0 for any τ̄1. Statement (ii): For n̄ ≥ n,
V = 0 for any τ̄1 ∈ [τ1 − (n̄ − n), τ1].

Statement (i) has a trivial explanation: As the polyno-
mials of the ARX model have lower order than the poly-
nomials of model no. 1, which was used to generate the
dataset, the ARX model does not have enough poles
nor enough zeros to perfectly explain the dynamics of
model no. 1.

Statement (ii) can be explained by considering the ARX
regression matrix. For simplicity, a deterministic SISO
system were n = nA = nB = 2 is used for illustration.
The time delay of the system is τ = 20 samples. Hence,
the system is on the form of Eq. (12).

yk = −a1yk−1 − a2yk−2 + b1uk−20 + b2uk−21 (12)

Now assume that a dataset is generated by applying an
input signal, u, to the system of Eq. (12). Further as-
sume that u is not a periodic signal. The generated
dataset is now to be used for system identification of the
system presented in Eq. (12). If the value of n is known,
but the time delay, τ , is unknown, the ARX regression
problem is on the form of Eq. (13). For simplicity, only
one row of the regression matrix is shown.

yk = (13)

[ −yk−1 −yk−2 uk−τ̄ uk−τ̄−1 ]

⎡
⎢⎢⎢⎢⎣

ā1

ā2

b̄1

b̄2

⎤
⎥⎥⎥⎥⎦

In Eq. (13), τ̄ is a time delay specified to the ARX sys-
tem identification algorithm. For this ARX regression
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problem to have no residual, the columns uk−20 and
uk−21 must be included in the regression matrix. This
is true if, and only if, τ̄ is chosen identical to the true
time delay, i.e. 20 samples. For any τ̄ �= 20, there will
be residuals. Hence, the true time delay can be identi-
fied by considering the residual for various values of τ̄ .

This is identical to the curve representing n̄ = 6 shown
in Fig. 7.

If also the value of n is unknown, an arbitrary n̄ ≥ n is
chosen. Assume n̄ = 4 is chosen. The ARX regression
problem is now on the form of Eq. (14).

yk = [ −yk−1 −yk−2 −yk−3 −yk−4 uk−τ̄ uk−τ̄−1 uk−τ̄−2 uk−τ̄−3 ]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ā1

ā2

ā3

ā4

b̄1

b̄2

b̄3

b̄4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

Also in the case of Eq. (14), the columns uk−20 and
uk−21 must be included in the regression matrix to
avoid residuals. However, in this case, this is achieved
for three different values of τ̄ :

τ̄ = 20 ⇒ [uk−τ̄ , uk−τ̄−1] = [uk−20, uk−21]

τ̄ = 19 ⇒ [uk−τ̄−1, uk−τ̄−2] = [uk−20, uk−21]

τ̄ = 18 ⇒ [uk−τ̄−2, uk−τ̄−3] = [uk−20, uk−21]

This is identical to the results presented in Fig. 7: The
residual is zero for τ̄ ∈ [τ − (n̄ − n), τ ]. In the case of
Eq. (14) the residual is zero for τ̄ ∈ [20 − (4 − 2), 20],
i.e. τ̄ ∈ [18, 20]. The highest value of τ̄ that gives no
residual is the correct time delay.

Statement (ii) can be used to identify the value of τ1:
As V = 0 for τ̄1 ∈ [τ1 − (n̄ − n), τ1], τ1 is given by
the highest values of τ̄1 giving V = 0. This value can
be read from Fig. 7: For both n̄ = 6 and for n̄ = 12,
the highest value of τ̄ giving V = 0 is τ̄ = 20, which
is the correct time delay. Statement (ii) can not be used
for n̄ = 5 < n because the statement assumes n̄ ≥ n.

Statement (ii) can also be used to identify the value
of n: Define τ̄1

min(n̄) as the lowest τ̄1 giving V =
0. According to statement (ii), τ̄1

min(n̄) is given by
τ̄1
min(n̄) = τ1 − (n̄−n). τ̄1

min(n̄) can be read from the
plot shown in Fig. 7. Hence, as τ1, τ̄1

min(n̄), and n̄ are
known, n can be calculated by n = τ̄1

min(n̄) − τ1 + n̄.

For the curve representing n̄ = 6 in Fig. 7: τ1 = 20
(see two paragraphs above), τ̄1

min(n̄) = 20 (read from
Fig. 7), and n̄ = 6 (specified). Hence, n = τ̄1

min(n̄) −
τ1 + n̄ = 20 − 20 + 6 = 6, which is the correct value.

For the curve representing n̄ = 12 in Fig. 7: τ1 = 20
(see three paragraphs above), τ̄1

min(n̄) = 14 (read from
Fig. 7), and n̄ = 12 (specified). Hence, n = τ̄1

min(n̄)−
τ1 + n̄ = 14− 20 + 12 = 6, which is the correct value.

In the derivation presented above, it has been assumed

that nA = nB . The method presented above actually
identifies nB , i.e. if the assumption nA = nB is vio-
lated, the identified value of n is equal to nB and dif-
ferent from nA. This can be seen from the explanation
given by Eq. (12) to Eq. (14): The value of n̄A does not
influence for which value of τ̄ there is no residual. Of
course n̄A must be chosen so that n̄A ≥ nA, otherwise
there will always be residuals regardless of the value of
τ̄ .

4.2 Time Delay Estimation on Industrial Data

The delayest command has been tested on a dataset
from the copper refining process at Xstrata Nikkelverk.
This process is briefly explained in Sec. 1. As the actual
system order is unknown, delayest has been tested
for four different values of n̄: n̄ = 3, n̄ = 5, n̄ = 10,
and n̄ = 20, where n̄ = n̄A = n̄B1 = n̄B2 = n̄B3 . For
each of the n̄ values, both the 3 × 1 case and the 1 × 1
case were tested. The time delays, τ1, τ2, and τ3, were
all specified to be within the interval [15, 110].

In [7] it is provided rough time delay estimates based
on process knowledge. In Fig. 8, the estimates of
delayest are compared to the estimates of [7].
The figure shows that: (i) There are large variations
within the estimates of delayest. This confirms that
delayest is sensitive to the specified values of n̄ and
to whether the 3 × 1 approach or the 1 × 1 approach is
used. (ii) There are in general large deviations between
the estimates of [7] and the estimates of delayest.

5 Conclusions
Outliers in a dataset may cause innovation processes,
which are significantly larger (absolute value) than
usual. Hence, searching for samples having large inno-
vation processes may be used as a method for outlier de-
tection. In [2] it is proved that for linear time-invariant
(LTI) systems the innovation process can be identified
directly from input and output data, without relying on
models. This method is therefore well suited for outlier
detection. In [3] it is shown that the innovation process
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Fig. 8 Time delay estimates of delayest and of [7].

identified by the method of [2] is mathematically iden-
tical to the residual of an ARX identification of which
nA = nB = J . It then follows that using the method
of [2] for outlier detection is a special case of a method
for outlier detection presented in [1, Example 14.1].

The method for outlier detection based on [2] has been
tested on industrial data from Xstrata Nikkelverk, Kris-
tiansand, Norway. The method detected three outliers
that would not have been detected by plotting the raw
data. The detected data are outliers because the deriva-
tive of the output changes unlikely fast, i.e. the second
derivative of the output has unlikely large absolute val-
ues.

The MATLAB command delayest is used to esti-
mate time delays between system inputs and system
outputs in datasets. The command has been tested in a
simulation study. The results from this study show that
delayest is sensitive to: (i) The specified model or-
der. (ii) Stochastic elements in the dataset. (iii) Whether
all time delays are estimated during one execution of
delayest, or whether only one time delay is esti-
mated for each execution. The simulation study also
indicates that delayest has a systematic error: The
time delay estimates tend to decrease as the system or-
der increases. In simulation of a 3 input, 1 output sys-
tem, delayest estimated the time delays from the
three inputs to the output exactly correct only when the
following conditions were met: (i) The correct system
order was specified. (ii) No stochastic elements were
present. (iii) All three time delays were estimated dur-
ing one execution of delayest.

delayest was also tested on industrial data from Xs-

trata Nikkelverk, Kristiansand, Norway. These tests
confirmed that delayest is sensitive to: (i) The spec-
ified model order. (ii) Whether all time delays are esti-
mated during one execution of delayest, or whether
only one time delay is estimated for each execution.
Whether delayest is sensitive to stochastic elements
in the dataset could not be tested on the industrial data.
In general, the estimates of delayest deviated signif-
icantly from estimates based on process knowledge.

In this paper, a suggestion to improvement of
delayest is presented. This improvement makes
delayest less sensitive for unknown system order.
This improvement works only for deterministic LTI
systems.
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Considerations of Paper A

In Section 4.1 of the paper, it is pointed out that there is a systematic error in the
time delay estimates. The time delay estimates tend to decrease as the specified
model order increases. However, this systematic error seems to be valid only for
deterministic systems. At Figures 4 and 6, which represent stochastic systems, the
negative correlation between the time delay estimates and the model order seems
to be weak. In Figure 8, which considers logged process data from the process
industry, the negative correlation seems to be present from u1 to y and from u2 to
y, but not from u3 to y.

The paper uses the notation ȳ for prediction of the process output y. As the
notation ŷ is common in systems and control engineering, it is unfortunate not to
use this notation.
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Paper B

Empirical Modeling:
Approximating the DSR E
Sub-Space System Identification
Algorithm by a Two-Step ARX
Algorithm

The candidate presented this paper at the 49th Scandinavian Conference on Sim-
ulation and Modeling (SIMS 2008). The paper is also included in the conference’s
proceedings. The conference was held October 7th-8th 2008 at Oslo University
College, Oslo, Norway. The paper was drafted during the candidate’s master the-
sis (Komperød (2008)). The paper was finished and presented at the conference
during the candidate’s PhD study. After the paper, on page 73, a few considera-
tions of the paper are discussed.
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Abstract

DSR E is a sub-space system identification algo-
rithm for solving deterministic / stochastic linear time-
invariant (LTI) system identification problems. DSR E
consists of two steps: (i) The innovation process is iden-
tified. (ii) The deterministic / stochastic system identifi-
cation problem is reduced to a deterministic problem by
considering the identified innovation process as a deter-
ministic input. In the DSR E algorithm presented in [1],
this deterministic problem is solved using a determinis-
tic sub-space system identification method. ARX is a
system identification algorithm based on the ordinary
least squares (OLS) method. In addition to the basic,
single-step ARX algorithm, there are various multi-step
ARX algorithms. In this paper it is shown that the first
step of DSR E is mathematically identical to the single-
step ARX algorithm. The second step, which is a de-
terministic problem, may also be solved by single-step
ARX. Hence, each of the two steps of the DSR E al-
gorithm may be replaced by single-step ARX, allowing
DSR E to be approximated by a two-step ARX algo-
rithm. DSR E and its two-step ARX approximation are
compared by modeling a section of the copper refining
process at Xstrata Nikkelverk, Kristiansand, Norway.

Keywords

ARX; DSR E; Sub-space system identification; System
identification.

1 Introduction

Modeling of dynamic systems is a most important part
of today’s science and engineering. Dynamic models
serve many purposes, for example: (i) Training of pro-
cess operators, pilots and astronauts. (ii) Exploring
systems in a different time scale than physical time.
(iii) Testing systems by simulations before they are
manufactured, for example ships, airplanes, missiles,
and sub-sea oil installations. (iv) Model-based control,
such as LQG control, model-based predictive control
(MPC), linear and nonlinear decouplers, Smith predic-
tors, etc.

One of the most commonly used approaches for mod-
eling dynamic systems is to develop models from equa-
tions of science. This is referred to as mechanistic mod-
eling or first principle modeling. Another approach that
may be based on laws of science and / or knowledge
of the systems to be modeled is linguistic modeling
(fuzzy modeling). Empirical modeling is another com-
monly used approach for developing dynamic as well
as static models: Models are developed directly from
observations of the systems. This is also referred to as
black-box modeling. Empirical modeling used to build
dynamic models is referred to as system identification.
System identification is commonly used for developing
models for model-based control. System identification
may be used for systems that are too complex to be
modeled by mechanistic modeling and where param-
eters in the mechanistic models are unknown.

A general introduction to system identification is given
in [2]. Both linear and nonlinear system identifica-
tion are considered. Also practical issues are discussed,

PAPER B 63



such as experiment design and data preprocessing. The
DSR sub-space system identification algorithm is pre-
sented in [3]. In [1, 4] the DSR E sub-space system
identification algorithm for use in closed loops is pre-
sented. DSR and DSR E have been developed by David
Di Ruscio. Simulations comparing DSR E to other sys-
tem identification algorithms, including N4SID, DSR,
and the MATLAB implementation pem (Prediction Er-
ror Method), are presented in [1].

The main contribution of this paper is to show that the
DSR E algorithm can be approximated by a two-step
ARX algorithm. This approximation will in this paper
be referred to as DARX.

The mathematical derivation of the DSR E algorithm,
and inherently also the DARX algorithm, requires N →
∞ and J → ∞. Here N is the number of samples and
J is a parameter to the DSR E and DARX algorithms.
The J parameter is the order of the model to be identi-
fied in the first step of the DARX algorithm. These re-
quirements can not be met in any practical system iden-
tification problems. A study of how finite values of N
and J influence the first step of DSR E and DARX is
presented in this paper.

2 Notation and Definitions
The inputs to a system are collected in the input column
vector, u ∈ R

r×1, where r is the number of inputs.
The outputs from a system are collected in the output
column vector, y ∈ R

m×1, where m is the number of
outputs. A sub-script to these vectors, for example yk,
refers to the sampling number.

The limit notation of Eq. (1) is simplified as shown in
Eq. (2).

lim
x→z,y→z

f(x, y) (1)

lim
x,y→z

f(x, y) (2)

Def. 1 (Innovation Process). The system output, yk,
may be decomposed into two components: (i) The com-
ponent of yk that can be predicted from previous inputs,
u−∞, . . . , uk−1, and previous outputs, y−∞, . . . , yk−1,
assuming no model errors. For bi-proper systems, i.e.
systems having direct feed-through from the input, uk,
to the output, yk, the current input, uk, is also included
in the prediction of yk. This predictable component of
yk is referred to as ȳk. (ii) The complement of ȳk, i.e.
the component of yk that can not be predicted from pre-
vious inputs and previous outputs. This is referred to as
the innovation process, εk. Hence, εk = yk − ȳk.

The symbol ε is used for the true innovation process,
which in general is unknown. The symbol ε is used for
the identified innovation process. The identified inno-
vation process is in general not exactly identical to the
true innovation process.

Def. 2 (State Space Model Form). The discrete state
space model form used by the DSR E algorithm is as
shown in Eq. (3) and Eq. (4) [5].

x̄k+1 = Ãx̄k + B̃uk + C̃ek (3)

yk = D̃x̄k + Ẽuk + F̃ ek (4)

In Eq. (3) and Eq. (4) the tilde symbol is used to
avoid confusion with the polynomials of ARMAX and
ARX models. x̄ ∈ R

n×1 is the estimate of the sys-
tem state vector, x, where n is the number of system
states. e ∈ R

m×1 is white noise with covariance matrix
E(ekeT

k ) = Im. For invertible F̃ , the system can be
written on innovation form as presented in Eq. (5) and
Eq. (6) [5].

x̄k+1 = Ãx̄k + B̃uk + K̃εk (5)

yk = D̃x̄k + Ẽuk + εk (6)

In Eq. (6), εk = F̃ ek is the innovation process and K̃ =
C̃F̃−1 is the Kalman filter gain matrix. In this paper,
only strictly proper systems will be considered, i.e. Ẽ =
0m×r.

Def. 3 (ARMAX Model Form). Eq. (7) defines the gen-
eral form of ARMAX models [2].

A(q)yk = B(q)uk + C(q)εk (7)

In Eq. (7), q is the time-shift operator of the Z-
transform, i.e. q−1 yk = yk−1. Symbol q is commonly
used within the subject of system identification. Sym-
bol z is used in many other contexts. A(q), B(q), and
C(q) are polynomials. nA, nB , and nC are the number
of coefficients in these polynomials that in general are
different from 1. The A(q) and C(q) polynomials are
monic polynomials, i.e. the coefficient of their highest
order term is 1.

Def. 4 (ARX Model Form). Eq. (8) defines the general
form of ARX models [2].

A(q)yk = B(q)uk + εk (8)

The A(q) polynomial is monic.

Def. 5 (Orthogonal Projection). The orthogonal pro-
jection of matrix G onto matrix H , G/H , is defined as
in Eq. (9) [5].

G/H
def= GHT (HHT )†H (9)

In Eq. (9), the super-script † refers to the Moore-
Penrose pseudo-inverse.

Def. 6 (Complement of Orthogonal Projection). The
complement of the orthogonal projection of matrix G
onto matrix H , GH⊥, is defined as in Eq. (10) [5].

GH⊥ def= G − G/H
def= G − GHT (HHT )†H (10)
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Def. 7 (Hankel Matrix). Let st ∈ R
nr×nc be a matrix

of data sampled at timestep t. The Hankel matrix St0|L,
organizing timeseries of st starting at timestep t0, i.e.
st0 , st0+1, . . ., is defined as in Eq. (11).

St0|L
def=

⎡
⎢⎢⎣

st0 st0+1 . . . st0+K−1

st0+1 st0+2 . . . st0+K

...
...

. . .
...

st0+L−1 st0+L . . . st0+L+K−2

⎤
⎥⎥⎦ ∈ R

Lnr×Knc (11)

In Eq. (11), L is the number of block rows in St0|L and
K is the number of block columns in St0|L [5].

Def. 8 (Lower Block Triangular Toeplitz Matrix for the

Quadruple (D̃, Ã, C̃, F̃ )). The lower block triangular
Toeplitz matrix for the quadruple (D̃, Ã, C̃, F̃ ) is de-
fined as in Eq. (12) [5].

Hs
L

def=

⎡
⎢⎢⎢⎢⎢⎣

F̃ 0m×m 0m×m . . . 0m×m

D̃C̃ F̃ 0m×m . . . 0m×m

D̃ÃC̃ D̃C̃ F̃ . . . 0m×m

...
...

...
. . .

...
D̃ÃL−2C̃ D̃ÃL−3C̃ D̃ÃL−4C̃ . . . F̃

⎤
⎥⎥⎥⎥⎥⎦ ∈ R

Lm×Lm (12)

In Eq. (12), L is the number of block rows and block
columns in Hs

L.

3 The DSR E Algorithm
This section gives a brief derivation of the DSR E sub-
space system identification algorithm. A comprehen-
sive presentation of DSR E is provided by [1]. DSR E
is also presented in [4].

In [5] it is proved that for linear time-invariant (LTI)
systems the innovation process, εk, can be identified
directly from previous inputs, u−∞, . . . , uk−1, and pre-
vious outputs, y−∞, . . . , yk−1, without relying on mod-
els. The DSR E algorithm presented in [1, 4] is based on
this proof. A MATLAB implementation of the DSR E
algorithm is available in the DSR Toolbox for MAT-
LAB ([6]). The DSR E algorithm consists of two steps:

1. The innovation process, εk, is identified by orthog-
onal projection of the current output, yk, onto in-
puts and outputs from the J preceding samples, i.e.
uk−J , . . . , uk−1 and yk−J , . . . , yk−1. Here J is a
parameter to the DSR E algorithm. The comple-
ment of this orthogonal projection is the identified
innovation process, εk [1, 4]. Please refer to Sub-
sec. 3.1 for details.

2. The identified innovation process, εk, is consid-
ered as a known deterministic input. Hence,
the deterministic / stochastic system identification
problem is reduced to a deterministic system iden-
tification problem [1, 4]. In the DSR E algo-
rithm presented in [1], this deterministic problem
is solved by a deterministic sub-space system iden-
tification algorithm.

The the following parameters are most important with
respect to the DSR E algorithm and its derivation [5, 1,
4]:

1. L - the number of block rows in the Toeplitz ma-
trices and some of the Hankel matrices to be used
in the second step of the DSR E algorithm, i.e. L
has the same meaning as in Eq. (11) and Eq. (12).

2. g - if the system is strictly proper, i.e. E = 0m×r,
then g is set to 0. Otherwise g is set to 1.

3. J - the number of preceding inputs and outputs
used to identify the innovation process. Please re-
fer to Subsec. 3.1 for details.

In addition to parameters L, g, and J , the model or-
der, n, of the model to be identified by DSR E has to
be specified to the DSR E implementation of the DSR
Toolbox for MATLAB ([6]).

3.1 Step 1 of the DSR E Algorithm

Let U0|J , UJ|L+g−1, Y0|J , YJ|L, and EJ|L be Han-
kel matrices according to Def. 7. The input vector
u ∈ R

r×1 is the block elements of the matrices U0|J
and UJ|L+g−1. The output vector y ∈ R

m×1 is the
block elements of the matrices Y0|J and YJ|L. The
white noise vector e ∈ R

m×1 is the block elements of
matrix EJ|L. In [5], Eq. (13) is proved. This proof will
not be repeated in here.

lim
J,K→∞

YJ|L − YJ|L/

⎡
⎣ UJ|L+g−1

U0|J
Y0|J

⎤
⎦ (13)

= lim
J,K→∞

Hs
LEJ|L

Please note that the mathematical derivation of Eq. (13)
requires that J → ∞ and K → ∞, where K is the
number of columns in the Hankel matrices of Eq. (13).
In Sec. 7 the consequences of finite values of J and
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K are considered. Choosing L = 1 and g = 0 gives
Eq. (14) [1, 4].

⎡
⎣ UJ|L+g−1

U0|J
Y0|J

⎤
⎦ =

⎡
⎣ UJ|0

U0|J
Y0|J

⎤
⎦ =

[
U0|J
Y0|J

]
(14)

The equality between the middle and the rightmost
terms of Eq. (14) is due to UJ|0 ∈ R

0×K . For L = 1
the Toeplitz matrix of Def. 8 reduces to
Hs

1 ∈ R
m×m ⇒ Hs

1 = F̃ . Hence, Eq. (13) can be
written as Eq. (15) [1, 4].

lim
J,K→∞

YJ|1 − YJ|1/
[

U0|J
Y0|J

]
= lim

J,K→∞
F̃EJ|1 (15)

= lim
J,K→∞

F̃ [ eJ eJ+1 . . . eJ+K−1 ]

= lim
J,K→∞

[ εJ εJ+1 . . . εJ+K−1 ]

= lim
J,K→∞

εJ|1

In Eq. (15), εJ|1 is the Hankel matrix of which block
elements are the innovation process ε ∈ R

m×1.

3.2 Step 2 of the DSR E Algorithm

As the innovation process is identified in Eq. (15), the
deterministic / stochastic system identification problem
of Eq. (5) and Eq. (6) reduces to a deterministic prob-
lem. For strictly proper systems, i.e. Ẽ = 0m×r, the
system identification problem is now on the form of
Eq. (16) and Eq. (17) [1, 4].

xk+1 = Ãxk +
[

B̃ K̃
] [

uk

εk

]
(16)

yk − εk = D̃xk (17)

Step 2 of the DSR E algorithm as presented in [1] is
to solve the deterministic system identification problem
of Eq. (16) and Eq. (17) using a deterministic sub-space
system identification algorithm.

4 Relating Orthogonal Projection to the
Ordinary Least Squares Method

The key to understand that the first step of the DSR E
algorithm is mathematically identical to the single-step
ARX algorithm is the relation between orthogonal pro-
jection (Def. 5) and the ordinary least squares (OLS)
method. Consider the linear regression problem of
Eq. (18).

Y = XB + E (18)

In Eq. (18), the elements of X ∈ R
N×b and Y ∈ R

N×a

are known data. The regression matrix B ∈ R
b×a

is to be identified. E ∈ R
N×a is the residual of

the linear regression. Assume that N ≥ b and that
rank(X) = b. Then rank(XT X) = b, which is full
rank. For a quadratic matrix of full rank, i.e. an in-
vertible matrix, the Moore-Penrose pseudo inverse is

equivalent to the inverse, i.e. (XT X)† = (XT X)−1.
Transposing Eq. (18) gives Eq. (19).

Y T = BT XT + ET (19)

Solving the linear regression problem of Eq. (19) using
OLS gives Eq. (20).

BT = Y T X(XT X)−1 (20)

Inserting Eq. (20) into Eq. (19) gives Eq. (21).

Y T = Y T X(XT X)−1︸ ︷︷ ︸
B

XT + ET (21)

Because (XT X)† = (XT X)−1, the first term on the
right hand side of Eq. (21) is identical to the right hand
side of Eq. (9), where Y T = G and XT = H . Hence,
according to Def. 5, Eq. (21) can be written as Eq. (22).

Y T = Y T /XT + ET (22)

Further, using Def. 6 gives Eq. (23).

Y T XT⊥ = Y T − Y T /XT = ET (23)

Conclusions: (i) The orthogonal projection Y T /XT is
equivalent to the part of Y that can be explained by an
OLS regression of Y onto X . (ii) The complement of
the orthogonal projection, Y T XT⊥, is equivalent to the
residual of this OLS regression, E.

5 The ARX Algorithm
The term ARX may refer to (i) the model form of
Eq. (8) or (ii) a system identification algorithm used to
identify models on the form of Eq. (8). This section
gives a brief introduction to the ARX algorithm.
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For single input, single output (SISO), strictly proper
systems, Eq. (8) can be written on the form of Eq. (24).
It has here been used that q−1yk = yk−1, where q is the

time shift operator of the Z transform. Eq. (24) can be
rewritten as Eq. (25).

yk + a1yk−1 + a2yk−2 + . . . + anA
yk−nA

= b1uk−1 + b2uk−2 + . . . + bnB
uk−nB

+ εk (24)

yk = −a1yk−1 − a2yk−2 − . . . − anA
yk−nA

+ b1uk−1 + b2uk−2 + . . . + bnB
uk−nB

+ εk (25)

The polynomial coefficients, a1, a2, . . . , anA
and

b1, b2, . . . , bnB
, can be estimated by stacking timeseries

of y and u in the Y and X matrices of Eq. (18) as

shown in Eq. (26), and then solve this OLS problem
with respect to the ARX parameter vector, θ, which cor-
responds to the regression matrix, B, of Eq. (18).

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...
yk

yk+1

yk+2

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Y

(26)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...
...

. . .
...

...
...

. . .
...

−yk−1 −yk−2 . . . −yk−nA
uk−1 uk−2 . . . uk−nB

−yk −yk−1 . . . −yk−nA+1 uk uk−1 . . . uk−nB+1

−yk+1 −yk . . . −yk−nA+2 uk+1 uk . . . uk−nB+2

...
...

. . .
...

...
...

. . .
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
X

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2

...
anA

b1

b2

...
bnB

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
θ

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...
εk

εk+1

εk+2

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
E

In Eq. (26), Y ∈ R
P×1, X ∈ R

P×(nA+nB), θ ∈
R

(nA+nB)×1, and E ∈ R
P×1, where P is the number

of rows in Y , X , and E.

The ARX system identification problem of Eq. (26)
can be generalized to multiple input, multiple output
(MIMO) systems as shown in Eq. (27).
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
yT

k

yT
k+1

yT
k+2

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Y

(27)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

. . .
...

...
...

. . .
...

−yT
k−1 −yT

k−2 . . . −yT
k−nA

uT
k−1 uT

k−2 . . . uT
k−nB

−yT
k −yT

k−1 . . . −yT
k−nA+1 uT

k uT
k−1 . . . uT

k−nB+1

−yT
k+1 −yT

k . . . −yT
k−nA+2 uT

k+1 uT
k . . . uT

k−nB+2
...

...
. . .

...
...

...
. . .

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
X

Θ +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
εT

k

εT
k+1

εT
k+2

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
E

In Eq. (27), Y ∈ R
P×m, X ∈ R

P×(mnA+rnB), Θ ∈
R

(mnA+rnB)×m, and E ∈ R
P×m, where P is the num-

ber of rows in Y , X , and E. The notation Θ is used for
the ARX parameter matrix, which is to be identified by
the OLS method.

Solving the linear regression problem of Eq. (26) or
Eq. (27) with respect to θ or Θ, respectively, is the
system identification algorithm referred to as single-
step ARX. There also exist various multi-step ARX
algorithms. These algorithms involve solving several
single-step ARX problems. A two-step ARX identifi-
cation algorithm is derived in Sec. 6.

6 Approximating the DSR E Algorithm
Using a Two-Step ARX Algorithm

This section shows that the DSR E sub-space system
identification algorithm can be approximated by a two-

step ARX algorithm.

6.1 Approximating Step 1 of the DSR E Algorithm

Consider Eq. (15), using the final right hand side term:
As the requirements J → ∞ and K → ∞ can not
be met in any practical system identification problems,
the limit notation is removed and the true innovation
process, ε, is replaced by the identified (in general not
exact) innovation process, ε. Further, Eq. (15) is re-
arranged by: (i) The last term on the left hand side is
rewritten using Def. 5 and moved to the right hand side.
(ii) The equation is transposed. Eq. (15) is then written
as Eq. (28). The underbraces of Eq. (28) is on the form
of Eq. (18), where the regression matrix, B, is replaced
by the ARX parameter matrix, Θ. The structures of the
regression matrices of Eq. (28) are shown in Eq. (29)
and Eq. (30).

Y T
J|1︸︷︷︸
Y

=
[

U0|J
Y0|J

]T

︸ ︷︷ ︸
X

([
U0|J
Y0|J

] [
U0|J
Y0|J

]T
)−1 [

U0|J
Y0|J

]
Y T

J|1︸ ︷︷ ︸
Θ

+ εT
J|1︸︷︷︸
E

(28)

Y T
J|1 =

⎡
⎢⎢⎢⎢⎢⎣

yT
J

yT
J+1

...

yT
J+K−1

⎤
⎥⎥⎥⎥⎥⎦ ∈ R

K×m (29)
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[
U0|J
Y0|J

]T

=

⎡
⎢⎢⎢⎢⎢⎣

uT
0 , uT

1 , . . . , uT
J−1, yT

0 , yT
1 , . . . , yT

J−1

uT
1 , uT

2 , . . . , uT
J , yT

1 , yT
2 , . . . , yT

J

...
...

. . .
...

...
...

. . .
...

uT
K−1, uT

K , . . . , uT
K+J−2, yT

K−1, yT
K , . . . , yT

K+J−2

⎤
⎥⎥⎥⎥⎥⎦ (30)

∈ R
K×(r+m)J

The right hand sides of Eq. (29) and Eq. (30) are recog-
nized as the matrices for linear regression of a strictly
proper ARX model where nA = nB = J : Choosing
nA = nB = J in Eq. (27) gives that Y and X as under-
braced in Eq. (27) are identical to Eq. (29) and Eq. (30)
respectively. Comparing X as underbraced in Eq. (27)
to Eq. (30) shows that: (i) The arrangement (order) of
the block columns is different and (ii) the signs (plus or
minus) of the y block elements are different. However,
this will not affect the orthogonal projection as it does
not affect the information available in each row of the
matrices. Hence, Eq. (28) is identical to a strictly proper
ARX model written on OLS regression form. This re-
gression can be written as Eq. (31).

Y T
J|1 =

[
U0|J
Y0|J

]T

Θ + εT
J|1 (31)

The main point of this derivation is obtained by rewrit-
ing Eq. (31) as Eq. (32).

εT
J|1 = Y T

J|1 −
[

U0|J
Y0|J

]T

Θ (32)

Eq. (32) proves that the innovation process identified by
the DSR E method, ε, is mathematically identical to the
residual of a strictly proper ARX model where nA =
nB = J . This residual can also be expressed as the one-
step-ahead prediction errors in a simulation running the
ARX model on its own training dataset. It has now been
proved that the first step of the DSR E algorithm can be
replaced by the single-step ARX algorithm.

6.2 Approximating Step 2 of the DSR E Algorithm

Similar to the DSR E algorithm, the DARX algorithm
considers the identified innovation process, ε, as a
known deterministic input. The deterministic / stochas-
tic system identification problem has then been reduced
to a deterministic system identification problem. This
deterministic system can be written on the ARMAX
form, Eq. (7), replacing the true (but unknown) in-
novation process, ε, by the identified innovation pro-
cess, ε, which in general is not exactly identical to
the true innovation process. The model is then on the
form of Eq. (33). Assume for simplicity that a sin-
gle input, single output (SISO) system is to be mod-
eled using a strictly proper ARMAX model of which
nA = nB = nC = n. Hence, the ARMAX polynomi-
als are given by Eq. (34) to Eq. (36).

A(q)yk = B(q)uk + C(q)εk (33)

A(q) = 1 + a1q
−1 + . . . + anq−n (34)

B(q) = b1q
−1 + . . . + bnq−n (35)

C(q) = 1 + c1q
−1 + . . . + cnq−n (36)

Inserting Eq. (34) to Eq. (36) into Eq. (33) and using
that q−1yk = yk−1 gives Eq. (37). Eq. (37) can be
rewritten as Eq. (38). Writing Eq. (38) on linear regres-
sion form gives Eq. (39). The number of equations in
this linear regression problem is K −n, where K is the
number of rows in Eq. (29) and Eq. (30).

yk + a1yk−1 + . . . + anyk−n = b1uk−1 + . . . + bnuk−n + εk + c1εk−1 + . . . + cnεk−n (37)

yk − εk = −a1yk−1 − . . . − anyk−n + b1uk−1 + . . . + bnuk−n + c1εk−1 + . . . + cnεk−n (38)
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⎡
⎢⎢⎣

yJ+n − εJ+n

yJ+n+1 − εJ+n+1

...
yK+J−1 − εK+J−1

⎤
⎥⎥⎦ (39)

=

⎡
⎢⎢⎣

−yJ+n−1, . . . , −yJ , uJ+n−1, . . . , uJ , εJ+n−1, . . . , εJ

−yJ+n, . . . , −yJ+1, uJ+n, . . . , uJ+1, εJ+n, . . . , εJ+1

...
. . . ,

...
...

. . . ,
...

...
. . . ,

...
−yK+J−2, . . . , −yK+J−n−1, uK+J−2, . . . , uK+J−n−1, εK+J−2, . . . , εK+J−n−1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

...
an

b1

...
bn

c1

...
cn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The ARX regression problem of Eq. (39) identifies not
only the A(q) and B(q) polynomials, but also the C(q)
polynomial. Hence, the identified model is an ARMAX
model on the form of Eq. (33). An ARMAX model
can be converted to a state space model on the form of
Eq. (5) and Eq. (6) and vice versa. Hence, the ARMAX
model identified by solving the ARX regression prob-
lem of Eq. (39) can be converted to a state space model
as generated by the DSR E algorithm presented in [1].

It has now been shown that: (i) The innovation process
identified by the first step of the DSR E algorithm, ε,
is mathematically identical to the residual of an ARX
identification where nA = nB = J . (ii) The second
step of the DSR E algorithm, as presented in [1], can
be replaced by ARX identification. From (i) and (ii) it
is concluded that the DSR E algorithm can be approxi-
mated by a two-step ARX algorithm. The model iden-
tified by this approximation is an ARMAX model.

7 The Influence of Number of Samples,
N , and the Parameter J

Consider Eq. (29) and Eq. (30): The lowest sample in-
dex used is 0 (in u0 and y0) and the highest sample in-
dex used is J +K−1 (in yJ+K−1). Hence, the number
of samples, N , used to identify the innovation process
is given by N = K + J .

As the mathematical derivation from [5] requires that
J → ∞ and K → ∞, it is also implicitly requires that
N → ∞. These requirements can not be met in any
practical system identification problems. In practical
problems the number of samples, N , is given by the
dataset. It is then a consideration to choose a proper
value of J . K is then given by K = N − J .

Consider a single input, single output (SISO) system.
Then the OLS regression problem of Eq. (28) has
2J+K unknown values: (i) A SISO ARX model where
nA = nB = J has 2J unknown parameters, i.e. J coef-
ficients in the A(q) polynomial and J coefficients in the
B(q) polynomial. (ii) Unknown innovation processes

for K samples. The number of equations in the OLS
problem is K. By choosing J too large, the identified
innovation process, ε, will be smaller (absolute value)
than the true innovation process, ε. This can be illus-
trated by an extreme choice of J : Choosing J = N/3.
Then the ARX model will have 2J = 2N/3 parame-
ters. The number of equations in the OLS regression
problem will be K = N − J = N − N/3 = 2N/3.
Assuming that these 2N/3 equations are linearly inde-
pendent, the number of parameters to be identified in
the OLS regression is equal to the number of linearly
independent equations. Hence, the OLS problem is re-
duced to a deterministic set of linear equations. Then
the residual, i.e. the identified innovation process, ε,
will be zero regardless of the true innovation process,
ε. On the other hand, choosing J too low will also con-
flict the derivation of [5].

In order to quantify the fit of the identified innovation
process, ε, to the true innovation process, ε, the fit cri-
terion W (N, J) of Eq. (40) has been defined.

W (N, J) def=
1

N − J

N∑
k=J+1

(εk − εk(N, J))2 (40)

Two datasets were generated by simulations using a
SISO ARMAX model where nA = nB = nC = 6.
During the simulations, a pseudo random binary sig-
nal (PRBS) was applied to the deterministic input, u. A
uniformly distributed random number sequence was ap-
plied for simulating of the innovation process, ε. Differ-
ent amplitude of the innovation process, ε, was applied
for dataset no. 2 compared to dataset no. 1. Otherwise
the datasets were generated using identical conditions.

For both datasets, W (N, J) was plotted as function
of J for N = 350, N = 1, 000, N = 3, 000, and
N = 10, 000, i.e. total eight J versus W (N, J) plots.
These plots are shown in Fig. 1 and Fig. 2. In Fig. 1 the
innovation process, ε, is uniformly distributed in the in-
terval [−0.05, 0.05]. In Fig. 2 the innovation process is
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Fig. 1 The figure shows W (N, J) plotted as function
of J for N = 350, N = 1, 000, N = 3, 000 and
N = 10, 000. The innovation process, ε, is uniformly
distributed in the interval [−0.05, 0.05].

uniformly distributed in the interval [−0.15, 0.15]. In
other words: In Fig. 2 the amplitude of the innovation
process is three times higher than in Fig. 1. Please note
that the figures have different scaling of their respective
Y-axes.

Based on the plots shown in Fig. 1 and Fig. 2, it seems
reasonable to draw the following conclusions:

1. Increased value of N gives better match between ε
and ε for the optimal choice of J , i.e. the value of J
giving the lowest W (N, J). This is to be expected
because the derivation from [5] assumes N → ∞.

2. When ignoring some high frequency variations
(”noise”) on the curves, it seems (but can not be
stated) that: (i) There is exact one minimum on
each curve. (ii) The curves are strictly increas-
ing as moving away from these minimums. This
seems reasonable according to the discussion for
choice of J above.

3. As N increases the optimal choice of J , i.e. the
value of J giving the minimum of W (N, J), also
increases. This is reasonable: As N increases,
the number of equations in the OLS problem of
Eq. (28) also increases. Hence, the number of
coefficients in the ARX model, 2J , may increase
without over-fitting the model.

4. As the amplitude of the innovation process, ε, in-
creases, the fit criterion, W (N, J), also increases.
This is reasonable: When ε and ε in general have
larger values, also the difference between these
values will be larger.

8 Comparing DSR E and DARX on In-
dustrial Data

The DSR E and DARX algorithms have been compared
on experimental data from the copper refining process

Fig. 2 The figure shows W (N, J) plotted as function
of J for N = 350, N = 1, 000, N = 3, 000 and
N = 10, 000. The innovation process, ε, is uniformly
distributed in the interval [−0.15, 0.15].

of Xstrata Nikkelverk, Kristiansand, Norway. A sin-
gle input, single output (SISO) system was modeled us-
ing DSR E and DARX. The input, u, is the mass flow
from the roasting furnace to the copper leaching pro-
cess. The output, y, is the concentration of sulphuric
acid, H2SO4, in the flow from the copper leaching pro-
cess to the electro winning. Before system identifica-
tion, the input and output dataseries were preprocessed
by (i) removing outliers, (ii) subtracting mean value,
(iii) dividing by standard deviation, and (iv) compen-
sating for the time delay form the input, u, to the out-
put, y, by shifting the input dataseries with respect to
the output dataseries. For DSR E, the parameters were
chosen as L = n = 20, g = 0, and J = 30. For
DARX, the parameters were chosen as J = 30 and
nA = nB = nC = 20. The DSR E implementation of
the DSR Toolbox for MATLAB ([6]) was used for iden-
tifying the DSR E model. For identifying the DARX
model, a MATLAB implementation of the DARX algo-
rithm was written.

Based on the models identified by DSR E and DARX,
ballistic simulations were run. Fig. 3 compares these
simulations to the actual measured sulphuric acid con-
centration. The ballistic simulations fit the measured
data poorly. This is to be expected because there are
several other factors influencing the concentration of
sulphuric acid that are not included in the models. By
comparing the identified models to the model proper-
ties expected based on process knowledge, it has been
verified that the modeled transfer functions have correct
signs (in this case minus) and correct stability proper-
ties (in this case integrating).

The main point of this experiment is to show that DSR E
and DARX give identical models: Fig. 3 shows that the
model responses are identical when applying the mass
flow signal, u, to the model inputs. Even though the
values of the ballistic simulations vary within approx-
imately ±1.3, the maximum difference between the
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Fig. 3 The figure compares ballistic simulations using
the models identified by DSR E and DARX. The ac-
tual measured sulphuric acid concentration, after being
preprocessed, is also shown.

DSR E based simulation and the DARX based simula-
tion is only 3.3×10−11. This is a very strong indication
that the models are identical.

To verify that the models actually are identical, the
pole / zero plots and the step responses were also com-
pared. Both the deterministic models, i.e. the trans-
fer functions from u to y, and the noise models, i.e.
the transfer functions from ε to y, were compared by
pole / zero plots and step response plots. These plots
are not shown in this paper. To the resolution of the
plots, it was not possible to distinguish the models, nei-
ther by the pole / zero plots nor by the step response
plots. It is then concluded that the models are identical
beyond the model accuracy that can be expected from
such modeling techniques.

9 Conclusions
The DSR E sub-space system identification algorithm
can be approximated by a two-step ARX algorithm.
The first step of the DSR E algorithm is mathemati-
cally identical to the identification of a strictly proper
ARX model of which nA = nB = J : The innovation
process identified by DSR E is identical to the residual
of the ARX identification. During the second step of
the DSR E algorithm the deterministic / stochastic sys-
tem identification problem is reduced to a deterministic
problem by considering the identified innovation pro-
cess as a known deterministic input. In the DSR E al-
gorithm, as presented in [1], this deterministic problem
is solved by a deterministic sub-space system identifi-
cation algorithm. However, this problem may instead
be solved using the single-step ARX algorithm. Hence,
each of the two steps of the DSR E algorithm may be
replaced by the single-step ARX algorithm. This al-
lows DSR E to be approximated by a two-step ARX
algorithm.

The mathematical derivation of DSR E requires that

N → ∞ and J → ∞, where N is the number of
samples and J is as presented above. These require-
ments can not be met in any practical system identifi-
cation problems. Simulations presented in this paper
show that the innovation process is identified more ac-
curately as N increase. The optimal choice of J , i.e.
the value of J that gives the most accurate identifica-
tion, increases as N increases.

The DSR E algorithm and its two-step ARX approx-
imation were compared by modeling a section of the
copper refining process at Xstrata Nikkelverk, Kris-
tiansand, Norway. The model identified by the DSR E
algorithm and the model identified by the approxima-
tion are identical beyond the model accuracy that can
be expected from such modeling techniques.
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Considerations of Paper B

The two-step ARX algorithm, referred to as DARX, does not estimate the model
order. This is a disadvantage compared to the DSR E algorithm presented in
Nilsen (2006) (reference [1] in the paper’s reference list).

The DARX algorithm has been developed only for single input / single output
(SISO) systems. This is also a disadvantage compared to DSR E. It is believed
that the DARX algorithm can be extended to multiple input / multiple output
(MIMO) systems. However, the candidate has not done any research on this
topic. Unfortunately, the paper does not make it clear that the DARX algorithm
has been developed only for SISO systems. On the contrary, some notation and
verbal formulations may give the impression that the DARX algorithm has been
developed also for MIMO systems. This is very unfortunate.

In Section 1 of the paper, it is written that system identification may be used
for systems that are too complex for mechanistic (first principle) modeling. This is
an imprecise formulation. It is meant that black-box modeling can be used when
the process’ input-output dynamics is relatively simple, even if the process’ physics
is very complex. This topic is discussed in Section 4.2 of this PhD thesis.

The paper uses the notation ȳ for prediction of the process output y. As the
notation ŷ is common in systems and control engineering, it is unfortunate not to
use this notation. The same issue applies for x̄ versus x̂. The symbol ε is used
for the true, but unknown, innovation process, and the symbol ε is used for the
identified innovation process. It would be better to use the notation ε̂ for the
identified innovation process, in order to consequently use hat-notation (ˆ) for
predicted and estimated values. It complicates the notation to use the symbol B
for the parameter matrix in Equation (18), for later replacing it by the symbol Θ
in (28). It would be better to use Θ both places.

In Section 6.1 of the paper, it is poorly explained why (32) proves that the
innovation process identified by DSR E is identical to the residual of a strictly
proper ARX model with nA = nB = J . Replacing Θ in (32) with the notation
indicated by braces in (28), and expanding (15) using Def. 5, show that (15) and
(32) are on the same form. In (15) the true innovation process, εJ |1, depends on
J → ∞ and K → ∞. These demands can not be meet as they require infinite
number of data samples. The identified innovation process, εJ |1, is found from (15)
as J and K are assigned finite values. That is, εJ |1 is replaced by εJ |1 for finite J
and K. As εJ |1 is replaced by εJ |1, (15) and (32) become equal ((32) is written as
the transposed of (15)). The main point is that εJ |1 in (15) is the residual after

projecting YJ |1 onto the row space of

[
U0|J
Y0|J

]
. In (32), εJ |1 is identified as the

residual of the exact same projection (written as the transposed of (15)).
The candidate has used the term “timeseries” somewhat erroneously in this
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paper compared to how the term is used in Ljung (1999). The paper uses the term
for datasets logged from processes or made by dynamic simulations, while Ljung
(1999) uses the term for “outputs of dynamical systems whose external stimuli are
not observed”.



Paper C

Solution to an Implementation
Issue for a Two-Step ARX
Algorithm, with Application to
the Czochralski Crystallization
Process

The candidate presented this paper at the 50th International Conference of Scan-
dinavian Simulation Society (SIMS 2009). The paper is also included in the con-
ference’s proceedings. The conference was held October 7th-8th 2009 at DONG
Energy, Fredericia, Denmark. The basic idea of this paper was first presented
in the candidate’s master thesis (Komperød (2008)). The paper was written and
presented at the conference during the candidate’s PhD study. The paper strongly
depends on Paper B of this PhD thesis. After the paper, on page 85, a few con-
siderations of the paper are discussed.
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ABSTRACT

DSR E is a system identification algorithm for identification of linear time-invariant systems. DARX
is a two-step ARX algorithm which approximates DSR E. The second step of DARX slightly dif-
fers from the standard ARX form. Apparently this prevents standard ARX software from being
used, requiring a tailor-made implementation of ARX. This paper presents a rewriting of the second
step of DARX. Applying this rewriting standard ARX software can be used also for the second
step of DARX, simplifying the overall implementation of DARX. The rewriting is validated using
timeseries logged at a real-life Czochralski crystallization process.
Keywords: Applied linear algebra, ARX, Czochralski crystallization process, DSR E, System iden-
tification.

NOMENCLATURE
A(z) Polynomial in z−1, A(z) = 1+∑nA

i=1 ai z−i.
B(z) Polynomial in z−1, B(z) = ∑nB

i=1 bi z−i.
C(z) Polynomial in z−1, C(z) = 1+∑nC

i=1 ci z−i.
e Actual (“true”) innovation process.
f Identified innovation process.
k Timestep index.
P Control signal for heating power [%].
T Raw signal from temperature sensor [V].
u Deterministic system input.

∗Corresponding author: Phone: +47 35 57 51 69 Fax: +47
35 57 52 50 E-mail: bernt.lie@hit.no

xk Value of x at timestep k, for x ∈ {e, f ,u,y}.
y Measured system output.
z The timeshift operator of the Z-transform,

z−1 xk
def= xk−1.

Text written in teletype font refers to MAT-
LAB commands, for example arx.

INTRODUCTION
Modeling of dynamic systems is a most important
part of today’s science and engineering. Empirical
modeling is a commonly used modeling approach
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which is based on observations of the systems to be
modeled. Empirical modeling used for developing
dynamic models is referred to as system identifica-
tion. System identification is commonly used for
developing models for model-based control, predic-
tors, and state estimators.
ARX is an algorithm for system identification of lin-
ear, time-invariant (LTI) systems. ARX is a simple,
commonly used algorithm, which is based on the or-
dinary least squares method (OLS). Although ARX
identifies good models for many systems, it has sig-
nificant disadvantages compared to other, more ad-
vanced methods. DSR E is a more advanced algo-
rithm for system identification of LTI systems. The
DSR E algorithm is a two-step algorithm [1, 4].
Reference [2] shows that the DSR E algorithm can
be approximated by a two-step ARX algorithm. This
approximation of the DSR E algorithm is referred
to as the DARX algorithm. Unfortunately, the sec-
ond ARX step of DARX is slightly different than
the standard ARX form. This apparently requires
an implementation of a tailor-made ARX algorithm,
instead of using standard ARX software, such as the
MATLAB command arx. Implementing a tailor-
made ARX algorithm will increase the complexity
of the otherwise simple implementation of DARX.
The main contribution of this paper is to present a
rewriting of the second step of DARX. This rewrit-
ing allows standard ARX software to be used for
both steps of DARX. Hence the implementation
of DARX is significantly simplified. Only strictly
proper, single input, single output (SISO) systems
will be considered in this paper. Although not tested,
it is believed that the results presented in this paper
can be applied directly to biproper systems and mul-
tiple input systems as well. With respect to multiple
output systems, the general challenges caused by a
complex internal structure and a large number of pa-
rameters must be handled. Multiple output systems
have not been considered by the authors.
The Czochralski (CZ) crystallization process is used
to grow monocrystals (single crystals). Among the
most important applications of the CZ process is
production of monocrystalline silicon. Monocrys-
talline silicon is used for production of solar cells
and in computers and electronics.
The rewriting of the second step of DARX is vali-
dated using timeseries logged at a real-life CZ pro-
cess.

INNOVATION PROCESS
The actual (“true”) innovation process, ek, is the
part of the measured system output, yk, that
can not be explained from previous system in-
puts, u−∞, . . . ,uk−1, and previous system outputs,
y−∞, . . . ,yk−1, under the assumption of no model er-
rors. For biproper systems, the current input, uk,
is also included in the explanation of yk. The ac-
tual innovation process is typically caused by non-
measured process disturbances and measurement
noise.
The identified innovation process, fk, is an estimate
of the actual innovation process, ek. The differences
between the actual innovation process and the iden-
tified innovation process are typically caused by im-
perfect models and limited number of previous in-
puts and previous outputs being available.
A known input which has no measurement error is
referred to as a deterministic input. A system hav-
ing only deterministic inputs is referred to as a deter-
ministic system. A system having both deterministic
inputs and nonzero innovation process is referred to
as a deterministic / stochastic system.

ARX AND ARMAX
The term ARX refers to a dynamic model on the
form of Eq. 1.

A(z) yk = B(z)uk + fk (1)

The term ARX also refers to a system identification
algorithm that identifies models on the form of Eq. 1.
This algorithm is derived as follows: Using the def-
initions of A(z), B(z), and z from the nomenclature,
Eq. 1 can be written as Eq. 2.

yk = −a1 yk−1 − . . .−anA yk−nA (2)

+b1 uk−1 + . . .+bnB uk−nB + fk

Define the column vector uk as in Eq. 3.

uk
def=

[
uk uk+1 . . .

]T (3)

Here k is the timestep index of the first element in the
vector. The number of elements in the vector will be
discussed shortly. The column vectors fk and yk are
defined similarly for f and y, respectively. Define
the regression matrix Rk and the parameter vector p
as in Eq. 4 and Eq. 5.
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Rk
def=[−yk−1 . . . −yk−nA uk−1 . . . uk−nB

] (4)

p def=[
a1 . . . anA b1 . . . bnB

]T (5)

Multiple instances of Eq. 2, for increasing values of
k, can be stacked in a column vector and then written
in the form of Eq. 6.

yk = Rk p+ fk (6)

The ith row of Eq. 6 is equivalent to Eq. 2 for
k := k + i− 1. Assuming that the first timestep in
a timeseries has index 1, the lowest value for k is
k = max(nA,nB)+1. The number of rows in Eq. 6 is
limited by the number of samples in the timeseries.
The ARX algorithm is to solve Eq. 6 with respect
to p using the ordinary least squares (OLS) method,
where fk is considered the residual. Hence the model
identified by the ARX algorithm is given by Eq. 1 or,
equivalently, by Eq. 2, where the model parameters
are given by the parameter vector p computed from
Eq. 7.

p = (RT
k Rk)−1 RT

k yk (7)

The term ARMAX refers to a dynamic model on the
form of Eq. 8. The DARX algorithm uses the ARX
algorithm twice to identify a model on the ARMAX
form.

A(z) yk = B(z)uk +C(z) fk (8)

DSR E AND DARX
DSR E is a system identification algorithm for iden-
tification of deterministic / stochastic linear time-
invariant (LTI) systems. Two somewhat different
versions of DSR E are derived in references [1] and
[4], respectively.
The DSR E algorithm consists of two steps. Step
1: The identification problem is reduced from a de-
terministic / stochastic problem to a deterministic
problem. The purpose of this reduction is that iden-
tification of a deterministic system is a much sim-
pler problem. The stochastic part of the problem is
eliminated by identifying the innovation process, f ,
and then consider the identified innovation process

as a deterministic input. Step 2: Identify the deter-
ministic system having u and f as deterministic in-
puts, and y as output. For a detailed explanation of
DSR E, please refer to references [1, 4].
Reference [2] shows that the first step of DSR E
is mathematically identical to the ARX algorithm:
The identified innovation process, f , is mathemat-
ically identical to the one-step-ahead prediction er-
ror as the identified ARX model is simulated on its
own training dataset. After this first step, the prob-
lem is reduced to a deterministic identification prob-
lem. This deterministic problem can be solved us-
ing ARX. Hence each of the two steps of DSR E
can be replaced by or approximated by the ARX al-
gorithm. The total DSR E algorithm can then be
approximated by a two-step ARX algorithm. This
approximation is referred to as the DARX algorithm
[2].
It should be emphasized that DARX is not a new
system identification algorithm. It is an approxima-
tion of DSR E that may be easier to understand and
easier to implement in a computer program. DARX
is also interesting because it shows the close re-
lationship between ARX and DSR E, even though
their derivations may seem quite different.
The DARX algorithm is derived as follows: Define
matrix Sk as in Eq. 9.

Sk
def=[ −yk−1 . . . −yk−J uk−1 . . . uk−J

] (9)

Matrix Sk is to be used during the first step of the
DARX algorithm. It is identical to Rk of Eq. 4, with
nA and nB set to J. Define matrix Mk as in Eq. 10.

Mk = Sk (ST
k Sk)−1 ST

k (10)

Matrix Mk is a projection matrix projecting onto the
column space of Sk. Putting Eq. 7 into Eq. 6, replac-
ing Rk by Sk, and using Eq. 10 gives Eq. 11.

yk = Mk yk + fk (11)

The term Mk yk is the projection of yk onto the col-
umn space of Sk. Equivalently: Mk yk is the part of
yk that can be explained from the inputs, u, and out-
puts, y, as organized in the matrix Sk. The part of yk
that can not be explained from Sk is the residual fk.
DARX uses fk, as solved from Eq. 11, as an estimate
of the innovation process, i.e. the identified innova-
tion process. In other words: The first step of DARX
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is to compute fk by solving Eq. 11 with respect to fk.
The choice of J in Eq. 9 is most important. This is
discussed in reference [2].
The second step of DARX is to develop an ARMAX
model, i.e. a model on the form of Eq. 8. This model
is the final model identified by DARX. Under the
assumptions that the system to be identified is a per-
fect LTI system, and that the innovation process is
perfectly identified, i.e. fk = ek ∀ k, the second step
of DARX is a deterministic identification problem.
Even though these assumptions are not perfectly met
for most real-life systems, the second step of DARX
is still considered as a deterministic identification
problem. During the second step of DARX, both u
and f are considered deterministic inputs. The out-
put is y.
The ARMAX model of Eq. 8 can be written as
Eq. 12.

yk = −a1 yk−1 − . . .−anA yk−nA (12)

+b1 uk−1 + . . .+bnB uk−nB

+ fk + c1 fk−1 + . . .+ cnC fk−nC

Please notice that no coefficient is associated with fk
in Eq. 12. Moving fk to the left side gives Eq. 13.

yk − fk = −a1 yk−1 − . . .−anA yk−nA (13)

+b1 uk−1 + . . .+bnB uk−nB

+c1 fk−1 + . . .+ cnC fk−nC

In Eq. 13 all y, u, and f on the right side are associ-
ated with coefficients. Multiple instances of Eq. 13,
for increasing values of k, can be stacked in a col-
umn vector and then written in the form of Eq. 14.

yk − fk = Tk q (14)

The regression matrix Tk contains, from left to right,
the column vectors −yk−1, ..., −yk−nA , uk−1, ...,
uk−nB , fk−1, ..., fk−nC . The parameter vector q is a
column vector containing the elements a1, ..., anA ,
b1, ..., bnB , c1, ..., cnC . Using OLS the parameter
vector q is given by Eq. 15.

q = (TT
k Tk)−1 TT

k (yk − fk) (15)

Hence the final model identified by the DARX al-
gorithm is an ARMAX model, where the parame-
ters of the polynomials A(z), B(z), and C(z) are the

elements of the parameter vector q. It is most im-
portant to understand that the definition of the inno-
vation process requires the constant term of C(z) to
be 1, i.e. no coefficient can be associated with fk in
Eq. 12. How to select nA, nB, and nC is a most impor-
tant issue. However, this issue is beyond the scope
of this paper.

IMPLEMENTATION OF DARX
When implementing DARX in a computer program,
the implementation can be simplified using stan-
dard ARX software, such as the MATLAB com-
mand arx, instead of implementing the ARX algo-
rithm from scratch. Using MATLAB, the first step of
DARX is straight forward: An ARX model is iden-
tified using arx, then the innovation process, f , is
identified using pe (prediction error).
Unfortunately, it is not straight forward to use arx
to implement the second step of DARX. The main
contribution of this paper is to explain the reason
for this issue, and to provide a rewriting such that
arx can be used for the second step of DARX after
all. To simplify the discussion, the values nA = 1,
nB = 1, and nC = 1 will be used, unless otherwise
is specified. However, the result to be presented is
valid for any values of nA, nB, and nC.
During the second step of DARX, u and f are con-
sidered deterministic inputs. The output is y. Using
arx straight forward, a model will be identified by
solving the linear regression problem of Eq. 16.

yk =[ −yk−1 uk−1 fk fk−1
]

×[
a1 b1 c0 c1

]T
(16)

The problem to be handled is the parameter c0. This
parameter should not be subject to identification, be-
cause its value must be 1 according to the definition
of innovation process. The solution is to remove c0
from the parameter vector and move the column vec-
tor fk to the left side. Define ȳk

def= yk − fk ∀ k. The
regression problem is then on the form of Eq. 17.

ȳk =[ −yk−1 uk−1 fk−1
]

×[
a1 b1 c1

]T
(17)

Eq. 17 violates the standard ARX form of Eq. 16,
because Eq. 17 has ȳk on the left side, but the column
in the regression matrix associated with a1 is −yk−1.
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The standard ARX form requires either yk on the left
side and −yk−1 associated with a1, or ȳk on the left
side and −ȳk−1 associated with a1. As the standard
ARX form is violated, arx can not be used directly
to identify the parameter vector of Eq. 17.
A solution to this problem is to implement from
scratch a tailor-made, non-standard ARX algorithm
that assumes the form of Eq. 17. However, this will
complicate the implementation of DARX. The sim-
pler solution is to rewrite Eq. 17 to the standard
ARX form. This rewriting is split into two cases:
Case 1 is to be applied when nA ≤ nC. Case 2 is to
be applied when nA ≥ nC. When nA = nC, either of
the cases can be applied.

Case 1: nA ≤ nC

This derivation is valid for any values of nA, nB, and
nC which obey the constraint nA ≤ nC. The values
nA = 1, nB = 1, and nC = 2 will be used to simplify
the discussion. Eq. 18 is identical to Eq. 17, except
that nC is increased from 1 to 2.

ȳk =[ −yk−1 uk−1 fk−1 fk−2
]

×[
a1 b1 c1 c2

]T
(18)

The issue is how to rewrite Eq. 18 to the standard
ARX form, so that arx can be used to identify the
parameter vector. The column of the regression ma-
trix associated with the parameter a1 must be −ȳk−1,
not −yk−1, because the left side is ȳk, not yk. It
must be required that the rewriting does not change
the column space of the regression matrix, otherwise
the parameter vector will be identified erroneously.
Adding a column of a matrix to another column of
the same matrix does not change the column space
of the matrix. This is a basic result of linear algebra.
The desired rewriting is achieved by adding the col-
umn fk−1 to the column −yk−1. This column sum-
mation changes Eq. 18 into the form of Eq. 19.

ȳk =[ −ȳk−1 uk−1 fk−1 fk−2
]

×[
ā1 b̄1 c̄1 c̄2

]T
(19)

Eq. 19 is on the standard ARX form. Hence the
parameter vector of Eq. 19 can be identified us-
ing arx. Three important comments regarding this
derivation: (i) The output specified to arx should
be ȳ = y − f , not y. The deterministic inputs are

u and f . (ii) The columns uk and fk are not in the
regression matrix of Eq. 19. This is equivalent to
the transfer functions from u to ȳ, and from f to ȳ,
having a time delay of one sample. This should be
specified to arx by setting the time delay parameter
nk to 1 for both inputs. (iii) The parameter vectors
of Eq. 18 and Eq. 19 differ (the elements in the pa-
rameter vector of Eq. 19 have bars). The desired
parameter vector of Eq. 18 is related to the identi-
fied parameter vector of Eq. 19 by a1 = ā1, b1 = b̄1,
c1 = ā1 + c̄1, and c2 = c̄2.
This derivation can easily be generalized to any val-
ues of nA, nB, and nC that obey the constraint nA ≤
nC. The desired parameter vector of Eq. 18 is re-
lated to the identified parameter vector of Eq. 19 by
ai = āi ∀ i, bi = b̄i ∀ i, ci = āi + c̄i ∀ i ∈ {1, . . . ,nA},
and ci = c̄i ∀ i > nA.

Case 2: nA ≥ nC

The case nA ≥ nC is somewhat more complex. The
derivation to be presented is valid for any nA, nB, and
nC which obey the constraint nA ≥ nC. The values
nA = 2, nB = 1, and nC = 1 will be used to simplify
the discussion. Eq. 20 is identical to Eq. 17, except
that nA is increased from 1 to 2.

ȳk =[ −yk−1 −yk−2 uk−1 fk−1
]

×[
a1 a2 b1 c1

]T
(20)

For nA > nC the rewriting presented for nA ≤ nC can
not be applied. In Eq. 20 the column −yk−1 can
be changed to −ȳk−1 by adding the column fk−1.
However, the column −yk−2 can not be changed to
−ȳk−2, because fk−2 is not in the column space of
the regression matrix. In other words: Adding fk−2
would change the column space of the regression
matrix. This would cause the DARX implementa-
tion to identify erroneous models.
Rewriting the nA ≥ nC case includes rearranging the
columns of the regression matrix. The columns
−yk−1 and −yk−2 are moved to the right, and the
column fk−1 is moved to the left as shown in Eq. 21.

ȳk =[
fk−1 uk−1 −yk−1 −yk−2

]
×[

ā1 b̄1 c̄1 c̄2
]T

(21)

Please note the change of the parameter vector from
Eq. 20 to Eq. 21. The column fk−1 can be changed
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to the desired form, −ȳk−1, by adding the column
−yk−1. This column summation does not change the
column space of the regression matrix. The regres-
sion problem is now on the form of Eq. 22.

ȳk =[ −ȳk−1 uk−1 −yk−1 −yk−2
]

×[
ã1 b̃1 c̃1 c̃2

]T
(22)

Please note the change of the parameter vector from
Eq. 21 to Eq. 22. Eq. 22 is on the standard ARX
form. Hence its parameter vector can be identified
using arx. There are three important comments
also for this derivation: (i) The inputs specified to
arx are u and −y, and the output is ȳ = y− f . (ii)
The time delay parameter nk of arx should be set
to 1 for both inputs. (iii) The desired parameter vec-
tor of Eq. 20 is related to the identified parameter
vector of Eq. 22 by a1 = ã1 + c̃1, a2 = c̃2, b1 = b̃1,
and c1 = ã1.
This derivation can easily be generalized to any val-
ues of nA, nB, and nC which obey the constraint
nA ≥ nC. The desired parameter vector of Eq. 20 is
related to the identified parameter vector of Eq. 22
by ai = ãi + c̃i ∀ i ∈ {1, . . . ,nC}, ai = c̃i ∀ i > nC,
bi = b̃i ∀ i, and ci = ãi ∀ i.

THE CZOCHRALSKI PROCESS
The Czochralski (CZ) crystallization process is
named after its inventor, the Polish scientist Jan
Czochralski. The CZ process is used to grow
monocrystals (single crystals). Production of
monocrystalline silicon is among the most important
applications of the CZ process. Monocrystalline sil-
icon is used in solar cells as well as computers and
electronics.
The CZ process is a batch process. Initially mul-
ticrystalline silicon is melted in a crucible. Dopant
materials, such as boron or phosphorus, may be
added to the crucible. When the silicon is all molten,
a seed crystal of monocrystalline silicon is dipped
into the melt. As the seed crystal is slowly elevated,
the molten silicon solidifies on the seed crystal. The
seed crystal then grows radially and axially, while
preserving its crystal structure. The produced rod
of monocrystalline silicon is referred to as the ingot.
The CZ process is performed in an inert atmosphere,
such as an argon atmosphere. Figure 1 illustrates the
principle of operation of the CZ process for produc-
tion of monocrystalline silicon.

Figure 1: The Czochralski process, principle of op-
eration. Illustration from Wikipedia.

With respect to control of the CZ process, a tight
control of the ingot diameter is most important in or-
der to minimize cutting waste. There are also several
quality parameters that should be met, such as dis-
location level, impurity content, and dopant distribu-
tion. Unfortunately, these quality parameters can not
be measured online and can therefore not be used as
control objectives for control strategies [3].
A control strategy for the CZ process is presented
in reference [3]. This control strategy is based on
single loop control, cascade control, and feedfor-
ward trajectories. The control strategy is thoroughly
explained in reference [3] and will not be repeated
here.

VALIDATION OF THE DARX REWRITING
This paper presents a rewriting of the second step of
the DARX algorithm. This rewriting allows arx to
be used also for the second step of DARX, cancel-
ing the need for implementing a tailor-made ARX
algorithm. Hence the rewriting simplifies the over-
all implementation of DARX.
In this section the DARX rewriting is validated using
timeseries logged at a real-life CZ process owned
and operated by SINTEF Materials and Chemistry
in Trondheim, Norway. At this CZ process the tem-
perature of the crucible is controlled by adjusting
the electric power to a heating element using TRI-
ACs. The temperature is measured using a pyrom-
eter. The DARX rewriting is validated by identify-
ing the transfer function from the control signal of
the TRIACs, P, to the voltage output signal from
the pyrometer, T . The timeseries used for identifi-
cation are shown in Figure 2. These timeseries were
logged during heating of the crucible before the ac-
tual crystal pulling started, because it then could be
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done larger excitations in P than during the crystal
pulling.

Figure 2: Timeseries P and T used for identification
of the transfer function from P to T .

In this validation four implementations of DARX,
referred to as A, B, C, and D, will be compared.
Implementation A uses a tailor-made, non-standard
ARX algorithm to handle the second step of DARX.
In other words: Implementation A handles the form
of Eq. 17 directly. The main disadvantage of this
approach is that implementing the tailor-made ARX
algorithm significantly complicates the implementa-
tion of DARX. Implementations B, C, and D use the
rewriting presented in this paper and arx to handle
the second step of DARX. Implementation B imple-
ments only case 1, i.e. nA ≤ nC. Implementation C
implements only case 2, i.e. nA ≥ nC. Implemen-
tation D calls implementation B as a sub-routine if
nA ≤ nC, otherwise implementation D calls imple-
mentation C. Implementations A, B, C, and D all
use arx for the first step of DARX.
The validation of the DARX rewriting consists of
three tests. In each test the transfer function from
the control signal P to the measurement signal T is
identified based on the timeseries shown in Figure 2.
The same timeseries are used in all three tests. In
each test four models are identified, one for each of
the implementations A to D. Implementation A is
known to work correctly and is used as a reference
for validating the other implementations.
In test #1 the values nA = 1, nB = 1, and nC = 2 are
used. Hence the parameters a1, b1, c1, and c2 are to
be identified. The identified parameters are shown
in Figure 3. Implementations A, B, and D identify
the parameters identically. Hence B and D identify
the parameters correctly as A is known to be cor-
rect. This was expected, because B is implemented
to handle the constraint nA ≤ nC, which is obeyed,
and D calls B as a sub-routine when this constraint

is obeyed. Implementation C identifies the parame-
ters erroneously. This is because C assumes the con-
straint nA ≥ nC, which is violated.

Figure 3: Parameters a1, b1, c1, and c2 as identified
in test #1.

Test #2 uses the values nA = 2, nB = 1, and nC = 1.
The parameters a1, a2, b1, and c1 are then to be iden-
tified. The identified parameters are shown in Fig-
ure 4. In this test C and D identify the parameters
correctly, while B does not. This is because B as-
sumes the constraint nA ≤ nC, which is violated in
this test.

Figure 4: Parameters a1, a2, b1, and c1 as identified
in test #2.

In test #3, the values nA = 2, nB = 1, and nC = 2 are
used. Hence the parameters a1, a2, b1, c1, and c2
are to be identified. In this test, all implementations
identify the parameters correctly, because the con-
straints nA ≤ nC and nA ≥ nC both are obeyed. This
result is not illustrated graphically.
In all three tests the parameter J, which was intro-
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duced in Eq. 9, was set to J = 10. This parameter
does not influence the validation result because it is
only used during step 1 of DARX, while the rewrit-
ing only considers step 2.
Summing up the tests shows that implementation B,
which is based on case 1, identifies the parameters
correctly if and only if the constraint nA ≤ nC is
obeyed. Implementation C, which is based on case
2, identifies the parameters correctly if and only if
the constraint nA ≥ nC is obeyed. Hence the results
of the validation back up the mathematical deriva-
tion of the rewriting. It is then concluded that the
rewriting works correctly.

CONCLUSION
DARX is a two-step ARX algorithm which approx-
imates the DSR E system identification algorithm.
The first step of DARX is on the standard ARX
form, allowing standard ARX software, such as the
MATLAB command arx, to be used directly. The
second step of DARX slightly differs from the stan-
dard ARX form. This issue can be handled by im-
plementing from scratch a tailor-made, non-standard
ARX algorithm. However, this approach signifi-
cantly complicates the otherwise simple implemen-
tation of DARX.
The main contribution of this paper is to present a
rewriting of the second step of DARX. Using this
rewriting standard ARX software can be used also
for the second step of DARX. Hence the need for a
tailor-made ARX algorithm is canceled.
The Czochralski (CZ) crystallization process is used
to grow monocrystals (single crystals). Production
of monocrystalline silicon is among the most impor-
tant applications of the CZ process. Monocrystalline
silicon is used in solar cells, computers, and elec-
tronics.
The rewriting of the second step of DARX has been
validated by comparing four implementations of
DARX. These implementations were tested by iden-
tifying a transfer function in the CZ process based on
timeseries logged at a real-life CZ process. One im-
plementation uses a tailor-made, non-standard ARX
algorithm to handle the second step of DARX. The
other three implementations use the rewriting pre-
sented in this paper. As the results of this validation
back up the mathematical derivation, it is concluded
that the rewriting is correct.
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Considerations of Paper C

This paper uses the notation e for the true, but unknown, innovation process, and
the notation f for the identified innovation process. This notation differs from the
notation used in Paper B, where the symbols ε and ε, respectively, were used. It
is unfortunate not to be consistent with the notation. In this paper, the symbols
p and q are used for two different parameter vectors. This is also an unfortunate
notation as θ is usually used for parameter vectors in the system identification
literature.

The candidate has used the term “timeseries” somewhat erroneously in this
paper compared to how the term is used in Ljung (1999). The paper uses the term
for datasets logged from processes or made by dynamic simulations, while Ljung
(1999) uses the term for “outputs of dynamical systems whose external stimuli are
not observed”.
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Paper D

Empirical Modeling of Heating
Element Power for the
Czochralski Crystallization
Process

This article was published in the open-access journal Modeling, Identification and
Control (MIC) in 2010. The research presented in this article is based on logged
process data from an experiment at the Czochralski (CZ) crystallization process at
SINTEF Materials and Chemistry in Trondheim, Norway. The candidate did not
participate in this experiment. The candidate has done all the research presented
in the article and written the article during his PhD study.

This article and Paper E present modeling work on the same part of the CZ
process. However, different modeling approaches are used in the two publications.
In this article the method for outlier detection presented in Paper A is used. After
the article, on page 105, a few considerations of the article are discussed.

The copyright of this article is assigned the Norwegian Society of Automatic
Control. The article is released under the license Creative Commons 3.0
(http://creativecommons.org/licenses/by/3.0/), which allows the article to be in-
cluded in this PhD thesis.
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Abstract

The Czochralski (CZ) crystallization process is used to produce monocrystalline silicon. Monocrystalline
silicon is used in solar cell wafers and in computers and electronics. The CZ process is a batch process,
where multicrystalline silicon is melted in a crucible and later solidifies on a monocrystalline seed crystal.
The crucible is heated using a heating element where the power is manipulated using a triode for alternat-
ing current (TRIAC). As the electric resistance of the heating element increases by increased temperature,
there are significant dynamics from the TRIAC input signal (control system output) to the actual (mea-
sured) heating element power. The present paper focuses on empirical modeling of these dynamics. The
modeling is based on a dataset logged from a real-life CZ process. Initially the dataset is preprocessed
by detrending and handling outliers. Next, linear ARX, ARMAX, and output error (OE) models are
identified. As the linear models do not fully explain the process’ behavior, nonlinear system identification
is applied. The Hammerstein-Wiener (HW) model structure is chosen. The final model identified is a
Hammerstein model, i.e. a HW model with nonlinearity at the input, but not at the output. This model
has only one more identified parameter than the linear OE model, but still improves the optimization
criterion (mean squared ballistic simulation errors) by a factor of six. As there is no nonlinearity at the
output, the dynamics from the prediction error to the model output are linear, which allows a noise model
to be added. Comparison of a Hammerstein model with noise model and the linear ARMAX model, both
optimized for mean squared one-step-ahead prediction errors, shows that this optimization criterion is
42% lower for the Hammerstein model. Minimizing the number of parameters to be identified has been
an important consideration throughout the modeling work.

Keywords: Czochralski Crystallization Process, Empirical Modeling, Hammerstein-Wiener Model, Heat-
ing Element, Nonlinear System Identification.

1 Introduction

The Czochralski (CZ) crystallization process was in-
vented by the Polish scientist Jan Czochralski in 1916.
The process is used to convert multicrystalline materi-
als into monocrystalline materials, i.e. materials that
have homogeneous crystal structures. Among the most
important applications is production of monocrystalline
silicon. Monocrystalline silicon is used in solar cell
wafers and in computers and electronics. Solar cells

based on monocrystalline wafers have higher efficiency
than those based on multicrystalline wafers. Hence,
the CZ process is an important part of the solar cell
industry.

The CZ process is a batch process. During the pro-
cess multicrystalline silicon is melted in a crucible. The
crucible is heated using a heating element. Tight con-
trol of the crucible temperature is most important for
achieving high crystal quality. The heating element

doi:10.4173/mic.2010.1.2 c© 2010 Norwegian Society of Automatic Control
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power is manipulated using a triode for alternating cur-
rent (TRIAC). As the electric resistance of the heat-
ing element increases with the temperature, there is
a dynamic, nonlinear relationship between the TRIAC
input signal and the heating element power.

System identification is the science of developing dy-
namic models based on observations of the process or
system to be modeled. The identified models explain
the process outputs as mathematical functions of the
process inputs.

The contribution of this paper is to model the dy-
namics from the TRIAC input signal to the heating
element power using system identification. The mod-
eling work is based on a dataset logged at a real-life CZ
process at SINTEF Materials and Chemistry in Trond-
heim, Norway. Initially, linear system identification
is used. The identified linear models reveal that the
process is nonlinear. Next the process is modeled us-
ing nonlinear system identification. Deciding a model
structure that explains the process behavior using few
parameters is emphasized. Also, providing the identifi-
cation algorithm good initial values for the parameters
to be identified is considered.

As the identified model provides a mathematical de-
scription of how the heating element power responds
to the TRIAC input signal, the model serves several
purposes. The most intuitive application is to simu-
late the power for specified sequences of the TRIAC
input signal. The model is also most useful for analyz-
ing the process’ dynamic properties. Process models
may be used to tune PID controllers. As the process is
nonlinear, it may be desirable to use gain scheduling.
The nonlinear process model contains information of
which PID parameters to use for each interval in the
gain scheduling scheme. If more advanced model-based
control strategies are to be applied, such as model pre-
dictive control (MPC), process models are most im-
portant. In case of a power sensor failure, the model
may be used to simulate the power for the purpose of
process monitoring and control.

The literature of system identification is extensive.
Among the most well-known books is Ljung (1999).
This book gives a comprehensive introduction to sys-
tem identification. Both theoretical and practical as-
pects are covered. Ljung (1999) also serves as an overview
of the system identification literature.

Lee et al. (2005) presents an approach for batch-to-
batch optimization of the CZ process, which includes
model-based control. The paper includes two simple
dynamic models empirically developed from step re-
sponses. However, these models cover different parts of
the CZ process than the present paper. Except for Lee
et al. (2005), the authors of the present paper have not
been successful in finding any publications that present

results within empirical modeling of the CZ process.
Several papers with focus towards mechanistic (first
principle) modeling of the CZ process have been found.
However, none of these papers seem to have validated
the mechanistic models against datasets from real-life
processes.

The authors have searched for literature covering
modeling of heating element dynamics in general. Un-
fortunately, no interesting results were found.

2 Notations and Definitions

Table 1 presents the notations used in this paper. A
variable with subscript k refers to the variable’s value
at timestep k. For example Pk refers to the heating
element power at timestep k. Subscript “nom” refers
to the variable’s nominal value. The operating point
(snom, Pnom) is defined to be a steady state operating
point.

Polynomials to be used in linear polynomial models
are defined as

A(q) def= 1 +
na∑
i=1

aiq
−i, (1)

B(q) def=
nb∑
i=1

biq
−i, (2)

C(q) def= 1 +
nc∑
i=1

ciq
−i, (3)

F (q) def= 1 +
nf∑
i=1

fiq
−i. (4)

The parameters ai, bi, ci, and fi are to be identified
using system identification. The constants na, nb, nc,
and nf are to be specified to the system identification
algorithm. There is a time delay of one sample in the
dataset to be used in this paper. For processes with-
out any time delay, the lower summation limit of B(q)
should be 0 instead of 1. The A(q), C(q), and F (q)
polynomials are defined as above in any case.

The linear polynomial models that will be considered
in this paper are based on the ARX model structure

A(q)yk = B(q)uk + ek, (5)

the ARMAX model structure

A(q)yk = B(q)uk + C(q)ek, (6)

and the output error (OE) model structure
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Table 1: Notations used in this paper.

e(θ) One-step-ahead prediction error.
k Index referring to sample number in

the dataset.
N The total number of samples in the

dataset.
P Actual (measured) power to the

heating element [kW].
Pnom Nominal power to heating element

[kW] (see main text for explana-
tion).

ΔP Actual (measured) power to the
heating element [kW] as deviation
from the nominal power, i.e. ΔP =
P − Pnom.

q The time-shift operator defined by
xk+1 = qxk and xk−1 = q−1xk.

s TRIAC input signal [%] (output
from control system).

snom Nominal TRIAC input signal [%]
(see main text for explanation).

Δs TRIAC input signal [%] as deviation
from the nominal input signal, i.e.
Δs = s − snom.

t Time [s], relative to beginning of the
CZ batch.

u System input for a general system.
V (θ) Criterion to be optimized when us-

ing the system identification method
PEM. This criterion is based on bal-
listic simulation errors. Please refer
to Section 4 for further explanation.

W (θ) Criterion to be optimized when us-
ing the system identification method
PEM. This criterion is based on one-
step-ahead prediction errors. Please
refer to Section 4 for further expla-
nation.

y System output for a general system.
ε(θ) Ballistic simulation error.
θ A vector containing the parameters

to be identified using PEM. Please
refer to Section 4 for further expla-
nation.

yk =
B(q)
F (q)

uk + εk. (7)

The term noise model refers to the dynamics from
the one-step-ahead prediction error, e, to the system
output, y. Solving (5) and (6) with respect to yk shows
that the noise models of ARX and ARMAX are 1/A(q)
and C(q)/A(q), respectively. The OE model has no
noise model. Model structures having noise models,
such as ARX and ARMAX, are suitable for n-step-
ahead predictions, because the noise models correct the
model states when there are errors between the mea-
sured process outputs and the simulated model out-
puts. Model structures having no noise model, like
OE, are only suitable for ballistic simulations, not n-
step-ahead predictions.

The term input-output model will be used to refer to
the dynamics from the system input, u, to the system
output, y. With respect to the input-output model,
A(q) of the ARX and ARMAX model structures is
equivalent to F (q) of the OE model structure.

Text written in teletype font refers to MATLAB
commands, for example pem.

3 The Czochralski Crystallization
Process

The Czochralski (CZ) crystallization process is used to
convert multicrystalline materials into monocrystalline
materials. The process considered in this paper con-
verts multicrystalline silicon into monocrystalline sili-
con. Monocrystalline silicon is used in solar cell wafers
and in computers and electronics. Monocrystalline sil-
icon wafers give solar cells with higher efficiency than
multicrystalline silicon wafers.

The CZ process is a batch process of which main
steps are illustrated in Figure 1. (i) Initially multicrys-
talline silicon is melted in a crucible. (ii) When the
silicon is molten, the tip of a seed crystal is dipped
into the melt. The seed crystal is monocrystalline and
has the crystal structure that is to be produced. (iii)
When the tip of the seed crystal begins to melt, the
crystal is slowly elevated. As the crystal is lifted, the
molten silicon solidifies on the crystal. (iv) The crys-
tal grows radially and axially. The produced crystal is
referred to as an ingot. The crucible temperature and
the vertical pulling speed are used to control the in-
got diameter. Stable growing conditions are necessary
to produce high crystal quality. (v) As the final ingot
length is reached, the crystal growth is terminated by
slowly decreasing the crystal diameter to zero. During
the entire batch process, the crucible is rotated in one
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Figure 1: The main batch steps of the CZ process. Il-
lustration from Wikipedia (the illustration is
released to public domain by the copyright
holder).

direction, and the seed crystal is rotated in the other
direction.

SINTEF Materials and Chemistry in Trondheim, Nor-
way, owns and operates a real-life CZ process. At this
plant the crucible is heated using a cylinder-shaped
heating element, which encircles the crucible. The
heating element power is manipulated using a TRIAC.
This paper considers empirical modeling of the dynam-
ics from the TRIAC input signal, s, to the heating el-
ement power, P , based on a dataset logged from this
plant.

The dataset that is used for empirical modeling is
shown in Figure 2. The experiment was done with-
out the crucible mounted in the process. The figure
shows that increased s gives instantaneously increased
P . However, as the temperature increases, the elec-
tric resistance of the heating element increases, caus-
ing decreased P . As shown later in this paper, these
dynamics are nonlinear.

The authors have access to only one dataset that is
considered to be suitable for the modeling work. This
dataset will be used for model identification as well as
model validation. The authors have chosen to use the
entire dataset for both identification and validation.
The reason for not splitting the dataset into an identi-
fication section and a validation section is that s tends
to increase by time throughout the dataset. Hence,
splitting the dataset in two halves will leave a small
range of excitations in each half. As concluded in Sec-
tion 6, the process is almost linear close to an operating
point. Therefore, a large range of excitations is desir-
able to provide the identification algorithm sufficient
information about the process’ nonlinearity.

Figure 2 shows that P responds in a similar way
for any step in s. This gives confidence in that the
responses of P are caused by excitations of s, not by
process disturbances nor measurement noise. However,
as the models are not validated on independent data,
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Figure 2: The dataset to be used for system
identification.

it is most important to limit the number of parame-
ters to be identified in order to avoid overfitting. The
sampling time of the dataset is 2 seconds.

4 Prediction Error Method

System identification is the science of developing dy-
namic models based on observations of system inputs
and system outputs. There exist many different system
identification algorithms based on various mathemati-
cal approaches. This paper will be restricted to the pre-
diction error method (PEM). PEM is one of the most
used system identification approaches. When identify-
ing a model using PEM, the identification algorithm is
provided a model structure with one or more unknown
parameters to be identified. The unknown parameters
are stacked in a parameter vector θ. For example when
identifying an ARMAX model with na = 1, nb = 2,
and nc = 1 the parameter vector is

θ =

⎡
⎢⎢⎣

a1

b1

b2

c1

⎤
⎥⎥⎦ . (8)

PEM computes the parameter vector that gives the
least difference between the real process output and
the simulated model output. What exactly is meant by
“least difference” must be specified by a mathematical
optimization criterion. This paper will consider two
different criteria:

92 PAPER D



V (θ) def=
1
N

N∑
k=1

εk(θ)2, (9)

W (θ) def=
1
N

N∑
k=1

ek(θ)2. (10)

When optimizing for ballistic simulations, V (θ) is
used. When optimizing for one-step-ahead predictions,
W (θ) is used. In this paper, unless otherwise specified,
models with noise models are optimized with respect to
W (θ), and models without noise models are optimized
with respect to V (θ).

PEM can be used to estimate parameters in both
linear and nonlinear model structures. If the model
structure is developed based on mechanistic (first prin-
ciple) modeling of the process, the model is referred to
as a grey-box model, as it combines the principles of
black-box modeling with process knowledge.

From a mathematical point of view, PEM is an op-
timization problem of which V (θ) or W (θ) is to be
minimized with respect to θ. In most cases this opti-
mization problem must be solved iteratively. A poor
initial value of θ may cause the optimization algorithm
to be trapped in a local minimum. It is therefore desir-
able for the model developer to find good initial values.
ARX models can be identified using the ordinary least
squares (OLS) method and are therefore not at the risk
of being trapped in a local minimum.

Using system identification, models can in principle
be developed without having any knowledge of the pro-
cess at all, except for datasets of logged process inputs
and outputs. However, in practice, basic knowledge
of the process greatly helps the model developer dur-
ing data preprocessing, model identification, and model
validation.

When developing models using system identification,
one should be aware of the limitation that the model
may perform poorly outside the ranges of input and
output values of the calibration and validation datasets.
Even if the model structure has been developed using
mechanistic (first principle) modeling, the model struc-
ture is often based on assumptions or simplifications
that may not hold for larger ranges of input and out-
put values. Also the estimation error of a parameter
(the difference between the “true” parameter value and
the estimated parameter value) may have larger impact
for input and output values outside the calibration and
validation ranges.

5 Data Preprocessing

Datasets logged from real-life processes often need pre-
processing before they can be used for empirical mod-

eling and model validation. The dataset to be used in
this paper has been preprocessed in two ways: (i) data
detrending and (ii) outlier detection.

5.1 Data Detrending

The dataset to be used in this paper has been de-
trended by subtracting a steady state operating point,
(snom, Pnom), from the raw data. The detrended dataset,
Δs = s− snom and ΔP = P −Pnom, then refers to de-
viations from the steady state operating point. In par-
ticular when identifying linear models, subtracting a
steady state operating point is desirable. The resulting
linear model is then equivalent to a linearization (first
order Taylor expansion) around the operating point.

If a steady state operating point is not known to the
model developer, a commonly used approximation is
the sample means, i.e. snom = 1

N

∑N
k=1 sk and Pnom =

1
N

∑N
k=1 Pk. For this particular dataset, Figure 2 shows

that the process is very close to steady state in the
time interval t ∈ [8700, 10300]. As the dataset happens
to reveal a steady state operating point, this operat-
ing point is used for detrending, instead of the sample
means. The steady state values found are snom = 45%
and Pnom = 45kW. Please note that it is a coincidence
that snom and Pnom happen to have the same value in
the steady state operating point. This is not the case
in general.

5.2 Outlier Detection

The term outlier refers to a sample, or a segment of
samples, in the dataset that is not representative for
the process’ behavior. It is therefore desirable to ex-
clude the outliers from the dataset during model iden-
tification and model validation.

It is not trivial to decide which samples that are out-
liers. It may be intuitive to look for extreme values, i.e.
samples of which values are significantly higher or lower
than the other samples in the dataset. However, this
approach is not reliable. A sample of extreme value
may be real, while a non-extreme value may be an out-
lier. The latter case is shown for real-life industrial
data in Komperød et al. (2008).

Deciding whether a sample is an outlier or not is to
a large degree a subjective choice which requires prac-
tical knowledge of the process to be modeled. How-
ever, mathematical algorithms may be used to iden-
tify samples that are candidates for being outliers. An
approach for outlier detection presented in Komperød
et al. (2008) was used at the dataset shown in Figure 2:
A high order ARX model with na = 10 and nb = 10
was identified. Figure 3 shows the residual plot (one-
step-ahead prediction errors), e, of this model. In gen-
eral, samples having large residuals (absolute values)
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Figure 3: Residual plot of an ARX model with na = 10
and nb = 10.

and their neighbor samples are candidates for being
outliers. There are several large residuals in Figure 3.
Plotting the residuals in the same plot as the heating
element power, P , reveals that most of the large resid-
uals correspond to steps in the heating element power
(this plot is not shown). Hence, these residuals are
most likely caused by model imperfection, rather than
outliers. Only two large residuals do not correspond
to power steps. These residuals are marked by blue
arrows in Figure 3.

Figure 4 and Figure 5 show the residuals, e, and the
measured power, ΔP , zoomed in close to the residuals
marked by the left-most arrow and the right-most ar-
row in Figure 3, respectively. In Figure 4 there is one
sample in ΔP (lower subplot), which value is signifi-
cantly lower than the neighbor samples. This sample
value can not be explained by the TRIAC input signal,
s. The reason for this sample value is not known for
sure. A reasonable explanation is voltage variations
on the power grid. A voltage drop of short duration
can occur for example when starting an electric mo-
tor. Please note from the lower subplot in Figure 4
that the power does not completely restore after the
power drop. This observation strengthens the assump-
tion that a larger load on the power grid was activated.
The outlier is handled by replacing the extreme value
sample by a linear interpolation between the two neigh-
boring samples.

The residual in the upper subplot of Figure 5 is of a
different nature than the one in Figure 4. In Figure 5
there are positive residuals for two to three samples,
but no negative residual. The lower subplot shows that
the power is lifted to a higher level and does not go back
to the initial level. A reasonable explanation is that a
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Figure 4: Residuals, e, (upper) and measured power,
ΔP , (lower) zoomed in at the left-most arrow
in Figure 3.
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row in Figure 3.
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Figure 6: Residual plot after handling outliers.

large load at the power grid was shut down, increasing
the grid voltage. This outlier is handled by subtracting
0.15kW from ΔP (t) ∀ t ≥ 20714s.

After the outliers were handled, a new ARX model of
the same polynomial orders was identified. The resid-
ual plot of this model is shown in Figure 6. The figure
shows that the residuals marked by blue arrows in Fig-
ure 3 are no longer present.

Figure 7 shows the dataset after being preprocessed.
This dataset will be used for linear and nonlinear sys-
tem identification in Section 6 and Section 7, respec-
tively.

6 Linear System Identification

For many processes it is not trivial to decide whether
or not the process can be approximated by a lineariza-
tion within the operating range of interest. It there-
fore makes sense to try linear models at first, as these
models are simpler than nonlinear models. Even if the
process is somewhat nonlinear, a linear model may be
useful for understanding the process’ basic dynamics,
such as model order and dominant time constant. Un-
derstanding these basic dynamics may be helpful if de-
veloping more complex, nonlinear models later.

In this section linear ARX, ARMAX, and OE models
are identified. These three model structures have iden-
tical input-output model structures, but different noise
models. The dataset to be used for system identifica-
tion is the dataset shown in Figure 7. Before identifi-
cation, the dataset has been preprocessed as explained
in Section 5.
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Figure 7: The dataset after being preprocessed. It is
now ready to be used for linear and nonlinear
system identification.

6.1 Deciding Polynomial Orders

A most important choice is how to select the polyno-
mial orders na, nb, nc, and nf in ARX, ARMAX, and
OE models. In particular when there is no indepen-
dent dataset available for model validation, the model
developer should limit the number of parameters to
identify in order to avoid overfitting. The polynomial
orders to be used in this paper will now be derived
based on the plot in Figure 7. For each positive step
in the TRIAC input signal, Δs, the heating element
power, ΔP , does an instantaneous positive step and
then slowly decreases. The decrement will be approx-
imated as a first order response with negative gain.
There is a time delay of one sample from Δs to ΔP .
The dynamics from Δs to ΔP are then given on the
form

ΔPk =

⎛
⎜⎜⎝b̃2q

−1︸ ︷︷ ︸
step

+
−b̃1q

−1

1 + a1q−1︸ ︷︷ ︸
decrease

⎞
⎟⎟⎠ Δsk, (11)

where b̃1 and b̃2 are temporary parameters. On the
right hand side of (11), the first term represents the
instantaneous step and the second term represents the
subsequent decrease. Equation (11) can be rewritten
as

ΔPk =
b̃2q

−1 + b̃2a1q
−2 − b̃1q

−1

1 + a1q−1
Δsk. (12)

Introducing b1 = b̃2 − b̃1 and b2 = b̃2a1 gives
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ΔPk =
b1q

−1 + b2q
−2

1 + a1q−1
Δsk. (13)

This is the standard form for input-output models of
polynomial models. Hence, the chosen polynomial or-
ders for the ARX and ARMAX models are na = 1
and nb = 2. As nc of the ARMAX model is not
given, this is chosen equal to na, i.e. nc = na = 1.
Equivalent, for the OE model the polynomial orders
are nb = 2 and nf = 1. An ARX model, an ARMAX,
and an OE model were identified using these polyno-
mial orders. The identifications were performed using
the commands arx, armax, and oe of the MATLAB
System Identification Toolbox. A time-delay of one
sample was specified to the identification algorithms,
otherwise the default settings were used.

6.2 Model Validation and Discussions

Figure 8 shows ballistic simulations of the identified
ARX, ARMAX, and OE models. In general, the mod-
els give small simulation errors close to the operating
point (snom, Pnom), but give a somewhat poorer fit oth-
erwise. Notice in particular the last step at t = 22170s:
Right before the step all the model simulations are sig-
nificantly below the measured value. Right after the
step all the simulations are significantly above the mea-
sured value. However, these simple linear models catch
the basic dynamics of the process. The models may
be usable for some applications, such as model-based
PID controller tuning provided that the gain and phase
margins are chosen sufficient large.

To examine whether the input-output model struc-
ture of (13) has sufficient polynomial degrees, na, nb,
nc, and nf were all increased by one to examine whether
this improved the models’ performance. Table 2 shows
the values of the optimization criterion V (θ) of (9) for
the models used in Figure 8 and for models with higher
polynomial orders. The table reveals two interesting
results: (i) According to V (θ), the OE models perform
much better than the ARX and ARMAX models. This
is to be expected as OE is optimized for V (θ) (ballistic
simulation), while ARX and ARMAX are optimized
for W (θ) (one-step-ahead prediction). (ii) Increasing
the polynomial orders does not significantly improve
the optimization criterion. Hence, it is concluded that
the polynomial orders of (13) are sufficient. For the
ARX and ARMAX models, increasing the polynomial
orders actually gives slightly poorer performance. In
the succeeding text, only the models of lower polyno-
mial orders, i.e. rows 1, 3, and 5 of Table 2, will be
considered.

Figure 9 shows the ballistic simulation errors, ε(θ), of
the ARX, ARMAX, and OE models, i.e. the difference
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Figure 8: Ballistic simulations using the ARX model
(na = 1, nb = 2), ARMAX model (na =
1, nb = 2, nc = 1), and OE model (nb =
2, nf = 1).

Table 2: Optimization criterion for various model
structures and polynomial orders.

Model na nb nc nf V (θ)

ARX 1 2 - - 0.106
ARX 2 3 - - 0.109
ARMAX 1 2 1 - 0.108
ARMAX 2 3 2 - 0.110
OE - 2 - 1 0.043
OE - 3 - 2 0.042
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Figure 9: Ballistic simulations error using the ARX,
ARMAX, and OE models.

between the measured data and the simulated data of
Figure 8. A horizontal curve in Figure 9 indicates that
the simulated data increase or decrease at the same
rate as the measured data. An increasing curve shows
that the simulated data increase too slowly or decrease
too fast.

For all three models there are significant steps in Fig-
ure 9 at the steps in Δs. The most interesting result of
Figure 9 is that the simulation error of the OE model
is in general closer to zero than the other models, i.e.
has better fit according to the criterion V (θ), but at the
same time has a steeper curve in large parts of Figure 9.
In particular in the time intervals t ∈ [7116, 8076] and
t ∈ [17098, 22170] the OE model has a very steep curve
compared to the other models. Hence, it seems that
the ARX and ARMAX models explain the dynamics
of the process more accurately than the OE model,
but still give a poorer performance at ballistic simula-
tion. During one-step-ahead predictions, which ARX
and ARMAX are optimized for, the noise models han-
dle the offsets that are caused by inaccurate explana-
tion of the steps. However, as the noise models are to
no avail during ballistic simulations, the good expla-
nations of the dynamics do not fully compensate for
the poorer explanations of the steps. The OE model
on the other hand is optimized to balance these two
considerations during ballistic simulations.

For the purpose of model-based tuning of a controller
that should have a constant setpoint, i.e. constant op-
erating point, it seems reasonable to recommend the
ARX and ARMAX models over the OE model, as the
ARX and ARMAX models seem to explain the dy-
namic more accurately.
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Figure 10: The Hammerstein-Wiener model structure
as defined in the MATLAB System Identi-
fication Toolbox. The model structure has
no noise model.

7 Nonlinear System Identification

Linear process models of the dynamics from Δs to ΔP
were developed in Section 6. These models seem to
explain the process dynamics well close to an operating
point, but handle steps in Δs somewhat poorly.

This section will focus on nonlinear system identifi-
cation of the dynamics from Δs to ΔP . The motiva-
tion for using nonlinear system identification is that the
simulation errors of the linear models indicate that the
process is nonlinear. The dataset to be used is shown
in Figure 7. The dataset has been preprocessed as de-
scribed in Section 5. As there is no independent dataset
available for validation, an important consideration is
to limit the number of parameters to be identified in
order to avoid overfitting.

7.1 The Hammerstein-Wiener Model
Structure

There are several modeling approaches and model struc-
tures that can be used for nonlinear system identifica-
tion. In this paper a model structure referred to as
Hammerstein-Wiener (HW) will be used. The motiva-
tions for choosing the HW model structure are: (i) The
model structure is very simple and easy to understand.
(ii) Linear system theory can be applied to analyze the
models’ stability properties.

The HW model structure is something between lin-
ear and nonlinear models. The core of the HW model is
a linear model. As HW models are defined in the MAT-
LAB System Identification Toolbox, the linear model is
an OE model. The input to the OE model is processed
by a static, nonlinear function f(u). The output from
the OE model is processed by another static, nonlinear
function h(x). The HW model structure is illustrated
in Figure 10. A model having nonlinear processing of
the input only, not the output, is referred to as a Ham-
merstein model. A model having nonlinear processing
of the output only, not the input, is referred to as a
Wiener model (Ljung, 1999, 2009).

Going from linear to nonlinear system identification
gives new opportunities, but also introduces new chal-
lenges. General nonlinear model structures, such as
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the HW structure, are more flexible than linear model
structures. The flexibility comes with the price of sev-
eral parameters to be identified and several choices
where the model developer can go wrong.

For a linear OE model, the model developer’s choices
are the polynomial orders, i.e. nb and nf . When ex-
panding the linear OE model to a HW model, the
model developer must also choose which nonlinear func-
tions f(u) and h(x) to use. Typically, f(u) and h(x)
have parameters to be identified, for example satura-
tion limits or polynomial coefficients. These parame-
ters are added to the parameter vector θ, which was
introduced in Section 4. When f(u), h(x), nb, and nf

are chosen, θ is identified using PEM.

7.2 Default Settings Fail

In the MATLAB System Identification Toolbox, HW
models can be identified either from the command line
or by using the graphical user interface (GUI) of the
toolbox. Using the command line, the model developer
is forced to make explicit choices for f(u), h(x), nb,
and nf . Using the GUI, default settings are provided.
Deciding f(u), h(x), nb, and nf are most important,
but difficult, choices. It therefore may be tempting for
an inexperienced model developer to keep the default
settings of the GUI.

Figure 11 shows ballistic simulation of a HW model,
which was identified using the default settings for f(u),
h(x), nb, and nf in the toolbox GUI. Also with re-
spect to the optimization algorithm the default settings
were used. Figure 11 speaks clearly for itself: The de-
fault settings give a very poor model. Even though
this model structure has a large number of parameters
to be identified and was validated at the same dataset
that was used for identification, the model fit is very
disappointing.

The example presented in Figure 11 illustrates what
was explained above: The increased flexibility of the
general nonlinear model structures also has significant
disadvantages. In case of HW models, the model de-
veloper has to make clever choices for f(u), h(x), nb,
and nf for the modeling work to be successful. Also,
as the number of parameters to be identified increases,
the risk of the optimization algorithm to be trapped
in a local minimum increases significantly. Hence, the
model developer may also spend some effort to provide
the algorithm good initial values for the parameters to
be identified.

7.3 Deciding Input and Output
Nonlinearities

This subsection shows how examination of the dataset,
together with the linear models developed in Section 6,
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Figure 11: Ballistic simulation using the Hammerstein-
Wiener model, which was identified using
the default f(u), h(x), nb, and nf of the
GUI in the MATLAB System Identification
Toolbox.

can be used to make good choices for f(u), h(x), nb,
and nf when developing a HW model for the dynamics
from Δs to ΔP .

The preprocessed dataset used for system identifica-
tion is shown in Figure 7. After t = 1.0 × 104 s, four
steps of Δs occur. For each step, Δs is increased by
5%. At first sight it seems that ΔP responds simi-
larly to each step. However, more accurate examina-
tion of the dataset reveals that the magnitudes of the
ΔP steps are different for each Δs step, even though
all Δs steps are of the same magnitude.

To simplify notation, r [kW/%] is defined as the
magnitude of a ΔP step divided by the magnitude of
the corresponding Δs step. Hence, r can be consid-
ered the gain of which a step in Δs is amplified to the
corresponding step in ΔP . Please note that the instan-
taneous responses in ΔP are considered, not the steady
state values. Table 3 summarizes r for each step in Δs
after t = 1.0 × 104 s. The table shows that the higher
values Δs and ΔP have prior to the step, the smaller
is r.

In Section 6 it was concluded that the input-output
models of the ARX and ARMAX models explain the
dynamics of the process well, even though they handle
the steps in Δs somewhat poorly. It is therefore rea-
sonable to base the linear OE block of the HW model
on the input-output model of the ARX model or the
ARMAX model. Hence, the polynomial orders of the
linear OE block is chosen nb = 2 and nf = 1. For the
same reason, it is also reasonable to assume that the
polynomial coefficients of A(q) and B(q) in the ARX
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Table 3: Gain, r, for each step in Δs after t = 1.0 ×
104 s.

Step Δs [%] Step ΔP [kW] Gain, r, [kW/%]

0.00→ 5.00 0.04→ 6.78 1.35
5.00→10.00 6.09→ 12.64 1.31

10.00→15.00 11.72→ 17.87 1.23
15.00→20.00 16.99→ 22.68 1.14

and ARMAX models are suitable as initial values for
identification of F (q) and B(q) in the linear OE block.
The ARX model is chosen for initial values, because
the ARX model has the simplest model structure and
can be identified using the ordinary least squares (OLS)
method.

The linear OE block of the HW model can not han-
dle the variable gain shown in Table 3. The variable
gain has to be handled by the input nonlinearity f(u)
and/or the output nonlinearity h(x). A reasonable ap-
proach is to consider the gain, r, as a function of Δs
and/or ΔP . It is here chosen to consider r as a func-
tion of Δs, i.e. r = r(Δs). This choice will lead to a
Hammerstein model (the reason for this choice is ex-
plained in Subsection 7.6). That is, f(u) will be used
to handle the nonlinearities, and h(x) will simply be
h(x) = x, or equivalent, the h(x) block in Figure 10
will be absent.

A polynomial is a reasonable choice for explaining
r as a function of Δs. As there are four (Δs, r) pairs
in Table 3, a third order polynomial will give no resid-
ual. However, as it is important to keep the number
of parameters low, a first order polynomial is chosen.
Hence, r is written as

r(Δs) = d2Δs + d1, (14)

where d1 and d2 are the polynomial coefficients. The
process’ behavior at each step, ignoring the general
process dynamics, can then be approximated as

ΔPk = ΔPk−1 + r(Δsk−2) × (Δsk−1 − Δsk−2) (15)
= ΔPk−1 + (d2Δsk−2 + d1) × (Δsk−1 − Δsk−2)

for a step that occurs in Δs at timestep k − 1. The
response in ΔP is delayed by one sample. The last
term in (15) can be rewritten as

(d2Δsk−2 + d1) × (Δsk−1 − Δsk−2) (16)

= d2Δsk−1Δsk−2 + d1Δsk−1 − d2Δsk−2
2 − d1Δsk−2.

This equation gives a hint of how f(u) could be cho-
sen: The term Δsk−1Δsk−2 can not be included in
f(u), because f(u), according to the definition of the
HW model structure, should be a static function of u.
Hence, one of these approximations must be chosen:
Δsk−1Δsk−2 ≈ Δsk−2

2 or Δsk−1Δsk−2 ≈ Δsk−1
2.

Using the first approximation, the term d2Δsk−2
2 will

cancel in (15). Hence, r(Δsk−2) will be equal to the
constant d1, which is in conflict with the intention of
choosing r(Δs) as a function of Δs. Using the other
approximation, Δsk−1Δsk−2 ≈ Δsk−1

2, makes sense.
Define f(Δs) as

f(Δs) def= d2Δs2 + d1Δs. (17)

Using this definition and this approximation, (15) can
be rewritten as

ΔPk = ΔPk−1 + f(Δsk−1) − f(Δsk−2). (18)

Although this derivation is based on some rough ap-
proximations, it will be shown shortly that f(Δs) as
defined in (17) is a good choice for the Hammerstein
model to be identified.

For the chosen polynomial orders of the linear OE
block, i.e. nb = 2 and nf = 1, the model structure to
be used in this block is on the form

ΔPk + f1ΔPk−1 = b1wk−1 + b2wk−2, (19)

where w is the output from the input nonlinearity block
as illustrated in Figure 10. In order to handle the pro-
cess’ nonlinearity, the OE model of (19) is extended to
a Hammerstein model by replacing wk−1 and wk−2 by
f(Δsk−1) and f(Δsk−2), respectively. The Hammer-
stein model is then written as

ΔPk + f1ΔPk−1 = b1f(Δsk−1) + b2f(Δsk−2) (20)

= b1(d2Δsk−1
2 + d1Δsk−1)

+ b2(d2Δsk−2
2 + d1Δsk−2).

Now the desired model structure for the Hammer-
stein model has been developed. Subsections 7.4 and
7.5 consider how to identify the model parameters.

7.4 Computing Initial Values

For most model structures the PEM method uses an
iterative optimization algorithm to compute the pa-
rameter vector θ. Such algorithms are generally at the
risk of being trapped in a local minimum. The model
developer may try to find good initial values for the
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parameters to be identified, or he can try the iterative
algorithm directly, hoping it will not be trapped in a
local minimum. This subsection presents a suggestion
for how to estimate good initial values for the param-
eters of the model (20).

The first issue is to estimate d1 and d2. Equation
(20) can be written on vector form as

ΔPk + f1ΔPk−1 (21)

=
[

b1Δsk−1
2 + b2Δsk−2

2

b1Δsk−1 + b2Δsk−2

]T [
d2

d1

]
,

where b1, b2, and f1 are the parameters identified in
the linear ARX model in Section 6 (a1 of the ARX
model corresponds to f1 in (21)).

For each row in Table 3, a row in (21) is defined. This
gives a linear, over-determined set of four equations
with two unknown. Equation (21) is then solved for
[d2d1]T using the ordinary least squares (OLS) method.
Figure 12 shows ballistic simulation of the Hammer-
stein model of (21) compared to the ARX model iden-
tified in Section 6. The Hammerstein model performs
significantly better than the ARX model in terms of
the optimization criterion V (θ). The Hammerstein
model has V (θ) = 0.045, while the ARX model has
V (θ) = 0.106. As the polynomial coefficients b1, b2,
and f1 (a1 for the ARX model) are identical for the
ARX model and the Hammerstein model, the improve-
ment of the Hammerstein model can only be explained
by the replacement of Δs in favor of f(Δs) and the es-
timation of d1 and d2. The Hammerstein model gives
confidence in that the chosen model structure is well
suited for explaining the process’ behavior.

As good estimates of d1 and d2 are available, the
parameters b1, b2, and f1 will now be re-identified.
That is, d1 and d2 in (20) are considered fixed, and
b1, b2, and f1 are identified using linear system iden-
tification. During this identification step, the system
input is f(Δs) = d2Δs2 +d1Δs and the system output
is ΔP . Please note that even if linear system identifi-
cation is used, the identified model is a Hammerstein
model, because the input to the linear model is f(Δs),
not Δs. Figure 13 shows Hammerstein models opti-
mized this way using ARX and OE, respectively. These
optimizations give significant improvements compared
to the Hammerstein model of Figure 12. The optimiza-
tion criterion is V (θ) = 0.024 for the ARX-optimized
model and V (θ) = 0.008 for the OE-optimized model.

Although the OE-optimized model gives by far the
best V (θ), the ARX-optimized model has a significant
advantage: As ARX models can be identified using the
ordinary least squares (OLS) method, all steps in iden-
tification of the ARX-optimized model can be solved
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Figure 12: Ballistic simulation of the Hammerstein
model of (21) after estimating d1 and d2.
The parameters b1, b2, and f1 are identical
to the ARX model identified in Section 6.
The model is compared to measured process
data and the ARX model.
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Figure 13: Ballistic simulations of Hammerstein mod-
els that are optimized with ARX and OE,
respectively.
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using OLS, involving no iterative optimization algo-
rithms that are at the risk of being trapped in a local
minimum. This also means that the ARX-optimized
Hammerstein model can be identified by model devel-
opers not having the MATLAB System Identification
Toolbox or other optimization software.

Figure 13 and the optimization criterion V (θ) show
that the OE-optimized Hammerstein model fits the
measured data very well. Hence, finding good initial
values to be used in an iterative optimization algorithm
has been successful.

7.5 Final Estimation

The final step of the nonlinear system identification
work is to estimate all the parameters simultaneously
using an iterative optimization algorithm. In Subsec-
tion 7.4, good initial values for the optimization algo-
rithm were estimated.

A reasonable approach for identifying the final Ham-
merstein model is to use the function nlhw in the MAT-
LAB System Identification Toolbox. Using this func-
tion, it can be specified that f(Δs) should be a second
order polynomial, and that there should be no output
nonlinearity. Also nb and nf can be specified. How-
ever, to the authors’ knowledge, there is no way to
force the constant term of the second order polynomial
in f(Δs) to be zero. In order words: f(Δs) will be
on the form f(Δs) = d2Δs2 + d1Δs + d0, where d0 is
a constant. Hence, an additional parameter, d0, has
been introduced. This is unfortunate with respect to
avoid overfitting.

A tailor-made workaround, which avoids the undesir-
able parameter d0, will be presented shortly. However,
the first consideration is whether the model structure
of (20) has the smallest possible number of parameters
to be identified. The following parameters are defined

b̃2
def=

b2

b1
, (22)

d̃1
def= b1d1, (23)

d̃2
def= b1d2. (24)

Using these definitions, (20) can be rewritten as

ΔPk + f1ΔPk−1 = d̃2Δsk−1
2 + d̃1Δsk−1 (25)

+ b̃2(d̃2Δsk−2
2 + d̃1Δsk−2).

Hence, (20) can be rewritten with one less parameter.
The parameters that are to be identified are b̃2, d̃1, d̃2,
and f1.

The simplest solution the authors have found to iden-
tify the parameters in exactly the form of (25) is to
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Figure 14: Block diagram of the final Hammerstein
model.

use the functions idgrey and pem in the MATLAB
System Identification Toolbox. These functions allow
identification of arbitrary parameters in a linear state
space model. Please refer to Ljung (2009) for a detailed
explanation of these functions. Equation (25) can be
rewritten to a discrete time state space model as

[
x1

k+1

x2
k+1

]
=

[ −f1 b̃2

0 0

] [
x1

k

x2
k

]
(26)

+
[

d̃2 d̃1

d̃2 d̃1

] [
Δsk

2

Δsk

]
,

ΔPk =
[

1 0
] [

x1
k

x2
k

]
+ εk.

In (26) the ballistic simulation error, ε, is added to
emphasize that the model has no noise model. When
the parameters b̃2, d̃1, d̃2, and f1 have been identified,
the model can be rewritten to a Hammerstein model
with an OE model as its linear block

ΔPk + f1ΔPk−1 = f(Δsk−1) + b̃2f(Δsk−2) (27)
+ εk,

where

f(Δs) = d̃2Δs2 + d̃1Δs. (28)

Figure 14 shows a block diagram of this final Hammer-
stein model.

The ballistic simulation of the final model is shown in
Figure 15, and the ballistic simulation error is shown
in Figure 16. The optimization criterion is V (θ) =
0.007. This is only a slight improvement over the OE-
optimized model of Figure 13. The optimization al-
gorithm used only three iterations to reach the final
model. Hence the parameters of the OE-optimized
model must have been very good initial values.

It was also tested whether poorer initial values led
to the same parameters. When all initial values were
set to zero, the optimization algorithm finds the same
parameters as for the good initial values. Hence, in
this case the work of estimating good initial values did
not improve the final model. However, it is interesting
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Figure 15: Ballistic simulation of the final Hammer-
stein model.
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Figure 16: Ballistic simulation error of the final Ham-
merstein model.

to notice that the optimization algorithm used three
iterations when having good initial values, and 17 iter-
ations when having zeros as initial values.

Comparing the final Hammerstein model with the
linear OE model identified in Section 6 shows that V (θ)
was reduced by a factor of six when extending the linear
OE model to a Hammerstein model. This extension
includes only one additional parameter (the number of
parameters to be identified is increased from three to
four).

7.6 Noise Model

The HW model structure as defined in the MATLAB
System Identification Toolbox has no noise model. This
is reasonable as the output nonlinearity would signifi-
cantly complicate the noise model, because there would
be nonlinear dynamics from the one-step-ahead predic-
tion error, e, to the model output, y.

The lack of noise model makes the HW model struc-
ture less suitable for some applications, such as (i)
state estimation, (ii) measurement noise filtering us-
ing Kalman filter, and (iii) model predictive control
(MPC).

In Subsection 7.3 the authors made the explicit choice
of explaining the process nonlinearity using the input
nonlinearity f(u), instead of the output nonlinearity
h(x). This choice kept the door open to later replace
the linear OE block of Figure 14 with a linear model
structure having a noise model. By not applying a
nonlinearity at the model output, the dynamics from
the prediction error, e, to the model output, y, will be
linear.

The state space model of (26) can easily be extended
with a noise model

[
x1

k+1

x2
k+1

]
=

[ −a1 b̃2

0 0

] [
x1

k

x2
k

]
(29)

+
[

d̃2 d̃1

d̃2 d̃1

] [
Δsk

2

Δsk

]

+
[

k1

0

]
ek,

ΔPk =
[

1 0
] [

x1
k

x2
k

]
+ ek,

where k1 is the Kalman filter gain. The parameters a1,
b̃2, d̃1, d̃2, and k1 of (29) were identified using idgrey
and pem. The parameter f1 of (26) has been replaced
by a1, because (29) can be rewritten to a Hammerstein
model with an ARMAX model as it linear block

ΔPk + a1ΔPk−1 = f(Δsk−1) + b̃2f(Δsk−2) (30)
+ ek + c1ek−1,
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Figure 17: Block diagram of the final Hammerstein
model extended with a noise model.

where

f(Δs) = d̃2Δs2 + d̃1Δs (31)

and

c1 = a1 + k1. (32)

Figure 17 shows a block diagram of the Hammerstein
model of (30). This Hammerstein model has V (θ) =
0.032, which is significantly poorer than the model of
(27). This is because the model of (30) is optimized for
W (θ) (one-step-ahead prediction), while the model of
(27) is optimized for V (θ) (ballistic simulation). This
result is similar to the result of Table 2, where the
ARX and ARMAX models perform poorer than the
linear OE model at ballistic simulation.

Figure 18 shows the one-step-ahead prediction error,
e, for the linear ARMAX model identified in Section 6
with na = 1, nb = 2, and nc = 1 (upper subplot) and
for the Hammerstein model of (30) (lower subplot).
The figure shows that the largest peaks are consider-
ably smaller for the Hammerstein model. The one-
step-ahead prediction optimization criterion is W (θ) =
3.1 × 10−4 for the ARMAX model and W (θ) = 1.8 ×
10−4 for the Hammerstein model, i.e. 42% lower for the
Hammerstein model.

8 Model Weaknesses

The Hammerstein model of (27) gives very good model
fit to the identification dataset, even with a small num-
ber of identified parameters. This strongly indicates
that the identified model explains the process’ true
input-output behavior. If the measured power, P , was
significantly influenced by random process disturbances
and measurement noise, it is very unlikely that a model
with few parameters would give a good fit, even to the
identification dataset.

Even though the model explains the process input-
output behavior well for the dataset used in this pa-
per, it is not known whether the model will perform
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Figure 18: One-step-ahead prediction error, e, of the
linear ARMAX model identified in Section 6
(upper) and the Hammerstein model of (30)
(lower).

this good on datasets with a significantly different fre-
quency content in the input signal. Further, it is not
known whether the model will perform well on datasets
of which Δs is significantly higher or lower than in the
dataset used in this paper.

9 Further Research

The Hammerstein model identified in this paper is a
black-box model in the sense that it explains how the
measured power responds to the TRIAC input signal,
but not why this happen. An interesting continuation
of this work is to develop a grey-box model of the dy-
namics from the TRIAC input signal to the power. A
grey-box model is a mechanistic model of which un-
known parameters are estimated using PEM or other
approaches for black-box modeling.

The modeling work presented in this paper is part
of a larger modeling work, which aims to model the
dynamics of the most important input / output pairs
of the CZ process using black-box and grey-box mod-
eling. Next these models are to be used for improving
monitoring and control of the CZ process.

10 Conclusions

This paper considered empirical modeling of the dy-
namics from the TRIAC input signal to the actual
(measured) heating element power at the Czochralski
(CZ) crystallization process. The modeling was based
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on a dataset logged from a real-life CZ process. Before
modeling, the dataset was preprocessed by detrending
the data and handling outliers. As no independent
dataset was available for model validation, it was con-
sidered most important to limit the number of param-
eters to be identified.

Initially three linear polynomial models were identi-
fied; an ARX model, an ARMAX model, and an output
error (OE) model. These models explain the process
dynamics well close to the operating point, but perform
somewhat poorer otherwise.

Because the linear models do not explain the pro-
cess behavior very well over a larger range of the in-
put signal, nonlinear system identification was used for
modeling the process. The Hammerstein-Wiener (HW)
model structure was chosen. At first, a model was iden-
tified using the default setting for HW models in the
MATLAB System Identification Toolbox GUI. How-
ever, this model has a very poor performance, and was
therefore rejected.

As the default settings of the toolbox failed, the
model structure was developed by examination of the
process’ behavior at steps in the input signal. Also
the results from linear system identification were used.
The chosen model structure is a Hammerstein model,
which has a second order polynomial as input nonlin-
earity and no nonlinearity at the output. The latter
choice was done to allow a noise model to be added to
the model.

The Hammerstein model has four parameters to be
identified, which is only one more than the linear OE
model. Still the Hammerstein model has improved the
optimization criterion (mean squared ballistic simula-
tion errors) by a factor of six compared to the linear OE
model. As the Hammerstein model has good model fit
despite few identified parameters, it is concluded that
the modeling work has been successful.

This paper also extended the Hammerstein model
with a noise model. For one-step-ahead predictions,
the optimization criterion (mean squared one-step-ahead
prediction errors) is reduced by 42% for the extended
Hammerstein model compared to the linear ARMAX
model. The extended Hammerstein model has five pa-
rameters to be identified, compared to four parameters
in the ARMAX model.
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In the article, the process input, s, is scaled in percent (%). When considering
changes in the input, a change from 45% to 50% is referred to as a change of 5%.
However, the correct size is 5 percentage points.
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Abstract: The Czochralski (CZ) crystallization process is used to produce monocrystalline
silicon, which is used in solar cells and electronics. This paper considers adaptive system
identification of the dynamics from the triode for alternating current (TRIAC) to the actual
(measured) heating element power at the CZ process. The system identification work is based
on a dataset logged at a real-life CZ process.
Two approaches for adaptive system identification are considered: (i) The MATLAB command
rarmax is used to tune all parameters of an ARMAX model. (ii) Only the gain of the model
is tuned, while the pole, the zero, and the noise model are fixed. The adaptive gain can be
computed using the recursive least squares method, which is simple to implement and has
numerical advantages.
These adaptive system identification approaches are compared to a non-adaptive ARMAX
model. The performance criterion used is the mean squared one-step-ahead prediction error.
The adaptive gain model performs much better than the non-adaptive model and the adaptive
model which tunes all parameters. There are also other reasons why the adaptive gain approach
is favorable.

Keywords: Adaptive system identification, Czochralski crystallization process, Heating element
power, Recursive ARMAX, Recursive least squares method.

1. INTRODUCTION

The Czochralski (CZ) crystallization process is used to
convert multicrystalline materials into monocrystalline
materials, i.e. materials that have homogeneous crystal
structures. Among the most important applications is pro-
duction of monocrystalline silicon. Monocrystalline silicon
is used in solar cell wafers and in computers and electron-
ics. The CZ process is a batch process.

System identification is the science of developing dynamic
process models based on observations of the process. The
identified models explain the process outputs as mathe-
matical functions of the process inputs. Adaptive (recur-
sive) system identification tunes the model parameters
online to adapt the model to slowly varying process pa-
rameters.

The contribution of this paper is to model the heating
element power of the CZ process using adaptive system
identification. The modeling work is based on a dataset

� This paper is based on a dataset that SINTEF Materials and
Chemistry in Trondheim, Norway, most kindly has provided the
authors. The first author’s PhD study receives financial support from
NorSun AS, Østfold Energi AS, and the Research Council of Norway.

logged at a real-life CZ process at SINTEF Materials and
Chemistry in Trondheim, Norway.

Process models serve several purposes. Process models can
be used to tune PID controllers. Adaptive models can
be used for adaptive controller tuning. If more advanced
model-based control strategies are to be applied, such
as model predictive control (MPC), process models are
essential. Examining parameter variations during adaptive
system identification may reveal useful information of the
process.

Lan (2004) gives an introduction to crystal growth, in-
cluding the CZ process, and provides an extensive number
of references for further reading. The literature of system
identification is extensive. Among the most well-known
books is Ljung (1999). This book gives a comprehensive
introduction to system identification. Lee et al. (2005)
presents an approach for batch-to-batch optimization of
the CZ process, which includes model-based control. The
paper includes two simple dynamic models empirically de-
veloped from step responses. However, these models cover
different parts of the CZ process than the present paper.
Except for Lee et al. (2005), the authors of the present
paper have not been successful in finding any publications
that present results within empirical modeling of the CZ
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process. The authors have searched for literature covering
modeling of heating element dynamics in general. Unfor-
tunately, no relevant results were found on this topic.

Komperød and Lie (2010) considers empirical modeling
of the same input/output pair of the CZ process as the
present paper. Komperød and Lie (2010) concludes that
the dynamics of the heating element power are somewhat
nonlinear. In that paper the nonlinearity is handled by
using nonlinear, non-adaptive system identification. The
present paper will handle the nonlinearity by using linear,
adaptive system identification.

2. NOTATION AND DEFINITIONS

Table 1 presents the notation used in this paper.

Table 1. Notation used in this paper.

e One-step-ahead prediction error, ek = yk−
ŷk.

g Adaptive gain.
k, t Indices referring to sample numbers in the

dataset.
N The total number of samples in a dataset

or a section of a dataset.
P Actual (measured) power to the heating

element [kW].
Pnom Nominal power to the heating element

[kW] (see main text for explanation).
ΔP Actual (measured) power to the heating el-

ement [kW] as deviation from the nominal
power, i.e. ΔP = P − Pnom.

q The time-shift operator defined by xk+1 =
qxk and xk−1 = q−1xk.

s Triode for alternating current (TRIAC) in-
put signal [%] (output from control sys-
tem).

snom Nominal TRIAC input signal [%] (see main
text for explanation).

Δs TRIAC input signal [%] as deviation from
the nominal input signal, i.e. Δs = s −
snom.

u System input for a general system.
W Criterion to be optimized during system

identification.
y System output for a general system.
θ A vector containing the parameters to be

identified using system identification.
λ Forgetting factor of adaptive system iden-

tification algorithms.

A variable with subscript k refers to the variable’s value
at timestep k. For example Pk refers to the heating
element power at timestep k. Subscript “nom” refers to the
variable’s nominal value. The operating point (snom, Pnom)
is defined to be a steady state operating point. Any
variable with a hat-notation (ˆ) refers to the one-step-
ahead prediction of this variable. For example ŷk refers
to the one-step-ahead prediction of yk, i.e. the prediction
of yk based on measurements available at timestep k −
1 and (if relevant) any previous measurements. Unless
otherwise specified, prediction is understood as one-step-
ahead prediction.

Polynomials to be used in linear polynomial models are
defined as

A(q) def= 1 +
na∑
i=1

aiq
−i, (1)

B(q) def=
nb∑
i=1

biq
−i, (2)

C(q) def= 1 +
nc∑
i=1

ciq
−i. (3)

The parameters ai, bi, and ci are to be identified using
system identification. For computational reasons, as well
as to simplify notation, the parameters are stacked in a
parameter vector θ. The constants na, nb, and nc are to
be specified to the system identification algorithm. There
is a time delay of one sample in the dataset to be used
in this paper. For processes without any time delay, the
lower summation limit of B(q) should be 0 instead of 1.
The A(q) and C(q) polynomials are defined as above in
any case.

The linear polynomial models that will be considered in
this paper are based on the ARMAX model structure

A(q)yk = B(q)uk + C(q)ek. (4)

The term noise model refers to the dynamics from the one-
step-ahead prediction error, e, to the system output, y.
Solving (4) with respect to yk shows that the noise model
of ARMAX models is C(q)/A(q). Model structures having
noise models are suitable for prediction, because the noise
models correct the model states when there are deviations
between the measured process outputs and the simulated
model outputs. The term input-output model will be used
to refer to the dynamics from the system input, u, to the
system output, y.

The optimization criterion W will be used to compare the
one-step-ahead prediction performance of various models.
The criterion is defined as

W
def=

1
N

N∑
k=1

ek
2. (5)

Text written in teletype font refers to MATLAB com-
mands, for example armax.

3. THE CZOCHRALSKI CRYSTALLIZATION
PROCESS

The Czochralski (CZ) crystallization process is used to
convert multicrystalline materials into monocrystalline
materials. The plant considered in this paper converts mul-
ticrystalline silicon into monocrystalline silicon. Monocrys-
talline silicon is used in solar cell wafers and in computers
and electronics. Monocrystalline silicon wafers give so-
lar cells of higher efficiency than multicrystalline silicon
wafers.

The CZ process is a batch process. The main batch steps
are illustrated in Figure 1. (i) Initially multicrystalline
silicon is melted in a crucible. (ii) When the silicon is
molten, the tip of a seed crystal is dipped into the melt.
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Fig. 1. The main batch steps of the CZ process. Illustration
from Wikipedia (the illustration is released to public
domain by the copyright holder).

The seed crystal is monocrystalline and has the crystal
structure that is to be produced. (iii) When the tip of the
seed crystal begins to melt, the crystal is slowly elevated.
As the crystal is lifted, the molten silicon solidifies on the
crystal. (iv) The crystal grows radially and axially. The
produced crystal is referred to as an ingot. The crucible
temperature and the vertical pulling speed are used to
control the ingot diameter. Stable growing conditions are
essential to produce high crystal quality. (v) As the final
ingot length is reached, the crystal growth is terminated by
slowly decreasing the crystal diameter until zero. During
the entire batch process, the crucible is rotated in one
direction, and the seed crystal is rotated in the opposite
direction. An introduction to crystal growth, including
the CZ process, is given in Lan (2004). The publication
also provides an extensive number of references for further
reading.

SINTEF Materials and Chemistry in Trondheim, Norway,
owns and operates a real-life CZ process. At this plant
the crucible is heated using a cylinder-shaped heating
element, which encircles the crucible. The heating element
power, P , is manipulated using a triode for alternating
current (TRIAC). This paper considers adaptive system
identification of the dynamics from the TRIAC input
signal, s, to the heating element power, P , based on a
dataset logged from this plant.

The dataset that is used for system identification is shown
in Figure 2. The experiment was done without the crucible
mounted in the process. The figure shows that increased s
gives instantaneously increased P . However, P then slowly
decreases. It is assumed that this decrease is caused by
increased electric resistance due to increased temperature
in the heating element. The dataset has 8311 samples. The
sample time is 2 seconds. In this paper, sample number
(not seconds) will be used to refer to time-progress.

Before system identification the dataset is preprocessed
by subtracting a steady-state operating point. Figure 2
happens to reveal that (snom = 45%, Pnom = 45kW) is
a steady state operating point. Hence, the data used for
system identification is Δsk = sk − 45%, ΔPk = Pk −
45kW ∀ k. The dataset is split into two sections: The first
2000 samples will be referred to as the initialization set,
and the remaining samples (sample 2001 to 8311) will be
referred to as the validation set.
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Fig. 2. The dataset to be used for system identification.

4. INTRODUCTION TO ADAPTIVE SYSTEM
IDENTIFICATION

Adaptive system identification continuously tunes model
parameters in order to adapt the model to slowly varying
process parameters. This is particularly useful when mod-
els are used for online-applications, such as model-based
control.

The basic principle of adaptive system identification is to
adjust the parameter vector, θ, at each new sample, k,
based on the one-step-ahead prediction error ek = yk − ŷk.
The prediction ŷk is computed using the model parameters
estimated at timestep k − 1. A possible reason for ek

is model imperfection, therefore θ is adjusted whenever
ek �= 0. However, other likely reasons for ek are process
disturbances and measurement noise, which do not justify
any changes to θ. Hence, how much θ is to be changed
based on a given ek should balance the covariance of the
change of θ (encourage change of θ) and the covariances of
process disturbances and measurement noise (discourage
change of θ).

A commonly used approach for adaptive system identifi-
cation is to apply a forgetting factor λ < 1. At timestep t,
et

2 carries a weight of 1 in the optimization criterion W ,
while et−1

2 carries a weight of λ, et−2
2 carries a weight of

λ2, and so on. Hence, older samples will be “forgotten” in
the sense that they have less impact on W .

A comprehensive introduction to adaptive system identi-
fication is given in Ljung (1999, Chapter 11). The results
of the present paper are developed using the tools for
adaptive system identification in the MATLAB System
Identification Toolbox. An in-depth documentation of this
toolbox is given in Ljung (2009).

5. IDENTIFYING A NON-ADAPTIVE ARMAX
MODEL

In the present paper, adaptive, linear system identification
is used to handle the nonlinearities of the dynamics from
Δs to ΔP . For the purpose of comparing adaptive and
non-adaptive models, a non-adaptive ARMAX model is
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Fig. 3. Ballistic simulation of the non-adaptive ARMAX
model.

identified based on the initialization set. As shown in
Komperød and Lie (2010), na = 1 and nb = 2 are suitable
polynomial orders to model the dynamics from Δs to ΔP .
Therefore, the ARMAX model will be on the form

ΔPk + a1ΔPk−1 = b1Δsk−1 + b2Δsk−2 (6)

+ek + c1ek−1,

where nc has been chosen equal to na, i.e. na = nc =
1, and ek

def= ΔPk − ΔP̂k. Hence, the parameter vector
to be identified is θ = [a1 b1 b2 c1]T . The parameters
were identified using the MATLAB command armax. This
command identifies the parameter vector, θ, that gives the
smallest W over the dataset used for identification, in this
case the initialization set.

Figure 3 shows ballistic simulation of the ARMAX model
over the entire dataset. The model has good fit to mea-
sured data over the initialization set, i.e. over the section
of the dataset that was used to identify the model. After
the step taking place at sample number 4117, the model
fit becomes rather poor.

Figure 4 shows the one-step-ahead prediction error, e, over
the validation set. The figure reveals five samples which
have very large prediction errors. The prediction errors
at samples 4936, 4937, and 7158 are caused by outliers in
the dataset. These outliers are discussed in Komperød and
Lie (2010). The prediction errors at samples 5350 and 7887
coincide with steps in Δs. Hence, these prediction errors
are probably caused by model imperfection, rather than
outliers. Visual inspection of Figure 4 indicates that the
prediction errors are close to zero-mean in the beginning
of the validation set, but tend to be negative in the last
part of the validation set. The mean prediction error of
the first 300 samples of the validation set is 5.0×10−4kW,
while the corresponding value for the last 300 samples
is −1.49 × 10−2kW, i.e. almost 30 times larger (absolute
value) for the last samples. Hence, the ARMAX model
systematically gives too large predictions, ΔP̂k, at the last
part of the validation set.
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Fig. 4. One-step-ahead prediction error, e, of the non-
adaptive ARMAX model over the validation set. Zero
is marked by a black line.

For the entire validation set the prediction error criterion
for the non-adaptive ARMAX model is W = 4.16 ×
10−4kW2. Please note that W is a criterion that quan-
tifies the magnitude of the prediction errors, while the
mean-values discussed in the previous paragraph indicate
whether the prediction errors are zero-mean or not. Hence,
there is no close relationship between W and the mean-
values.

6. IDENTIFYING AN ADAPTIVE ARMAX MODEL

In Section 5 it was concluded that the non-adaptive AR-
MAX model does not perform very well on the validation
set. The model seems to give systematically too high one-
step-ahead predictions in the last part of the validation
set, which results in non-zero-mean prediction errors. This
section considers how that problem can be handled by
using adaptive system identification. The results of the
present section are developed using the MATLAB com-
mand rarmax (Recursive ARMAX).

To compare the adaptive ARMAX model with the non-
adaptive ARMAX model, the criterion W of (5) is com-
puted over the validation set for both models. In other
words: What is to be examined is whether adaptive system
identification gives better one-step-ahead predictions, ΔP̂ ,
over the validation set.

The performance of adaptive models depends on whether
the adaptive algorithm is provided good initial values
for θ, as well as some other variables that are to be
initialized (for details about these variables, please refer
to the documentation of the MATLAB command rarmax).
The command rarmax was run twice: It was first run using
the initialization set, and then run using the validation
set. The parameter vector θ and other relevant variables
computed during the first run were provided as initial
values for the second run. Only the second run was
considered when computing W .

The choice of the forgetting factor, λ, heavily influences
the performance of adaptive models. Figure 5 shows the
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Fig. 5. The criterion W calculated for the validation set,
plotted as function of the forgetting factor λ. The
performance of the non-adaptive ARMAX model is
also indicated.

optimization criterion W computed over the validation set,
plotted as function of λ. The resolution of λ is 10−3. The
performance of the non-adaptive ARMAX model identified
in Section 5 is also indicated in the figure. The figure
shows that the adaptive model gives better performance
than the non-adaptive model for the highest values of λ.
However, the adaptive model gives poor performance if λ
is chosen too low. In other words: For the purpose of one-
step-ahead prediction, it is desirable to tune the parameter
vector θ online, but it should be updated with very small
steps (having high λ). A reasonable explanation of this
conclusion is that if λ is too small, the previous input and
output data will be forgotten so soon that there are not
enough data available to compute a reliable model.

The best performance in Figure 5 is obtained at λ = 0.999,
although the difference between λ = 0.999 and λ = 1.000
is negligible. The optimization criterion W was plotted
again for the range λ ∈ [0.9980, 1.0000] with a resolution
of 10−4. This plot is not shown. The best performance is
at λ = 0.9994. W is strictly increasing in both directions
from this point.

For λ = 0.9994, the optimization criterion is W = 3.57 ×
10−4kW2, which is 14% lower than the non-adaptive AR-
MAX model. Hence, the adaptive model gives significantly
better predictions. However, it should be emphasized that
the λ value is chosen based on the model’s performance
at the validation set, i.e. it is not decided based on an
independent dataset. For an online application, λ must
be decided in advance, which may give somewhat poorer
performance.

Figure 4 showed that the non-adaptive ARMAX model
gives a systematic error at the last part of the validation
set. A similar plot for the adaptive ARMAX model shows
no systematic error. This plot is not shown. The mean
values of the prediction errors, e, over the first 300 samples
and over the last 300 samples of the validation set are
4.1 × 10−4kW and 3.7 × 10−4kW, respectively.
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Fig. 6. The parameters of the adaptive ARMAX model
as they change over the validation set. The forgetting
factor is λ = 0.9994.

Figure 6 shows how the parameters of the adaptive AR-
MAX model change throughout the validation set. There
are most variations in c1, which indicates that the adaptive
algorithm mainly changes the noise model, rather than
the input-output model, to improve the prediction per-
formance. There are only small variations in b1 and b2,
except for those changes that coincide with the last step
of Δs at sample 7886. The changes of a1 are so small that
they may seem negligible. Unfortunately, they are not. The
parameter crosses the line −1. Hence, the pole of the model
moves across the unit circle. This means that the model
changes between being stable and being unstable. Hence,
even though the model may be good for one-step-ahead
prediction, it is useless for ballistic simulation and multi-
step-ahead prediction.

7. IDENTIFICATION WITH ADAPTIVE GAIN

In Section 6, an adaptive algorithm was used to adjust
all parameters of the ARMAX model (6). Although the
adaptive model does improve the one-step-ahead predic-
tion, it is not advisable to use this approach because the
model changes between being stable and unstable. This
section presents an approach for adaptive identification
which eliminates that problem. The approach also gives a
much better prediction performance than the approach of
Section 6.

Komperød and Lie (2010) considers nonlinear, non-
adaptive system identification of the dynamics from Δs to
ΔP . The resulting model of that paper is a Hammerstein
model. The Hammerstein model gives significant improve-
ment of both ballistic simulation and one-step-ahead pre-
diction compared to linear models. A Hammerstein model
is a linear transfer function of which input is processed
through a nonlinear, static function. The static function
used in Komperød and Lie (2010) is a second order poly-
nomial. In the range of interest, the first derivate of this
polynomial does not change sign (plus/minus). Hence,
processing the model input through this polynomial is
equivalent to let the model’s gain be a function of the
input. Inspired by this result, the present section considers
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how to make the gain of the model (6) adaptive, while
keeping the pole, the zero, and the noise model fixed.

Equation (6) can be written on polynomial form as

A(q)ΔPk = B(q)Δsk + C(q)ek. (7)

Changing the gain of the input-output model, without
changing the pole, the zero, nor the noise model, can be
achieved by multiplying B(q) by a gain g

A(q)ΔPk = gB(q)Δsk + C(q)ek. (8)

Equation (8) will now be rewritten to a form that allows
g to be identified using adaptive system identification. For
numerical reasons it is desirable to use the recursive least
squares method for tuning g. Equation (8) can be written
as

A(q)
C(q)

ΔPk = g
B(q)
C(q)

Δsk + ek. (9)

Using ek = ΔPk − ΔP̂k gives

A(q)
C(q)

ΔPk = g
B(q)
C(q)

Δsk + ΔPk − ΔP̂k. (10)

Solving for ΔP̂k gives

ΔP̂k = ΔPk − A(q)
C(q)

ΔPk + g
B(q)
C(q)

Δsk (11)

=
C(q) − A(q)

C(q)
ΔPk + g

B(q)
C(q)

Δsk.

Please note that C(q) − A(q) contains no constant term,
because both A(q) and C(q) have the constant term 1
which cancels in the subtraction. The right side of (11)
therefore depends on ΔP only up to k − 1. Hence, the
form (11) is suitable as a predictor.

The gain g is to be tuned so that W of (5) is minimized for
the predictor (11). Adding ek to both sides of (11) gives

ΔPk =
C(q) − A(q)

C(q)
ΔPk + g

B(q)
C(q)

Δsk + ek, (12)

where the prediction error, ek, is to be used for computa-
tion of W .

In order to fit the form of the ordinary least squares
method, equation (12) is rewritten to

ΔPk − C(q) − A(q)
C(q)

ΔPk︸ ︷︷ ︸
ΔP G

k︸ ︷︷ ︸
ΔP F

k

= g
B(q)
C(q)

Δsk︸ ︷︷ ︸
ΔsF

k

+ek. (13)

The notations indicated by braces in (13) will be used
in the succeeding text. In (13), g is the parameter to be
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Fig. 7. The optimization criterion W of the adaptive
gain model calculated over the validation set. The
performance of the non-adaptive ARMAX model and
the adaptive ARMAX model with λ = 0.9994 are also
shown.

identified, ΔsF
k is the regressor, ΔPF

k is the output to be
estimated (predicted) from the regressor, and ek is the
error to be minimized. Hence, the adaptive algorithm will
tune g so that gΔsF

k gives the best possible prediction
ΔP̂F

k . When ΔP̂F
k is computed at timestep k − 1, the

desired prediction ΔP̂k can easily be calculated as ΔPG
k is

known at timestep k − 1.

When implementing this adaptive system identification
approach, the values of the parameters a1, b1, b2, and c1

are based on the non-adaptive ARMAX model which was
identified from the initialization set in Section 5.

For the purpose of MATLAB implementation, the com-
mand rarx (Recursive ARX) may be used. Although rarx
simplifies the implementation in MATLAB, it is not dif-
ficult to implement the recursive least squares algorithm
from scratch, see for example Ljung (1999, Section 11.2).

To avoid confusion between the adaptive ARMAX model
developed in Section 6 and the adaptive model developed
in this section, the latter model will be referred to as the
adaptive gain model.

Figure 7 shows the performance criterion W for the
adaptive gain model as function of the forgetting factor
λ. The adaptive gain model outperforms the adaptive and
non-adaptive ARMAX models, except for at the highest
λ value. The figure also shows that the adaptive gain
model is very robust to the choice of λ: W is in the range
2.33 × 10−4 to 2.43 × 10−4kW2 for all λ values between
0.960 and 0.997. The best performance is at λ = 0.988,
which gives W = 2.33 × 10−4kW2.

For λ = 0.988 the mean prediction error over the first
300 samples of the validation set is −1.9 × 10−4kW. For
the last 300 samples the corresponding value is 1.0 ×
10−3kW. The first of these values are better than for
both the adaptive and non-adaptive ARMAX models.
The last value is somewhat poorer than the adaptive
ARMAX model, but much better than the non-adaptive
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gain algorithm over the validation set. The forgetting
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Fig. 9. The gain, g, as it is tuned by the adaptive
gain algorithm over the validation set. The forgetting
factor is λ = 0.997.

ARMAX model. Visual inspection of the prediction error
plot reveals no systematic error.

Figure 8 shows the gain, g, over the validation set for
λ = 0.988. The gain is subject to high-frequent variations.
This is to be expected when the forgetting factor is low,
because a lower forgetting factor gives larger parameter
updates for a given prediction error, e. Even though the
high-frequent variations of g do not influence the one-
step-ahead prediction performance, these variations may
be unfortunate for other applications, such as model-based
control. As shown in Figure 7, the adaptive gain algorithm
is very robust to the choice of λ. Hence, for some appli-
cations it may be desirable to choose a higher λ in order
to reduce high-frequent variations in g. Figure 9 shows g
for λ = 0.997. This λ value gives W = 2.43 × 10−4kW2,
which is only 4.3% higher than for λ = 0.988. The high-
frequent variations of g are significantly attenuated when
increasing λ from 0.988 to 0.997.

8. MODEL WEAKNESSES

The parameters a1, b1, b2, and c1, which were used as non-
adaptive parameters in the adaptive gain model, were iden-
tified from a short section of the dataset. More accurate
parameters can be found by identifying a non-adaptive
ARMAX model over one or several longer datasets.

If the adaptive gain model is to be used for online applica-
tions, it may be necessary to implement an algorithm that
increases λ during long periods of small excitations in s.
This is to prevent information that was recorded during
large excitations from being lost. If information from only
small excitations is available, it may be insufficient for
maintaining a reliable model.

9. FURTHER WORK

Adaptive system identification run over several datasets,
and over several input/output pairs of the CZ process,
may be used to examine whether the adaptive parameters
change in certain patterns during the batch progress. If
so, this may give information of how the process dynamics
change throughout the batch. This information may be
used for further modeling and analysis, as well as moni-
toring and control.

Komperød et al. (2010) considers how the crucible tem-
perature control can be improved using cascade control.
The paper covers model-based PID tuning of a power
controller. The power controller has P as process input and
uses s as controlling element. The adaptive gain method
suggested in Section 7 of the present paper may be used
to make the power controller adaptive by adjusting the
controller gain, Kp, inverse proportional to the adaptive
process gain, g. However, Komperød et al. (2010) shows
that the power controller will have good reference (set-
point) tracking and good disturbance rejection, even with
conservative gain margin and phase margin. Hence, mak-
ing the controller adaptive is most likely not necessary for
achieving good control performance.

The modeling work presented in this paper is part of a
larger project which aims to model and analyze the most
important input/output pairs of the CZ process. These
results will then be used to improve modeling and control
of the CZ process.

10. CONCLUSIONS

This paper presents two approaches for adaptive system
identification of the dynamics from the TRIAC input
signal, s, to the actual (measured) heating element power,
P . The dataset used for identification was logged from a
real-life CZ process.

The first approach, referred to as the adaptive ARMAX
model, uses the MATLAB command rarmax to tune all
parameters of the ARMAX model. This approach im-
proves the one-step-ahead prediction performance com-
pared to the non-adaptive ARMAX model. Unfortunately,
the adaptive ARMAX model changes between being stable
and unstable, which makes it useless for ballistic simula-
tion and multi-step-ahead prediction. The one-step-ahead
prediction performance of the adaptive ARMAX model is
very sensitive to the choice of the forgetting factor, λ.
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The second approach, referred to as the adaptive gain
model, is successful. This model is an ARMAX model,
where only the gain of the input-output model is adaptive,
while the pole, the zero, and the noise model are fixed. The
adaptive gain can be computed using the recursive least
squares method. The adaptive gain model has much better
one-step-ahead prediction performance than the adaptive
ARMAX model, and is very robust to the choice of λ. As
the pole of the adaptive gain model is fixed, it is not an
issue whether the model can change between being stable
and unstable.
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Abstract: The Czochralski (CZ) crystallization process is used to produce monocrystalline
silicon, which is used in solar cells and electronics. The temperature of the crucible containing
the molten silicon must be tightly controlled to achieve high silicon quality. SINTEF Materials
and Chemistry in Trondheim, Norway, owns and operates a CZ process. At this plant the
crucible is heated by a heating element encircling the crucible. The heating element power is
manipulated using a triode for alternating current (TRIAC). Presently the crucible temperature
is controlled using a single-loop PID controller, which output manipulates the TRIAC.
This paper suggests using cascade control for controlling the crucible temperature. The cascade
inner loop is a power control loop, and the cascade outer loop is the temperature control loop.
Hence, the output of the temperature controller will be the reference (setpoint) to the power
controller.
The main motivations for using cascade control are (i) fast and effective rejection of power
disturbances, and (ii) robustness to parameter variations in the inner loop.
This paper also presents model-based PID tuning of the power controller. Different PID tunings
are compared by the bandwidth of the control loop and Bode diagrams of the closed loop
transfer function and the sensitivity function. An integral controller (I controller) gives best
control performance.
Robustness to parameter variations in the inner process is simulated using Bode diagrams of
the closed inner loop for increased and decreased process gain.

Keywords: Cascade control, Czochralski crystallization process, Disturbance rejection,
Model-based PID tuning, Temperature control.

1. INTRODUCTION

The Czochralski (CZ) crystallization process is used to
convert multicrystalline materials into monocrystalline
materials, i.e. materials of homogeneous crystal structure.
Among the most important applications is production of
monocrystalline silicon. Monocrystalline silicon is used in
solar cell wafers and in computers and electronics. The CZ
process is a batch process. Initially multicrystalline silicon
is melted in a crucible. Tight crucible temperature control
is most important for producing silicon of high quality.

SINTEF Materials and Chemistry in Trondheim, Norway,
owns and operates a CZ process. At this plant the crucible
temperature is controlled using a single-loop PID con-
troller, which output is connected to a triode for alternat-
� This paper is based on data that SINTEF Materials and Chemistry
in Trondheim, Norway, most kindly has provided the authors. Some
of the data were logged during experiments financially supported by
NorSun AS. The first author’s PhD study receives financial support
from NorSun AS, Østfold Energi AS, and the Research Council of
Norway.

ing current (TRIAC). The TRIAC manipulates the power
to a cylinder-shaped heating element, which encircles the
crucible. The actual power to the heating element is mea-
sured, but presently not included in the control strategy.

Experiments done at the SINTEF CZ plant reveal that
there are significant process disturbances to the heating
element power. In other words: There are responses in
the measured power that can not be explained by the
TRIAC. These power disturbances are known to be process
disturbances, not measurement noise, because they also
influence the crucible temperature. Due to their influence
on the crucible temperature, and hence the silicon quality,
these disturbances are most unfortunate.

The contributions of the present paper are: (i) A solution
to effectively reject the power disturbances. The solution
is based on cascade control. (ii) A real-life example of how
the cascade control rejects a real power disturbance is
presented. (iii) The inner process, i.e. the process to be
controlled by the cascade slave controller, has an unusual
frequency response. A frequency-based PID controller tun-
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ing is presented. (iv) It is shown how the suggested cascade
control improves robustness to parameter variations in the
inner process.

An introduction to crystal growth, including the CZ pro-
cess, is given in Lan (2004). The publication also provides
an extensive number of references for further reading. The
principle of cascade control is presented in many process
control books, for example Seborg et al. (2004). This book
also presents frequency-based controller tuning. Lee et al.
(2005) presents a feasible control strategy for the CZ
process, which has proven to be successful on a real-life
process.

2. NOTATION AND DEFINITIONS

Table 1 presents the notation used in this paper.

Table 1. Notation used in this paper.

EC Power controller (the letter E refers to an
electric variable).

ET Power transmitter (power sensor).
GM Gain margin [dB].
h0(z) Open loop transfer function.
hc(z) Time-discrete transfer function of the

power controller, EC.
hp(z) Time-discrete transfer function of the dy-

namics from Δs to ΔP .
k Index referring to sample number in the

dataset.
Ki Gain of integral controller (I controller)

[s−1].
Kp Gain of PID controller.
M(z) Closed loop transfer function.
N(z) Sensitivity function.
P Actual (measured) power to the heating

element [kW].
Pnom Nominal power to the heating element

[kW].
Pref Reference (setpoint) to the power con-

troller, EC, [kW].
ΔP Actual (measured) power to the heating el-

ement [kW] as deviation from the nominal
power, i.e. ΔP = P − Pnom.

PM Phase margin [◦].
s TRIAC input signal [%] (output from con-

trol system).
snom Nominal TRIAC input signal [%].
Δs TRIAC input signal [%] as deviation from

the nominal input signal, i.e. Δs = s −
snom.

T Crucible temperature [◦C].
Tref Reference (setpoint) to temperature con-

troller [◦C].
Δt Sampling time [s].
ti Integral time of PID controller [s].
TC Temperature controller.
TT Temperature transmitter (temperature

sensor).
U Voltage at power grid [V].
z The time-shift operator defined by xk+1 =

zxk and xk−1 = z−1xk.
ω Frequency [rad/s].
ωc Bandwidth of control loop [rad/s].

A variable with subscript k refers to the variable’s value at
timestep k. For example Pk refers to the heating element

power at timestep k. Subscript “nom” refers to the vari-
able’s nominal value. The operating point (snom, Pnom) is
defined to be a steady state operating point. Even though
the CZ process is a batch process, it seems reasonable
to approximate the dynamics of the heating element as
a time-invariant sub-process. Also, as shown in Sections 6
and 7, the cascade control suggested in this paper makes
the sub-process robust to low-frequent disturbances and
parameter variations.

For a process transfer function, hp(z), and a controller
transfer function, hc(z), the open loop transfer function,
h0(z), is defined as

h0(z) def= hp(z)hc(z), (1)

the closed loop transfer function, M(z), is defined as

M(z) def=
h0(z)

1 + h0(z)
, (2)

and the sensitivity function, N(z), is defined as

N(z) def=
1

1 + h0(z)
. (3)

The bandwidth of a control loop, ωc, is defined implicitly
as

|h0(ejωcΔt)| def= 0dB = 1. (4)

It is understood that |h0(ejωΔt)| ≥ 1 ∀ ω ∈ [0, ωc〉.

3. THE CZOCHRALSKI CRYSTALLIZATION
PROCESS

The Czochralski (CZ) crystallization process is used to
convert multicrystalline materials into monocrystalline
materials. The plant considered in this paper converts mul-
ticrystalline silicon into monocrystalline silicon. Monocrys-
talline silicon is used in solar cell wafers and in computers
and electronics. Monocrystalline silicon wafers give so-
lar cells of higher efficiency than multicrystalline silicon
wafers.

The CZ process is a batch process of which the main steps
are illustrated in Figure 1. (i) Initially multicrystalline
silicon is melted in a crucible. (ii) When the silicon
is molten, the tip of a seed crystal is dipped into the
melt. The seed crystal is monocrystalline, having the
crystal structure that is to be produced. (iii) When the
tip of the seed crystal begins to melt, the crystal is
slowly elevated. As the crystal is lifted, the molten silicon
solidifies on the crystal. (iv) The crystal grows radially
and axially. The produced crystal is referred to as an
ingot. The crucible temperature and the vertical pulling
speed are used to control the ingot diameter. Stable
growing conditions, including the crucible temperature,
are essential for producing high crystal quality. (v) As
the final ingot length is reached, the crystal growth is
terminated by slowly decreasing the crystal diameter until
zero. During the entire batch process, the crucible is
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Fig. 1. The main batch steps of the CZ process. Illustration
from Wikipedia (the illustration is released to public
domain by the copyright holder).
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Fig. 2. The present temperature control strategy.

rotated in one direction, and the seed crystal is rotated
in the opposite direction.

Lan (2004) gives an introduction to crystal growth, in-
cluding the CZ process, and provides an extensive number
of references for further reading. Many papers have been
written about control of the CZ process. A feasible control
strategy which has proven to be successful on a real-life
CZ process is presented in Lee et al. (2005).

4. THE PRESENT TEMPERATURE CONTROL

SINTEF Materials and Chemistry in Trondheim, Nor-
way, owns and operates a CZ process. At this plant the
crucible is heated by a cylinder-shaped heating element,
which encircles the crucible. The heating element power,
P , is manipulated using a TRIAC. The present tempera-
ture control is a single-loop PID controller. This control
strategy is illustrated in Figure 2. If the temperature, T ,
becomes too low, i.e. below the temperature reference, Tref,
the temperature controller, TC, increases its output signal
which is connected to the TRIAC input signal, s. Then
the TRIAC will let a larger part of the power grid voltage
through, which increases P and finally T . Presently P is
measured, but not included in the control strategy.

The temperature control of Figure 2 is a decent control
strategy. For many applications with small process distur-
bances or more relaxed demands for temperature control
performance, this simple control strategy is sufficient.
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Fig. 3. The cascade control strategy suggested by the
authors.

Experiments at the SINTEF CZ plant have revealed that
there are significant process disturbances influencing P .
In other words: There are responses in P that can not
be explained by excitations of s. These responses are
known to be process disturbances, not measurement noise,
because there are coinciding responses in T . What causes
these disturbances is not known for sure. A reasonable
explanation is voltage variations at the power grid.

Using the control strategy of Figure 2, a power disturbance
can not be rejected until it has caused some change to
T . First then the control strategy can observe a deviation
from the nominal process values. Also, due to measurement
noise at TT, TC should not be too aggressively tuned.
Although the power disturbance will be rejected, a most
unfortunate temperature change must occur before the
disturbance is detected at all.

5. PROPOSED SOLUTION: CASCADE CONTROL

The authors suggest to expand the single-loop control
strategy of Figure 2 to a cascade control strategy as
illustrated in Figure 3. Using this cascade control, the
output of TC is used as reference (setpoint), Pref, to
a power controller, EC. EC will ensure that P , which
is measured by the power transmitter, ET, follows the
reference, Pref. In other words: EC ensures that the power
requested by TC is actually applied to the heating element.
Both TC and EC are regular PID controllers.

The main motivation for using the suggested cascade
control strategy is fast and effective rejection of power
disturbances. EC ensures that such disturbances will be
compensated in a very few seconds, before they have any
significant impact to T . Also, this control strategy makes
the temperature control loop more robust to nonlinearities
and possible parameter variations in the dynamics between
s and P . Robustness to parameter variations is considered
in Section 7.

Figure 4 shows a real-life example of how EC rejects a
power disturbance. This is a real disturbance, not artificial
nor simulated. The disturbance occurs at time 2358s.
Immediately, EC detects the disturbance and rejects it by
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Fig. 4. A real-life power disturbance is effectively rejected
by the power controller, EC.

increasing s until P is restored to its reference value, Pref.
The data shown in Figure 4 is logged during melting of
the silicon, i.e. before the actual crystal pulling begins.
During the melting, TC is run in manual mode (open
loop). Therefore Pref is constant in Figure 4.

The power rejection shown in Figure 4 was logged during
initial testing of the cascade control strategy. At this time
EC had not been properly tuned. Section 6 considers
model-based PID tuning of this controller. It is believed
that using the computed PID parameters will further
improve rejection of power disturbances.

6. MODEL-BASED PID TUNING OF POWER
CONTROLLER

The disturbance rejection shown in Figure 4 is based on
a non-scientific, trial-and-error PID tuning of the power
controller, EC. Although this tuning provides a decent
disturbance rejection, it is believed that proper tuning will
improve the performance. This section considers model-
based PID tuning of EC.

The output of the temperature controller, TC, is the
reference to EC, Pref. Hence, the tuning of EC should
ensure that P effectively tracks Pref over a wide range of
frequencies. In other words: The control loop should have
large bandwidth, ωc.

The PID tuning to be presented in this section uses a
frequency domain approach. This subject is covered in
many control engineering books, for example Seborg et al.
(2004, Chapter 14). The tuning is based on the linear
ARMAX model developed in Komperød and Lie (2010).
Ignoring the noise model, this ARMAX model is on the
form

ΔPk + a1ΔPk−1 = b1Δsk−1 + b2Δsk−2. (5)

The terms Δs and ΔP refer to deviation from the steady
state operating point (snom = 45%, Pnom = 45kW), i.e.
Δs = s − 45% and ΔP = P − 45kW. The parameter
values are a1 = −0.9991, b1 = 1.292, and b2 = −1.291.
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Fig. 5. Ballistic simulation of the model used for tuning
the power controller, EC.
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Fig. 6. Bode diagram of hp(z).

The sample time is Δt = 2s. Figure 5 shows ballistic
simulation of the model (5). The model was run against
its own calibration dataset, as no independent dataset was
available. The reason for not splitting the dataset in a
calibration section and a validation section is explained in
Komperød and Lie (2010). The model (5) can be written
as a time-discrete transfer function

hp(z) def=
ΔP (z)
Δs(z)

=
b1z + b2

z2 + a1z
. (6)

Figure 6 shows the Bode diagram of the transfer function
(6). The frequency response is somewhat unusual as the
magnitude, |hp(ejωΔt)|, increases by the frequency, ω. Also
the phase, ∠hp(ejωΔt), is increasing somewhat in a part
of the frequency range, having its maximum of +5◦ at
approximately ω = 4 × 10−4rad/s.

According to SINTEF Materials and Chemistry, the volt-
age at the power grid, U , may vary as much as ±10%
of the nominal voltage. It is reasonable to assume that
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Fig. 7. Bode magnitude diagram of M(z) and N(z) using
P controller with Kp = 0.24.

P is proportional to U2. Hence, |hp(z)| is assumed to be
proportional to U2.

The model (5) is identified from a dataset logged at the
SINTEF CZ process. The actual U during logging is un-
known. It may have been 10% lower than the nominal
value. If so, the maximum U , i.e. the nominal voltage plus
10%, may be approximately 20% higher than during log-
ging. Hence, the factor U2 may increase by 44%. Therefore,
the gain margin, GM, required by voltage variation is a
factor of 1.5. There may also be other causes to parameter
variations, and the process is somewhat nonlinear. It seems
reasonable to require additional GM of a factor of 2. Hence,
the total GM should be a factor of 1.5×2 = 3. This is equal
to 10dB. Due to the process’ nonlinear character, the phase
margin, PM, is conservatively chosen to 75◦.

As the process transfer function, hp(z), is somewhat un-
usual, it is intuitive to try a proportional controller (P
controller) first, because this is the simplest controller
configuration. From Figure 6 it can easily be concluded
that the controller gain, Kp, must be −12.3dB = 0.24
for GM to be 10dB. PM will then be infinite, because
|h0(ejωΔt)| < 0dB ∀ ω using this Kp value.

Figure 7 shows |M(ejωΔt)| and |N(ejωΔt)| for the closed
loop from Pref to P using a P controller with Kp = 0.24.
The P controller turns out to be a very poor choice: (i)
|M(ejωΔt)| is far below 0dB for all frequencies, which
means that any reference signal to EC will be very poorly
tracked. According to definition (4) this control loop does
not have a bandwidth at all. (ii) |M(ejωΔt)| increases
for higher frequencies, which means that high-frequent
measurement noise will be better tracked than a low-
frequent reference signal. (iii) |N(ejωΔt)| is relatively high
for all frequencies. This means that power disturbances
will be poorly rejected. Actually, in all frequency ranges
this closed loop will track disturbances much better than
the reference.

Proper investigation of Figure 6 would have revealed that a
P controller is a poor choice. The reason is that |hp(ejωΔt)|,
and hence |h0(ejωΔt)|, are small for low frequencies, which
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Fig. 8. Bode diagram for a PI controller and an I controller,
both with Kp = 0.021 and ti = 0.1s.

explains the issues (i)-(iii) of the previous paragraph.
To achieve good reference tracking and good disturbance
rejection, |h0(ejωΔt)| should be as large as possible within
the constraints applied by the chosen stability margins.
However, good reference tracking for high frequencies may
cause high-frequent measurement noise to be tracked as
well.

The magnitude |h0(ejωΔt)| can be increased for lower
frequencies by including integral action, i.e. to use a PI
controller instead of a P controller. The control loop
bandwidth, ωc, was compared for PI controllers with
various integral time, ti. For each ti value, the gain, Kp,
was set to the highest possible value that obeys both
GM and PM. The result is shown in Table 2. The table
shows that ωc increases as ti decreases, even though Kp is
reduced to meet the stability demands.

Table 2. The controller gain, Kp, and the
bandwidth, ωc, for different integral time, ti.

Kp is given as ratio (not in dB).

ti [s] Kp ωc [rad/s]

60.0 0.240 5 × 10−3

15.0 0.225 2 × 10−2

3.0 0.180 8 × 10−2

0.5 0.080 2 × 10−1

0.1 0.021 3 × 10−1

As Kp and ti decrease, the proportional action will have
less contribution to the controller dynamics. Hence, as
Kp → 0, while the ratio Kp/ti is constant, the dynamics
of the PI controller will converge to the dynamics of an
integral controller (I controller). Figure 8 shows the Bode
diagram for a PI controller and an I controller, both
with Kp = 0.021 and ti = 0.1s. The PI controller is
implemented as the transfer function

hc(z) =
(Kp + KpΔt

ti
) z − Kp

z − 1
, (7)
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and the I controller is implemented as the transfer function

hc(z) =
KpΔt

ti
z

z − 1
, (8)

where Δt is the sampling time. Figure 8 shows that there
is very little difference between the dynamics of the two
controllers. Hence it is concluded that an I controller will
be as good as an PI controller. For an I controller it is
not necessary to tune both Kp and ti. Instead, the tuning
parameter Ki is defined as

Ki
def=

Kp

ti
. (9)

For an I controller, Ki = 0.2s−1 is the highest value that
obeys both GM and PM. For this Ki, GM is 12dB and
PM is 75◦. The bandwidth is ωc = 0.3rad/s.

Figure 9 shows the Bode diagram of h0(z) for an I con-
troller with Ki = 0.2s−1. Figure 10 shows the magnitudes
of M(z) and N(z) for the same controller. The magnitude
plot shows that the I controller has very good tracking
performance up to ωc. Also the disturbance rejection is
very good almost up to ωc. Considering the time domain,
Figure 11 shows the response of the reference unit step.
The response is very quick and has no overshoot. After 6s
the response has reached almost 90% of its steady state
value.

As an I controller gives high ωc, the authors did not
consider whether a PID controller with derivative action
would further increase ωc, because too high ωc may be
unfortunate due to measurement noise.

The authors intend to implement the tuning presented in
this section at SINTEF Materials and Chemistry. It will
be validated that the tuning gives satisfactory stability
properties. It will also be considered whether the controller
output, s, is subject to high-frequent variations (“noise”).
If so, it may be desirable to reduce Ki and/or apply a
lowpass measurement filter to the controller input, P .
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7. ROBUSTNESS TO PARAMETER VARIATIONS

One of the most important advantages of cascade control,
compared to single-loop control, is increased robustness to
parameter variations in the inner process. In this case the
inner process is the dynamics from s to P .

This section considers how the transfer function M(z), i.e.
the closed loop from Pref to P , is influenced by voltage
variations at the power grid. As discussed in Section 6,
it is reasonable to assume that voltage variations affect
hp(z) as changes of the transfer function’s gain. A gain
increment of a factor 1.5, i.e. 3.5dB, was considered to
be the worst case scenario at the upside. Using the same
argumentation for the downside gives a factor 0.67, i.e.
-3.5dB, as the worst case.

Figure 12 shows Bode diagram of M(z) for the nominal
gain of hp(z), i.e. the gain of the transfer function (6),
and ±3.5dB relative to the nominal gain. An I controller
with Ki = 0.2s−1 is used. Figure 12 shows that the
differences in magnitude between the nominal gain and
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Fig. 12. Bode diagram of M(z) for the nominal gain
±3.5dB.

the ±3.5dB gains are below 1dB up to ω = 0.1rad/s.
For higher frequencies the differences increase significantly.
However, only for the highest frequencies the differences
are above 3.5dB. Visual inspection of the phase diagram
shows that the maximum phase differences between the
nominal gain and the ±3.5dB gains are approximately 15◦.
For frequencies below ω = 0.01rad/s there are very small
phase differences.

8. WEAKNESSES OF THE SUGGESTED CONTROL
STRATEGY

A general disadvantage of cascade control is that the
control strategy depends on one additional measurement.
That is the measurement of the inner process. For the
process considered in this paper the additional measure-
ment is the power transmitter, ET. A faulty or very noisy
signal from the additional measurement may reduce the
control performance compared to single-loop control. In
other words: One more measurement is one more issue
that may go wrong.

Except for this general concern of cascade control, there
are to the authors’ knowledge no significant disadvantages
of the suggested control strategy.

9. FURTHER WORK

The suggested cascade control will be implemented on
the CZ process at SINTEF Materials and Chemistry.
The power controller tuning will be tested. It may be
necessary to reduce Ki and/or apply a lowpass filter
due to measurement noise. When the inner process is
operating properly in closed loop, the focus will be shifted
toward modeling and control of the outer process, i.e. the
dynamics from the power reference, Pref, to the crucible
temperature, T .

Komperød and Lie (2010) and Komperød et al. (2010)
consider nonlinear system identification and adaptive sys-
tem identification, respectively, of the dynamics from s
to P . The results of these papers can be used to make
the power controller, EC, adaptive. However, as shown in

the present paper, the inner loop will have high bandwidth
even with conservative stability margins. Hence, it is likely
that adaptive control is not necessary for the temperature
cascade control to be successful.

The work presented in this paper is part of a larger project,
which focus towards modeling, monitoring, and control of
the CZ process.

10. CONCLUSIONS

Presently the crucible temperature at the SINTEF CZ
process is controlled using a single-loop PID controller.
This paper suggests using cascade control instead of single-
loop control. The cascade inner loop will control the
heating element power, and the cascade outer loop will
control the crucible temperature. Hence, the temperature
controller output will be the reference (setpoint) to the
power controller.

The main motivations for using cascade control are (i)
fast and effective rejection of power disturbances and (ii)
increased robustness to parameter variations in the inner
process.

This paper also considers model-based PID tuning of the
power controller. A proportional controller (P controller)
turns out to be a very poor choice, while an integral
controller (I controller) works very well. The performance
of various controller tunings were compared by consider-
ing the bandwidth of the control loop, as well as Bode
diagrams of the closed loop transfer function and the
sensitivity function.

Robustness to parameter variations was examined by
considering Bode diagrams of the closed inner loop for
various process gains. At lower frequencies the loop is very
robust to changes of the process gain.

To the authors’ knowledge the suggested cascade control
has no significant disadvantages, except that it depends on
one additional measurement.
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Abstract

The Czochralski (CZ) crystallization process is used to produce monocrystalline silicon for solar cell
wafers and electronics. Tight temperature control of the molten silicon is most important for achieving
high crystal quality. SINTEF Materials and Chemistry operates a CZ process. During one CZ batch, two
pyrometers were used for temperature measurement. The silicon pyrometer measures the temperature of
the molten silicon. This pyrometer is assumed to be accurate, but has much high-frequency measurement
noise. The graphite pyrometer measures the temperature of a graphite material. This pyrometer has little
measurement noise. There is quite a good correlation between the two pyrometer measurements. This
paper presents a sensor fusion algorithm that merges the two pyrometer signals for producing a temperature
estimate with little measurement noise, while having significantly less phase lag than traditional lowpass-
filtering of the silicon pyrometer. The algorithm consists of two sub-algorithms: (i) A dynamic model is
used to estimate the silicon temperature based on the graphite pyrometer, and (ii) a lowpass filter and a
highpass filter designed as complementary filters. The complementary filters are used to lowpass-filter the
silicon pyrometer, highpass-filter the dynamic model output, and merge these filtered signals. Hence, the
lowpass filter attenuates noise from the silicon pyrometer, while the graphite pyrometer and the dynamic
model estimate those frequency components of the silicon temperature that are lost when lowpass-filtering
the silicon pyrometer. The algorithm works well within a limited temperature range. To handle a larger
temperature range, more research must be done to understand the process’ nonlinear dynamics, and build
this into the dynamic model.

Keywords: Complementary filters; Czochralski crystallization process; Measurement noise filtering; Py-
rometer temperature measurement; Sensor fusion algorithm.

1 Introduction

The Czochralski (CZ) crystallization process is used to
convert multicrystalline materials into monocrystalline
materials, i.e. materials that have homogeneous crystal
structures. Among the most important applications is

production of monocrystalline silicon. Monocrystalline
silicon is used in solar cell wafers and in computers and
electronics.

The CZ process is a batch process. During the pro-
cess, multicrystalline silicon is melted in a crucible.
The crucible is heated using a heating element, which

doi:10.4173/mic.2011.1.2 c© 2011 Norwegian Society of Automatic Control
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power is manipulated using a triode for alternating cur-
rent (TRIAC). Tight control of the silicon temperature
is most important for achieving high crystal quality. A
reliable temperature measurement without too much
measurement noise is decisive for achieving good tem-
perature control.

This paper considers the temperature measurement
of a real-life CZ process owned and operated by SIN-
TEF Materials and Chemistry in Trondheim, Norway
(hereafter referred to as SINTEF). During an experi-
ment two pyrometers were used for temperature mea-
surement. One pyrometer, referred to as the silicon
pyrometer, measures the temperature in the molten
silicon. The molten silicon temperature is the desired
temperature signal for monitoring and control. Unfor-
tunately, the signal from this pyrometer has consider-
able high-frequency measurement noise. Attenuating
the noise using a traditional lowpass filter is an intu-
itive and feasible solution. However, this solution will
cause significant phase lag over the filter, which is un-
fortunate for the temperature control.

The other pyrometer, referred to as the graphite py-
rometer, has little noise. However, this pyrometer has
the disadvantage of measuring the temperature of a
graphite material encircling the silicon crucible. Hence,
the signal of the pyrometer does not represent the ac-
tual silicon temperature. Fortunately, there is quite a
high correlation between the silicon temperature and
the graphite pyrometer signal.

The contribution of this paper is a sensor fusion al-
gorithm that fuses the two pyrometer measurements.
The purpose of the algorithm is to estimate the tem-
perature of the molten silicon. For a given cut-off fre-
quency, the algorithm estimate gives the same amount
of measurement noise as a traditional lowpass filter,
but has significantly less phase lag. The lower the cut-
off frequency is chosen, the larger improvement of using
the sensor fusion algorithm. On the other hand, if the
cut-off frequency is chosen high, there is little phase
lag over a traditional lowpass filter, and the algorithm
does not give any significant improvement.

The sensor fusion algorithm presented in this paper
is implemented as complementary filters. The filters
are chosen as a lowpass Butterworth filter and a high-
pass Butterworth filter. A statistically optimal tem-
perature estimate can in theory be computed using
a Kalman filter or a Wiener filter. However, using
Kalman filter or Wiener filter depends on noise de-
scriptions that are not known. Using complementary
Butterworth filters, the sensor fusion algorithm has one
tuning parameter; the Butterworth filters’ cut-off fre-
quency.

The authors have searched for scientific papers issu-
ing pyrometer measurement noise in the CZ processes.

Unfortunately, no relevant results were found. There
are several possible reasons for this negative search re-
sult: (i) Even though the silicon pyrometer at SINTEF
has much measurement noise, this may not be an issue
of other pyrometers at other CZ plants. (ii) The noise
is attenuated using traditional lowpass filters despite
the unfortunate phase lag. (iii) The noise problem
is reduced by using controller tunings that attenuate
high-frequency noise, for example avoiding derivative
action and high gain in PID controllers. (iv) The noise
problem is handled in the commercial CZ industry and
is not published in scientific papers.

An introduction to complementary filters is given in
Brown and Hwang (1997). Lyons (2011) gives a general
introduction to digital signal processing. The sensor
fusion algorithm also includes an empirical model de-
veloped using system identification. A comprehensive
introduction to system identification is given in Ljung
(1999).

Lan (2004) gives an introduction to crystal growth,
including the CZ process, and provides an extensive
number of references for further reading. There are
many scientific papers covering modeling and control of
the CZ process, for example Irizarry-Rivera and Seider
(1997a,b) and Lee et al. (2005). However, the authors’
literature search indicates that the important topic of
sensor technology in the CZ process has received very
limited attention.

2 Notation and Definitions

Table 1 presents the notation used in this paper. A
variable with subscript k refers to the variable’s value
at timestep k. For example Tk refers to the silicon
temperature at timestep k.

Please note the difference between T̂ g and u: u is the
raw signal from the graphite pyrometer in Volt, while
T̂ g is an estimate of the silicon temperature based on
the signal u. These variables are related through the
equation T̂ g = G(z) u.

To simplify notation, the arguments s and z will be
used to specify whether a transfer function H is time
continuous or time discrete, respectively. That is, H(s)
and H(z) describe the same model or filter, where H(s)
is the continuous version and H(z) is the discrete ver-
sion. This notation is erroneous in a strict mathemati-
cal sense, as H(s) and H(z) are different mathematical
functions. However, it simplifies the notation without
any risk of confusion.

130 PAPER G



3 The Czochralski Crystallization
Process

The Czochralski (CZ) crystallization process is used
to convert multicrystalline materials into monocrys-
talline materials. The plant considered in this paper
converts multicrystalline silicon into monocrystalline
silicon. Monocrystalline silicon is used in solar cell
wafers and in computers and electronics. Solar cells
based on monocrystalline silicon have higher efficiency
than solar cells based on multicrystalline silicon.

The CZ process is a batch process, which main steps
are illustrated in Figure 1. (i) Initially multicrystalline
silicon is melted in a crucible. (ii) When the silicon is
molten, the tip of a seed crystal is dipped into the melt.
The seed crystal is monocrystalline and has the crystal
structure that is to be produced. (iii) When the tip
of the seed crystal begins to melt, the crystal is slowly
elevated. As the crystal is lifted, the molten silicon so-
lidifies on the crystal. During solidification, the crys-

Table 1: Notation used in this paper.

G(z) The dynamic model from the
graphite pyrometer to the silicon
temperature.

H(z) A lowpass Butterworth filter.
k An index referring to sample num-

ber in the dataset.
T The true, but unknown, tempera-

ture of the molten silicon [◦C].
T̂ The temperature of the molten sili-

con [◦C] estimated by the sensor fu-
sion algorithm.

T̂ g The temperature of the molten sili-
con [◦C] estimated based on the sig-
nal from the graphite pyrometer, u.

T̂ s The temperature of the molten sili-
con [◦C] measured by the silicon py-
rometer.

ts The sample time [s].
u The raw signal from the graphite py-

rometer [V].
ū ū is u rescaled by a gain and a bias.

ū is only used for comparing u and
T̂ s in plots. ū is not used in the
sensor fusion algorithm.

z The time-shift operator defined by
xk+1 = zxk and xk−1 = z−1xk.

ω Frequency [rad/s].
ωc The cut-off frequency of Butter-

worth filters [rad/s].
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Figure 1: The main batch steps of the CZ process. Il-
lustration from Wikipedia (the illustration is
released to public domain by the copyright
holder).

tal structure of the seed crystal is extended onto the
solidifying silicon. (iv) The crystal grows radially and
axially. The produced crystal is referred to as an ingot.
The temperature of the molten silicon and the vertical
pulling speed are used to control the ingot diameter.
Stable growing conditions are essential to produce high
crystal quality. (v) As the final ingot length is reached,
the crystal growth is terminated by slowly decreasing
the crystal diameter to zero. During the entire batch
process, the crucible is rotated in one direction, and
the seed crystal is rotated in the opposite direction.

SINTEF Materials and Chemistry in Trondheim, Nor-
way, owns and operates a CZ process. Initially there
was one pyrometer at this plant. This pyrometer mea-
sures the temperature at a graphite material in the
CZ process. This pyrometer will be referred to as the
graphite pyrometer. The pyrometer has the advantage
of little measurement noise, but it does not measure
the temperature directly in the molten silicon. Hence,
using this pyrometer for temperature control, the tem-
perature of the graphite material is actually controlled,
not the temperature of the silicon. This choice of sen-
sor location is then based on the assumption that sta-
ble graphite temperature implies stable silicon temper-
ature.

A second pyrometer was installed at the plant. This
pyrometer is able to measure the temperature directly
in the molten silicon, which is the desired temperature
to control. This pyrometer will be referred to as the sil-
icon pyrometer. The authors have logged process data
from only one experiment where this pyrometer was
tested. The temperature measured by this pyrometer
seems reasonable based on the melt temperature of sil-
icon. Also the measured temperature response seems
reasonable based on step changes in the heating ele-
ment power. Unfortunately, the temperature signal of
this pyrometer is very noisy. An intuitive and feasible
solution is to use a traditional lowpass filter to attenu-
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ate the noise. However, lowpass-filtering will give phase
lag over the filter which is unfortunate for temperature
control. The more the signal is smoothed in the filter,
the more phase lag.

4 Sensor Fusion and
Complementary Filters

Online measurements of process variables are decisive
for most control systems to operate properly. There
are often several sensor technologies available for mea-
suring a specific variable. If no conventional sensor
is available, it may be possible to develop a soft sen-
sor. A soft sensor does not measure the desired process
variable directly, but relies on other measurements and
an algorithm to estimate the desired process variable.
In the following text, the terms “sensor” and “sensor
technology” will be used for both conventional sensors
and soft sensors.

For measuring a specific process variable, different
sensor technologies may have different qualities, such as
accuracy and amount of measurement noise. A sensor
fusion algorithm is an algorithm that combines several
sensors for estimating a process variable. The algo-
rithm’s purpose is to achieve an estimate with better
qualities than any of the individual sensors provides.
The term “sensor fusion” is a general term for using
multiple sensors to estimate a variable. A number of
algorithms can be used to fuse the sensor signals, in-
cluding Kalman filter and Bayesian networks.

A special case of the sensor fusion approach is when
different sensors have desirable qualities in different fre-
quency ranges. The typical case is when some sensors
are accurate at low frequencies, while other sensors are
accurate at high frequencies. A commonly used exam-
ple is estimation of position based on a position sen-
sor and a velocity sensor. The position sensor may
not be sufficiently accurate to keep up with smaller
position variations. On the contrary, time-integrating
the velocity sensor may keep up with smaller posi-
tion changes, but this estimate is likely to drift over
time due to accumulation of small measurement errors.
The intuitive solution is to consider the velocity sensor
over short time spans, and consider the position sensor
over longer time spans. In the frequency domain this
translates into lowpass-filtering the position sensor and
highpass-filtering the time-integrated velocity (Brown
and Hwang, 1997).

Complementary filters is a simple and intuitive ap-
proach for fusing sensors which qualities can be dis-
criminated by frequency. Assume that a process vari-
able y is measured by two sensors. The sensor outputs
are ŷ1 = y + v1 and ŷ2 = y + v2, respectively, where v1
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Figure 2: Complementary filters with two inputs. The
figure is inspired by Brown and Hwang (1997,
Figure 4.9).

and v2 are measurement noise / measurement errors.
Assume that v1 is low-frequency noise and v2 is high-
frequency noise. Hence, highpass-filtering ŷ1 removes
v1, but also removes the low-frequency components of
the signal y. Similarly, lowpass-filtering ŷ2 removes
v2, but also removes the high-frequency components of
y. Summing the highpass-filtered ŷ1 and the lowpass-
filtered ŷ2 will include both the high-frequency and the
low-frequency components of y. Assuming the applied
lowpass filter is H(z), the highpass filter is chosen as
the complementary filter 1−H(z) (Brown and Hwang,
1997). Complementary filters are illustrated in Fig-
ure 2.

The filter output ŷ can be written as

ŷ = [1 − H(z)]ŷ1 + H(z)ŷ2 (1)
= [1 − H(z)](y + v1) + H(z)(y + v2)
= y + [1 − H(z)]v1 + H(z)v2.

Ideally, the lowpass filter H(z) removes v2 and the
highpass filter 1 − H(z) removes v1. Then the esti-
mated output will be identical to the actual process
variable, i.e. ŷ = y (Brown and Hwang, 1997).

The choice of the lowpass filter H(z) is important to
achieve a good estimate ŷ. If the noise characteristics
of v1 and v2 are known, the statistically optimal H(z)
can be computed using a Wiener filter or a Kalman
filter (Brown and Hwang, 1997). However, in many
real-life applications the noise characteristics are not
known.

Although the term complementary filters is not used,
Ljung (1999, Section 3.3) uses complementary filters
when discussing observers and predictors. Actually,
this reference was the most inspiring for the authors
when developing the sensor fusion algorithm.

5 Basic Principle

This paper presents a sensor fusion algorithm that aims
at attenuating measurement noise of the silicon pyrom-
eter, while giving less phase lag than a traditional low-
pass filter. Hence, the output of the algorithm, T̂ , is
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Figure 3: Basic principle of the sensor fusion algorithm.

an estimate of the true, but unknown, silicon temper-
ature, T . This section gives a brief presentation of the
algorithm, while the following sections provide a thor-
ough explanation.

The silicon pyrometer measures the temperature of
the molten silicon in the CZ process. The pyrometer
output signal, T̂ s, seems reasonable based on process
knowledge and step-response tests. Unfortunately, the
signal is very noisy. The graphite pyrometer measures
the temperature of a graphite material. The signal
from this pyrometer, u, has little noise. There is quite
a good correlation between the signals of the two py-
rometers.

The sensor fusion algorithm consists of two sub-al-
gorithms: (i) A dynamic model, G(z), and (ii) comple-
mentary filters, H(z) and 1 − H(z).

The dynamic model, G(z), estimates the silicon tem-
perature, T , as a function of the graphite pyrometer,
u. This estimate is noted T̂ g. Please note that the
estimate does not depend on the silicon pyrometer.

The model estimate, T̂ g, is less accurate than the
silicon pyrometer, but has the significant advantage of
little noise. Due to the measurement noise of the silicon
pyrometer, the model estimate is more reliable than the
silicon pyrometer, T̂ s, at high frequencies. However,
the silicon pyrometer is assumed to be more reliable
at low frequencies than the model estimate. The com-
plementary filters take advantage of these qualities by
lowpass-filtering the silicon pyrometer through H(z),
highpass-filtering the model output through 1− H(z),
and sum these two filtered signals. The sensor fusion
algorithm is illustrated in Figure 3.

6 Presentation of the Raw Data

The authors have access to data from only one CZ
batch where both the silicon pyrometer and the graphite
pyrometer were used. Analyses of the data and initial
tests of the sensor fusion algorithm conclude that the
dynamics from the graphite pyrometer, u, to the sili-
con temperature, T , (measured by the silicon pyrome-
ter, T̂ s) is nonlinear. The nonlinearity will be demon-
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Figure 4: The silicon pyrometer, T̂ s, and the rescaled
raw signal of the graphite pyrometer, ū, plot-
ted over the data section used to develop the
sensor fusion algorithm.

strated in Section 10. The present section covers the
data used for developing the sensor fusion algorithm.

When deciding which part of the dataset to use for
developing the sensor fusion algorithm, the authors
were looking for a continuous section where there are
significant excitations in the temperature, while the
temperature range is not wide enough for nonlineari-
ties to be significant. There is only one section in the
dataset that meets these demands. This section covers
5 hours and 50 minutes of the CZ batch, having sam-
pling interval of 2 seconds. That is 10501 samples. The
grey curve of Figure 4 shows the temperature measured
by the silicon pyrometer, T̂ s, over the chosen data sec-
tion. The temperature is in the range of approximately
1445◦C to 1470◦C. For comparison, during the entire
CZ batch (melting of the silicon not included) the tem-
perature varies in the range of approximately 1425◦C
to 1480◦C. Hence, the range used to develop the sensor
fusion algorithm is approximately 45% of the total tem-
perature range during the CZ batch. Figure 4 shows
that the silicon pyrometer gives a very noisy measure-
ment signal. The noise peak-to-peak amplitude is 5 to
10◦C.

The green curve of Figure 4 illustrates the raw signal,
u, of the graphite pyrometer over the chosen data sec-
tion. For the purpose of comparing this signal with the
silicon pyrometer, T̂ s, the signal has been rescaled to
the same range as the silicon pyrometer. The rescaled
signal, ū, shown in the figure is on the form ū = p1u +
p0, where p1 and p0 are polynomial coefficients. The
coefficients are computed as the least squares fit of ū
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Figure 5: Location of the silicon pyrometer and the
graphite pyrometer in the SINTEF CZ pro-
cess (seen from above). Please refer to the
main text for explanation.

to T̂ s. Please note that ū is the static best fit of u
to T̂ s. The dynamic relationship between u and T̂ s

will be developed in Section 8 using system identifica-
tion. Figure 4 clearly shows that the graphite pyrome-
ter has very little measurement noise compared to the
silicon pyrometer. The figure also shows that there is
a good correlation between the silicon pyrometer and
the graphite pyrometer.

Figure 5 illustrates the location of the silicon py-
rometer and the graphite pyrometer in the CZ process
(seen from above). The black arrow indicates the mea-
surement location of the graphite pyrometer, and the
grey arrow indicates the measurement location of the
silicon pyrometer. The grey area in center represents
the molten silicon, and the blue circle represents the
crucible. The crucible is located in a rotating device
(green color) shaped as a cylinder with bottom, and
without top. The red color represents the heating el-
ement, which power is controlled by a triode for al-
ternating current (TRIAC). The black color represents
the graphite ring at which the graphite pyrometer mea-
sures temperature. The yellow color represents insula-
tion and the outer wall. The colors in Figure 5 are
chosen to simplify the explanation of the figure. The
colors do not represent the colors in the process.

7 Deciding the Complementary
Filters H(z) and 1 − H(z)

Figure 3 illustrates the complementary filters to be
used in the sensor fusion algorithm. For two comple-
mentary filters, there is only one filter characteristic to
choose. For the sensor fusion algorithm, the transfer
function of the lowpass filter H(z) is to be chosen. The
highpass filter is then given by 1 − H(z).

The sensor fusion algorithm provides an estimate, T̂ ,
of the silicon temperature. The accuracy of this esti-
mate depends on H(z). H(z) can be computed using
a Wiener filter or a Kalman filter (Brown and Hwang,
1997). These approaches give a temperature estimate,
T̂ , that is optimal in the sense of minimizing the esti-
mation error variance, i.e. E (T − T̂ )2. However, the
Kalman filter depends on covariance matrices that rep-
resent the measurement noise of the silicon pyrometer,
i.e. T − T̂ s, and the estimation error of the model out-
put, i.e. T−T̂ g. The Wiener filter depends on the same
information presented in other terms. Unfortunately,
this information is not known.

A simpler approach is used in this paper. The fil-
ter H(z) is chosen as a Butterworth filter. There are
now two parameters to be specified: (i) The cut-off
frequency, ωc, and (ii) the filter order. The cut-off fre-
quency will depend on the tolerance for measurement
noise. This tolerance depends on the usage of the tem-
perature estimate, T̂ . For example, if the estimate is
to be used for temperature control, the tolerance for
high-frequency noise will depend on the controller tun-
ing. A controller with significant derivative action will
have less tolerance than a controller using mainly inte-
gral action.

As this paper considers only the sensor fusion al-
gorithm, not its usage, the cut-off frequency, ωc, will
be chosen based on the frequency content of the sil-
icon pyrometer, T̂ s. The cut-off frequency is chosen
as the lowest frequency component that in the time
domain can not be distinguished from high-frequency
measurement noise. That is, the logged data of the sil-
icon pyrometer, T̂ s, are transformed to the frequency
domain using the discrete Fourier transform. Then the
lowest frequency component is removed, and the re-
maining components are transformed back to the time
domain. If there is any visible signal pattern beyond
measurement noise in the time domain, the second low-
est frequency component is removed. Then the remain-
ing frequency components are transformed to the time
domain. This is repeated until there is no visual pat-
tern in the time domain beyond measurement noise.
For the data sequence T̂ s, approximately the 15 lowest
frequency components can be distinguished from the
high-frequency noise in the time domain.
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Figure 6: The silicon pyrometer, T̂ s, shown in the time
domain, after removing the 15 lowest fre-
quency components.

Figure 6 shows the silicon pyrometer, T̂ s, in the time
domain, after removing the 15 lowest frequency compo-
nents. Hence, the cut-off frequency, ωc, will be chosen
equal to the lowest frequency component presented in
Figure 6. In other words: The cut-off frequency will
be chosen to attenuate the data shown in Figure 6.
The lowest frequency component that is represented in
the figure is the 16th component, which corresponds to
4.8×10−3 rad/s. Hence, the cut-off frequency is chosen
as ωc = 4.8 × 10−3 rad/s.

It is emphasized that this approach is only a sug-
gestion for how to choose the cut-off frequency. When
using the sensor fusion algorithm in a real-life appli-
cation, such as temperature control, the application’s
tolerance to measurement noise will decide the cut-off
frequency. Also, the number of frequency components,
in this case 15, has been chosen based on human in-
spection of data plots, and is therefore not precise.

The next issue is to choose the Butterworth filter or-
der. The higher filter order, the sharper cut-off. Con-
sidering the sensor fusion algorithm of this paper, the
silicon pyrometer, T̂ s, has desirable qualities at low
frequencies, and the model estimate, T̂ g, has desirable
qualities at high frequencies. However, it seems un-
likely that there are sharp frequency limits between
the desirable and the undesirable qualities. Gradual
changes between the qualities seem more likely. Hence,
it seems reasonable to choose a low filter order to get
a gradual transition from T̂ s to T̂ g for increasing fre-
quencies. The filter order is therefore chosen to be one.

A continuous time lowpass Butterworth filter with
ωc = 4.8 × 10−3 rad/s has the transfer function (Hau-

gen, 2004)

H(s) =
1

1 + s
ωc

. (2)

The dynamic model, G(z), to be developed in Sec-
tion 8 will be a discrete time model. It is therefore de-
sirable to also have the lowpass filter in discrete time.
There are several ways to convert a continuous time
transfer function to discrete time. A method referred
to as the bilinear transform method will be used here.
This method is described in Lyons (2011). The method
is to replace s in a continuous transfer function, H(s),
with

s =
2
ts

(
1 − z−1

1 + z−1

)
(3)

to obtain the time discrete transfer function H(z). Here,
ts is the sampling time, which is 2 seconds. Using this
method, the discrete time lowpass filter becomes

H(z) =
ωcts + ωctsz

−1

ωcts + 2 + (ωcts − 2)z−1
. (4)

The complementary continuous highpass filter is

1 − H(s) =
s

ωc

1 + s
ωc

. (5)

This is a highpass Butterworth filter (Haugen, 2004).
In discrete time this becomes

1 − H(z) =
2 − 2z−1

ωcts + 2 + (ωcts − 2)z−1
. (6)

Figure 7 shows the Bode diagram of the complemen-
tary filters H(z) and 1 − H(z).

8 Identifying the Dynamic Model
G(z)

The sensor fusion algorithm presented in this paper
aims at attenuating the measurement noise of the sil-
icon pyrometer, while giving significant less phase lag
over the filter than a traditional lowpass filter. Figure 3
illustrates the sensor fusion algorithm. The upper in-
put of the summation point represents a traditional
lowpass-filtering of the silicon pyrometer, T̂ s. This sig-
nal is believed to give an accurate representation of the
silicon temperature, T , but the high-frequency compo-
nents are removed and the signal is phase lagged in
the filter. Hence, the purpose of the lower input of the
summation point in Figure 3 is to estimate the high-
frequency components of the silicon temperature, T ,
and give this estimate a positive phase by highpass-
filtering it. Therefore, the success of the sensor fusion
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Figure 7: Bode diagram of the complementary filters;
the lowpass filter, H(z), and the highpass fil-
ter, 1 − H(z).

algorithm depends on how accurate the model output,
T̂ g, describes the silicon temperature, with emphasis
to the higher frequency components. This section dis-
cusses how the model, G(z), is developed to meet this
demand.

The model, G(z), will be developed using system
identification. The model input is the output signal of
the graphite pyrometer, u. The desired model output
is the silicon temperature, T . As the exact tempera-
ture is not known, the best estimate available is the
temperature measured by the silicon pyrometer, T̂ s.
Unfortunately, the noise at T̂ s is likely to reduce the
quality of the model. However, no better options are
available.

In the sensor fusion algorithm, the model’s output,
T̂ g, will be highpass-filtered through the filter 1−H(z)
as shown in Figure 3. Hence, when developing the
model, G(z), the low-frequency components should be
deemphasized in favor of the high-frequency ones. This
is achieved by detrending (subtracting sample mean)
and highpass-filtering the raw data using the same high-
pass filter that is used in the complementary filters, i.e.
1−H(z). Figure 8 shows the silicon pyrometer, T̂ s, and
the rescaled version of the graphite pyrometer signal,
ū, after being detrended and filtered through the high-
pass filter 1 − H(z). In other words: The data shown
in Figure 8 are the data shown in Figure 4 after be-
ing detrended and highpass-filtered. When identifying
the model, G(z), the input data used is u and the out-
put data used is T̂ s, both after being detrended and
highpass-filtered. That is, the data used for identify-
ing the model are the data shown in Figure 8, except
that u is used instead of its rescaled version ū.
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Figure 8: The silicon pyrometer, T̂ s, and the rescaled
graphite pyrometer, ū, after being detrended
and highpass-filtered through 1 − H(z).

The next issue is to decide a model structure for the
model G(z). The dynamics from the graphite pyrom-
eter, u, to the silicon temperature, T , (measured by
the silicon pyrometer, T̂ s) seems to be nonlinear. This
nonlinearity is demonstrated in Section 10. Flexible,
nonlinear black-box model structures usually contain
significantly more parameters than linear model struc-
tures. As the authors do not have independent data
for validating the model, the number of parameters
should be limited to avoid overfitting of the model.
Therefore, a simple, linear model structure was chosen
for the sensor fusion algorithm presented in this pa-
per. Section 11 discusses further work, including this
nonlinearity issue.

As pointed out in Ljung (1999), including a noise
model in the model structure is equivalent to prefilter
the measured data. Hence, a noise model may coun-
teract the data prefiltering done above. Therefore, an
output error (OE) model structure will be used. OE
models have no noise model, i.e. the noise model is
simply 1. The MATLAB System Identification Tool-
box includes two linear OE model structures: (i) The
process model structure and (ii) the polynomial OE
model structure.

The process model is a time continuous transfer func-
tion. The human model builder can specify the number
of poles (one to three), whether the transfer function
should have a zero, and whether the transfer function
should have a time delay. Using the maximum num-
ber of poles, and a zero and a time delay, the model
structure is on the form
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G(s) = K
1 + tzs

(1 + t1s)(1 + t2s)(1 + t3s)
e−tds, (7)

where the parameters to be identified are K, t1, t2, t3,
tz, and td. As pointed out in Ljung (2009), the main
advantage of this model structure is that the time delay
is estimated. For most other model structures the time
delay must be specified by the human model builder.
On the other hand, a disadvantage of the process model
structure is that the human model builder must specify
whether or not the system is underdamped (has com-
plex conjugate poles). If the system is underdamped,
the model structure is on the form

G(s) = K
1 + tzs

(1 + 2ζtωs + (tωs)2)(1 + t3s)
e−tds. (8)

Please refer to Ljung (2009) for further explanation of
the process model structure.

The polynomial OE model structure is a model struc-
ture in the same family as the more well-known ARX
and ARMAX model structures. For single input, sin-
gle output (SISO) systems, the only difference between
these three model structures is the noise models. The
OE model has no noise model, i.e. the noise model is
simply 1. The SISO polynomial OE model structure is
on the form

G(z) =
B(z)
F (z)

z−nd , (9)

where

B(z) =
nb∑
i=0

biz
−i, (10)

F (z) = 1 +
nf∑
i=1

fiz
−i. (11)

Here, bi and fi are polynomial coefficients, and nd is
the time delay in number of samples.

The parameters of the model structures (7) (or (8))
and (9) are identified using the prediction error method
(PEM). For an introduction to PEM, please refer to
Ljung (1999). Using PEM identification, the model
parameters are identified as the solution of a multi-
variable optimization problem. In most cases the op-
timization problem is nonlinear, and the optimization
algorithm is in danger of being trapped in a local min-
imum. Quoting Ljung (1999): “For output error struc-
tures, on the other hand, convergence to false local
minima is not uncommon.”
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Figure 9: The eight successful process models. ’P1’,
’P2’, and ’P3’ refer to the number of poles
(one, two, or three). ’D’ means that time
delay is estimated. ’Z’ means that a zero is
estimated. ’U’ means that two poles are un-
derdamped (complex conjugate).

The identification work was started by identifying
process models ((7) and (8)) using the MATLAB Sys-
tem Identification Toolbox. Ten models with different
number of poles, real or complex poles, and with or
without zero were identified. The models were then
plotted against the system output, i.e. the highpass-
filtered T̂ s. Eight of the ten models give good fit to
the system output. It is assumed that the failure of
the other two models is because the PEM algorithm
was trapped in a local minimum. The argument for
this conclusion is that simpler model structures, which
are subsets of the faulty model structures, did succeed.
The eight successful models are shown in Figure 9.
There are some differences in the initial values, i.e. the
first 20-30 minutes. There are also some smaller dif-
ferences in the range 325 to 345 minutes (this may be
difficult to see in the figure). However, Figure 9 shows
that the models are very similar in explaining the sys-
tem output, and it is very difficult to conclude which
model is the better one.

The main reason for beginning the identification work
by identifying process models is the process model struc-
ture’s ability to estimate time delay, i.e. td in (7) and
(8). Among the eight successful models, td ranges from
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Figure 10: Six polynomial OE models with nb = 1 and
nf = 2. The time delay, nd, ranges from 0
to 125 samples in increments of 25 samples.

0 to 210 seconds. Hence, it must be concluded that us-
ing process models for estimating time delay was not
very successful for this dataset. However, this is not an
unfortunate conclusion: Models with a wide range of
time delays give good fit to the system output. Hence,
the models seem robust to the choice of time delay. In
other words: The poles and the zero seem to be able
to compensate a somewhat erroneous time delay. The
robustness to the choice of time delay was confirmed
by polynomial OE models: Six models with nb = 1 and
nf = 2 were identified. The models have different time
delays, nd, ranging from 0 to 125 samples in increments
of 25 samples (i.e. from 0 to 250 seconds in increments
of 50 seconds). Otherwise these six models were iden-
tified under the same conditions. Figure 10 shows the
model fit of these six models. Figure 10 confirms the
observation of Figure 9: A wide range of time delays
give good model fit. Hence, it is concluded that the
models are robust to the choice of time delay.

The polynomial OE model with nd = 100 gives an
unusual step-response and frequency response (not shown).
The model will therefore be ignored in the following
discussion.

Zooming in on Figure 10 shows that some models
give smooth outputs, while other models give outputs
with some high-frequency noise. It turns out that longer
time delay gives more noisy output. The reason is to be
found in the Bode magnitude diagram of the models.
This diagram is shown in Figure 11. The longer time
delay, nd, the higher amplitude at high frequencies.
Hence, longer time delay means less lowpass-filtering
of the model input signal, u. This explains why longer
time delay gives more noisy output.
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Figure 11: Bode magnitude diagram of the five success-
ful polynomial OE models. The models’
time delay, nd, range from 0 to 125 sam-
ples in increments of 25 samples. The model
having nd = 100 is excluded.

It remains to be explained why longer time delays
give less attenuation for increasing frequencies. Visual
inspection of Figure 8 strongly indicates that there is
some phase lag from u to T̂ s, because the peaks in ū
seem to occur before the corresponding peaks in T̂ s.
Long time delay gives large phase lag in the frequency
domain. Long time constants also give large phase lag.
Hence, it seems reasonable to conclude that models
with long time delay use the time delay to give phase
lag, while models with short time delay use long time
constants to give phase lag. Long time delays do not
change the magnitude of the Bode diagram, while long
time constants attenuate high frequencies.

Quoting Ljung (1999): “Our acceptance of models
should be guided by ’usefulness’ rather than ’truth’.”
For the purpose of the sensor fusion algorithm, it is
not of main interest to know the exact time delay. The
implications of short or long time delay are more im-
portant. Hence, it seems reasonable to decide whether
or not a lowpass-filtering effect in the model G(z) is
desirable, and choose the time delay based on this de-
cision. There is some noise present in the signal from
the graphite pyrometer, u. Hence, it is reasonable to
require at least some lowpass-filtering. From a physical
consideration of the process, it is reasonable to assume
that the melted silicon in the crucible heats and cools
off slower than the graphite ring. This further favors
lowpass-filtering. The time delay is therefore chosen as
nd = 0. It is emphasized that this is not an exact sci-
entific conclusion, but a choice that is reasonable based
on the need for lowpass-filtering due to some measure-
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ment noise in the graphite pyrometer output, u, as well
as physical consideration of the process.

The next issue is to choose the polynomial orders nb

and nf . The models shown in Figure 10 have nb = 1
and nf = 2, i.e. there are two parameters to be iden-
tified in each of the nominator and denominator. As
the models give good fit, it is reasonable to assume that
these polynomial orders are quite good. However, vari-
ous polynomial orders will be tested to find the optimal
ones. Polynomial OE models were identified with all
combinations of nb ∈ {0, 1, 2} and nf ∈ {1, 2, 3}, i.e.
in total nine models. For all models the time delay is
nd = 0. The fit of these nine models are shown in Fig-
ure 12. It may be difficult to separate the nine models
in the figure. However, this is not essential. The main
point of the figure is that the models form three groups.
The first group is all models with nf = 1 (regardless
of nb). The second group is nb = 0 and nf ∈ {2, 3}.
The third group is the remaining four models, i.e. nb ∈
{1, 2} and nf ∈ {2, 3}. Hence, it seems reasonable to
conclude that for models with nb = 0 and/or nf = 1,
there is some dynamics that is not properly modeled
due to too few polynomial parameters. However, the
modeled dynamics does not change significantly as nb

increases from 1 to 2 (provided nf ≥ 2). Similarly, the
dynamics does not change significantly as nf increases
from 2 to 3. It is therefore concluded that nb = 1 and
nf = 2 are sufficiently high polynomial orders.

Summing up the identification work: The final model
G(z) is chosen as a polynomial OE model, (9), with
nb = 1, nf = 2, and nd = 0. Hence, the model is on
the form

G(z) =
b0 + b1z

−1

1 + f1z−1 + f2z−2
. (12)

The model has four parameters to be identified. The
final model is shown in Figure 13. The final model
turns out to be identical to the model labeled “0” in
Figure 11. This figure shows the model’s Bode magni-
tude diagram.

9 Merging the Sub-Algorithms

As shown in Figure 3, the sensor fusion algorithm con-
sists of two sub-algorithms: (i) The complementary
filters, H(z) and 1 − H(z), which filter characteris-
tics were developed in Section 7, and (ii) the dynamic
model, G(z), which was developed in Section 8. These
sub-algorithms are now to be merged into the final
sensor fusion algorithm. The output of the sensor fu-
sion algorithm is the silicon temperature estimate, T̂ ,
which is a function of the silicon pyrometer, T̂ s, and
the graphite pyrometer, u. The estimate is given by

0 50 100 150 200 250 300 350
−10

−8

−6

−4

−2

0

2

4

6

8

10

Time [minutes]

T
e

m
p

e
ra

tu
re

 [°
C

]

System output

nf = 1,nb = 0

nf = 1,nb = 1

nf = 1,nb = 2

nf = 2,nb = 0

nf = 2,nb = 1

nf = 2,nb = 2

nf = 3,nb = 0

nf = 3,nb = 1

nf = 3,nb = 2

Figure 12: Polynomial OE models with all combina-
tions of nb ∈ {0, 1, 2} and nf ∈ {1, 2, 3}.
The time delay is nd = 0 for all models.
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Figure 14: Bode diagram of G̃(z).

T̂ = H(z) T̂ s + (1 − H(z)) T̂ g (13)
= H(z) T̂ s + (1 − H(z)) G(z) u.

It is convenient to define

G̃(z) def= (1 − H(z)) G(z). (14)

The estimated silicon temperature can then be written

T̂ = H(z) T̂ s + G̃(z) u. (15)

The transfer function H(z) is a lowpass filter. The
Bode diagram of H(z) is shown in Figure 7. The trans-
fer function G̃(z) is a series connection of the model
G(z), which has lowpass characteristics, and the high-
pass filter 1−H(z). Hence, G̃(z) has bandpass charac-
teristics. The Bode diagram of G̃(z) is shown in Fig-
ure 14.

10 Validating the Sensor Fusion
Algorithm

The purpose of the sensor fusion algorithm is to filter
the measurement noise of the silicon pyrometer, T̂ s,
with significant less phase lag than a traditional low-
pass filter. It is then natural to compare the output
of the sensor fusion algorithm, T̂ , with the output of
the lowpass filter H(z). That is, the sensor fusion al-
gorithm, T̂ = H(z) T̂ s + G̃(z) u, is to be compared
with H(z) T̂ s. Figure 15 shows T̂ and H(z) T̂ s plot-
ted against the unfiltered silicon pyrometer signal, T̂ s.
Figure 16 shows the same data as Figure 15, zoomed
in at three different areas. The figures show that the
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Figure 15: The output of the sensor fusion algorithm,
T̂ , and the lowpass-filtered silicon pyrome-
ter, H(z) T̂ s, plotted against the unfiltered
silicon pyrometer, T̂ s.

sensor fusion algorithm, T̂ , follows the unfiltered sig-
nal, T̂ s, much closer than the lowpass-filtered value
H(z)T̂ s does.

The output of the sensor fusion algorithm, T̂ , con-
sists of two contributions: H(z) T̂ s and G̃(z) u. Visual
comparison of the two contributions shows that the
high-frequency noise at G̃(z)u is neglectable compared
to H(z) T̂ s (this plot is not shown). Hence, T̂ has the
same amount of high-frequency noise as H(z) T̂ s.

Figures 15 and 16 compare T̂ and H(z) T̂ s in the
time domain. It is also of interest to compare these
two signals in the frequency domain. However, it is
not straight forward how to do this. The following
approach has been chosen here: Two models, R(z)
and S(z), are identified. R(z) models the dynamics
from T̂ s to T̂ , and S(z) models the dynamics from T̂ s

to H(z) T̂ s. Both models are on the form (9) with
nb = 1, nf = 2, and nd = 0. The intention of the
models is to get an estimate of which frequency com-
ponents of the silicon temperature, T , (measured by
the silicon pyrometer, T̂ s) that are preserved in T̂ and
H(z) T̂ s, respectively. Figure 17 shows the Bode di-
agram of the models R(z) and S(z). As expected,
the model S(z) is identical to the lowpass filter H(z).
The Bode diagram shows that S(z) attenuates at much
lower frequencies than R(z). This means that the sen-
sor fusion algorithm preserves higher frequencies of the
silicon temperature, T , than the lowpass filter H(z)
does, without letting through more noise. The phase
diagram shows that the sensor fusion algorithm can
handle much higher frequencies before it gives signifi-
cant phase lag. The magnitude diagram indicates that
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the sensor fusion algorithm slightly amplifies some fre-
quency components around ω = 10−2 rad/s. This is
an undesirable behavior.

Figures 15 through 17 show that the sensor fusion al-
gorithm is successful when validated on the same mea-
surement data that were used to identify the model
G(z). However, the dynamics from the graphite py-
rometer output, u, to the silicon temperature, T , (mea-
sured by the silicon pyrometer, T̂ s) is nonlinear. The
authors still chose to use a simple, linear model with
few parameters to avoid overfitting the model. It is
now of interest to validate how well the sensor fusion
algorithm performs when tested on measurement data
in a different temperature range. First the raw data
will be presented. Figure 4 shows the 350 minutes of
raw data used to identify the model G(z). In this fig-
ure, the graphite pyrometer output, u, is replaced by a
rescaled version ū. The relationship between u and ū
is a first order polynomial, i.e. ū = p1u+p0. The poly-
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Figure 16: The same data shown in Figure 15, zoomed
in at three different areas.
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Figure 17: Bode diagram of the models R(z) and S(z).

nomial coefficients p0 and p1 were identified as the best
(in a least squares sense) static fit between u and the
silicon pyrometer, T̂ s, over the data shown in Figure 4.
Figure 18 shows the 350 minutes of logged data shown
in Figure 4 and the following 150 minutes. While ū
and T̂ s follow closely over the first 350 minutes, i.e.
the data range used to identify the polynomial coeffi-
cients p0 and p1, ū and T̂ s deviate significantly over the
last 150 minutes. The authors can not see any other
explanation of this deviation than that the tempera-
ture is significantly lower over the last 150 minutes. If
this assumption is correct, the relationship between ū
and T̂ s must be significantly nonlinear.

Based on Figure 18, one can not expect the linear
model, G(z), which is developed based on the first 350
minutes, to perform well over the last 150 minutes.
Figure 19 compares the output of the sensor fusion
algorithm, T̂ , and the lowpass-filtered silicon pyrom-
eter, H(z) T̂ s, over the last 150 minutes of Figure 18.
The sensor fusion algorithm performs poorly until ap-
proximately 390 minutes. This is because there is a
large temperature drop from 310 minutes to 380 min-
utes that the linear model, G(z), is not able to handle
properly. However, it seems that the sensor fusion al-
gorithm performs quite well after approximately 390
minutes, when the temperature settles at a new, lower
level. This is because the highpass filter 1 − H(z) of
G̃(z) removes any static or low-frequency error of the
temperature estimate T̂ g. As the model, G(z), is not
identified for the low temperature range between 390
and 500 minutes, the performance of the sensor fusion
algorithm may be poorer than in the temperature range
used for identification.

Figures 15 and 16 give a visual impression of how
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Figure 18: The rescaled graphite pyrometer, ū, and
the silicon pyrometer, T̂ s, over an extended
time period.
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Figure 19: The output of the sensor fusion algorithm,
T̂ , the lowpass-filtered silicon pyrometer,
H(z) T̂ s, and the unfiltered silicon pyrome-
ter, T̂ s, over an extended time period.
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Figure 20: The output of the sensor fusion algorithm,
T̂ , and the lowpass-filtered silicon pyrom-
eter, H(z) T̂ s, for cut-off frequency ωc =
2.4 × 10−2 rad/s.

much the sensor fusion algorithm improves the tem-
perature estimate compared to a traditional lowpass
filter. However, how much the sensor fusion algorithm
improves the temperature estimate highly depends on
the cut-off frequency of the complementary filters H(z)
and 1 − H(z). Figure 20 compares the output of the
algorithm, T̂ , and the output of the lowpass filter,
H(z) T̂ s, when the cut-off frequency is increased by
a factor of five, i.e. from ωc = 4.8 × 10−3 rad/s to
ωc = 2.4 × 10−2 rad/s. Increasing the cut-off fre-
quency is equivalent to increasing the tolerance for
high-frequency noise. Figure 20 shows that the curves
for T̂ and H(z) T̂ s are almost identical. Hence, there
is no significant improvement of using the sensor fu-
sion algorithm over the traditional lowpass filter for
this choice of ωc. Comparing Figures 15 and 20 shows
that there is much more high-frequency noise at T̂ and
H(z) T̂ s in the latter figure.

On the other hand, decreasing the cut-off frequency,
i.e. having less tolerance for measurement noise, the im-
provement of using the sensor fusion algorithm, com-
pared to a traditional lowpass filter, is much larger.
Figure 21 compares T̂ and H(z) T̂ s when the cut-off
frequency is decreased by a factor of five, i.e. from
ωc = 4.8×10−3 rad/s to ωc = 9.6×10−4 rad/s. For this
cut-off frequency the improvement of using the sensor
fusion algorithm is very large. There is hardly any visi-
ble high-frequency noise at neither T̂ nor H(z) T̂ s. For
the simulations shown in Figures 20 and 21, the raw
data were prefiltered with the chosen cut-off frequen-
cies, and the model G(z) was re-identified.

142 PAPER G



0 50 100 150 200 250 300 350
1440

1445

1450

1455

1460

1465

1470

1475

Time [minutes]

T
e

m
p

e
ra

tu
re

 [°
C

]

T̂ s

T̂

H(z) T̂s

Figure 21: The output of the sensor fusion algorithm,
T̂ , and the lowpass-filtered silicon pyrom-
eter, H(z) T̂ s, for cut-off frequency ωc =
9.6 × 10−4 rad/s.

11 Algorithm Weaknesses and
Further Work

The sensor fusion algorithm presented in this paper is
developed based on logged measurement data from a
single CZ batch. Therefore, the algorithm has been
validated based on the same data used for developing
the algorithm. A simple, linear model with few pa-
rameters was chosen to model the dynamics from the
graphite pyrometer to the silicon temperature. The
model structure was chosen to avoid overfitting, be-
cause flexible, nonlinear black-box model structures
typically have significantly more parameters. However,
the dynamics is known to be nonlinear (see Figure 18).
An important part of further work will therefore be to
understand this nonlinear dynamics, either physically
or empirically, and build this into the model. As the
CZ process is a batch process, the dynamics may also
be time-varying. In particular, it seems reasonable to
assume that the dynamics may vary with the level of
molten silicon in the crucible. Preferably, the model
should be developed based on data from several CZ
batches to make sure the data are representative and
sufficiently informative. Also, the algorithm should be
validated based on data from several independent CZ
batches.

According to Brown and Hwang (1997), the comple-
mentary filters H(z) and 1−H(z) can be computed to
give a statistically optimal temperature estimate, i.e.
to minimize the variance of the estimation error. A
Kalman filter or a Wiener filter can be used for this

computation. Even though the complementary filters
can be chosen optimally in theory, modeling errors and
estimation errors in the noise / disturbance covariance
matrices are likely to give a sub-optimal temperature
estimate. Also, even though the temperature estimate
is in fact optimal, it may be too noisy for its desired
application. However, even if there are practical issues
related to using Kalman filter or Wiener filter, this is
an interesting issue to consider for further work.

The lowpass filter removes high-frequency noise from
the silicon pyrometer. The graphite pyrometer, in com-
bination with the dynamic model, is used to estimate
those frequency components of the silicon temperature
that are removed by the lowpass filter. A disadvantage
of this approach is that it requires two pyrometers. The
heating element heats the entire CZ process, including
the crucible and the silicon. It may be possible to re-
place the graphite pyrometer with the measured heat-
ing element power. That is, to develop a model from
the heating element power to the silicon temperature,
and use this model to estimate the high-frequency com-
ponents of the silicon temperature that are removed
when lowpass-filtering the silicon pyrometer.

12 Conclusions

SINTEF Material and Chemistry operates a Czochral-
ski (CZ) crystallization process. During one CZ batch,
two pyrometers were used: The silicon pyrometer mea-
sures the temperature of the molten silicon. This py-
rometer is assumed to be accurate, but its output signal
has much high-frequency noise. The noise can be at-
tenuated using a traditional lowpass filter. However,
this approach will give a phase lag that is unfortunate
for the temperature control. The graphite pyrome-
ter measures the temperature of a graphite material.
Hence, the graphite pyrometer does not give an exact
representation of the silicon temperature. However,
the graphite pyrometer has little measurement noise.
There is quite a good correlation between the silicon
pyrometer and the graphite pyrometer.

This paper presents a sensor fusion algorithm that
attenuates the measurement noise of the silicon pyrom-
eter, while giving significant less phase lag than a tra-
ditional lowpass filter. The algorithm consists of two
sub-algorithms: (i) A dynamic model and (ii) comple-
mentary filters.

The dynamic model estimates the silicon tempera-
ture as a function of the graphite pyrometer. The
model is a linear output error (OE) model with four
parameters. The parameters were identified using the
prediction error method (PEM), where the graphite
pyrometer is the system input and the silicon tem-
perature (measured by the silicon pyrometer) is the
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system output. A linear model structure was chosen
despite the fact that the dynamics is known to be non-
linear. Flexible, nonlinear black-box model structures
typically have significantly more parameters than lin-
ear model structures. As no independent data were
available for model validation, it was desirable to use
a model structure with few parameters to avoid model
overfitting.

A lowpass filter and a highpass filter are designed as
complementary filters. The silicon pyrometer is lowpass-
filtered, and the output of the OE model is highpass-
filtered. These two filtered signals are then summed.
This sum is the output of the sensor fusion algorithm,
i.e. the estimated silicon temperature. In other words:
The lowpass filter attenuates noise from the silicon
pyrometer, while the OE model estimates the high-
frequency components of the silicon temperature that
are lost in the lowpass-filtering.

Validation of the sensor fusion algorithm shows that
it works well on the data that were used to identify the
OE model. The algorithm gives significantly less phase
lag than traditional lowpass-filtering of the silicon py-
rometer. The algorithm performs poorly when there
are large, quick temperature changes outside the tem-
perature range used for model identification. This is to
be expected, because the linear model can not handle
the nonlinear dynamics between the graphite pyrome-
ter and the silicon temperature. The algorithm seems
to perform quite well when the temperature is within a
limited temperature range, even if this range is outside
the temperature range used for model identification.
The usefulness of the model depends on the choice of
cut-off frequency of the filters. For high cut-off fre-
quencies, the algorithm gives little or no improvement.
For low cut-off frequencies, the algorithm gives a large
improvement.

Further work on the algorithm should include anal-
ysis of the nonlinear dynamics from the graphite py-
rometer to the silicon temperature, and build this into
the dynamic model. This is likely to improve the al-
gorithm’s ability to handle large, quick temperature
variations. The suggested analysis and modeling work,
as well as more thorough validation of the algorithm,
require logged data from more CZ batches.
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