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SUMMARY

In the effort of analysing multivariate images, image PLS has been considered interesting. In this paper, image
PLS (MIR) is compared with image PCA (MIA) by studying a comparison data set. While MIA has been
commercially available for some time, image PLS has not. The kernel PLS algorithm of Lindgren has been
implemented in a development environment which is a combination of G (LabVIEW) and MATLAB. In this
presentation the power of this environment, as well as an early example in image regression, will be
demonstrated. With kernel PLS, all PLS vectors (eigenvectors and eigenvalues) can be calculated from the joint
variance—covarianceX(Y and Y’X) and association('Y and X’'X) matrices. The dimensions of the kernel
matricesX'YY'X andY’XX'Y areK x K (K is the number oX-variables) andM x M (M is the number ofr -
variables) respectively. Hence their size is dependent only on the numieamd Y -variables and not on the
number of observations (pixels), which is crucial in image analysis. The choice of LabVIEW as development
platform has been based on our experience of a very short implementation time combined with user-friendly
interface possibilities. Integrating LabVIEW with MATLAB has speeded up the decomposition calculations,
which otherwise are slow. Also, algorithms for matrix calculations are easier to formulate in MATLAB than in
LabVIEW. Applying this algorithm on a representative test image which shows many of the typical features
found in technical imagery, we have shown that image PLS (MIR) decomposes the data differently than image
PCA (MIA), in accordance with chemometric experience from ordinary two-way matrices. In the present
example theY-reference texture-related image used turned out to be able to force a rather significant ‘tilting’
compared with an ‘ordinary MIA’ of the primary structures in the original, spectral R/G image. Cop¥ytight
2000 John Wiley & Sons, Ltd.
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INTRODUCTION

Since the introduction of multivariate image analysis (MIA) in 1989 [1], multivariate image
regression (MIR) has not been developed to the extent one would have perhaps expected. The reasons
for this might be low interest within scientific society, few inspiring MIR applications and/or lack of

the required computing power. With the presentation of kernel PLS, however, Lindgren [2] has
shown that it is possible to reduce this last factor significantly. Computing the PLS loadings using
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only smdl covariance matrices insteal of large multivariate images reducesthe numter of
calcultionstremendously.

In traditionaltwo-waymultivariateimageanalysiseachpixel is looked uponasanobiject. In image
analyss the number of pixels (N) is oftenlarge,andastechnobgy developsconstany increasng.
Thushavinge.g.two milli on objects is not unusu& today. The numberof variables(K), e.g.image
channds, is usually very mucd lower, represating e.g. wavelength (colour), polarizing angle or
frequengy. Whenthesetypes of multivariate imagesare unfolded[3], we tendto getvery long and
narrow matrices. In MIA the loadings are usually calculated using SVD (singular value
decompotiion) on the covariance matrix X’'X [4], which is a K x K matrix. In kernel PLS the
loadingsare calculaed from the X"YY'X matrix, which is alsoa K x K matrix. Using only small
matricesin the updatingof this kernelmeanghatonedoesnothaveto carryarourd thelargeX andY
andlong latentvariablevectorsin the numercal calculatons.

MIA is first of all intendal for explorative image analyss purposesTrangorming multivariate
imagego theirmodg importantstructues(latentvariables)enabksadynamnic segmentadn apprach
with problemdependeninterpretaion of similar objectsin the entire image [1,4]. However, in
situatilns where extenal knowledg (Y-image) is available, image PLSR can now also be
consideed, basedon its power in guiding the decompotgion of the multivariate X-image. For
predictive purpo®s the useof somekind of regresion modelis required.Same very meanirgful
candidags are PCR [5] and PLSR [5-8]. In this paperan implemenation of multivariate image
PLSR, sone consideations of the methodand an early applicationexampé are presentedOther
applicaion exampesareavaiable [9]. Compaison of detdled resultsfrom PCRandPLSRwill be
presengédin a future paper.

METHOD

Traditiond algarithms [10] for calculatng PLS scoes and loadng weights for a given PC carry
around the large X and Y residud matrices and corresponihg paraneter vectors Because
multivariate imagesconskt of very large matrices, typically two milli on pixels by K variablesplus
oneor more Y -variable(s),thesealgorithmsconsumeenornousamountsof computermemoly and
procesaig time. Thusa differentapproachis desiredfor multivariate imagedata

In 1994, Lindgren[2] introduceda methoddesignedo reducethe matrix sizesduring calculaton.
Thismethodinitially calculateshreesmdl kernd matrices, X'X, XY andY'Y, andthemagerkernd
X'YY'X. Loadingsandweightsare calculaed usingthe maste kernel,which in turn is updaed for
eachcomponentcalculatd, using X’X and X'Y. Compaed with the traditional appraach, which
needsto updatethe large X and Y residud matrices, the kernd algorithm can savetremendous
amountsof memoy, asillustrated in Figure 1.

This approachs basednthefact thatscoresandloadngscanbe calculaedaseigenvetorsusing
squarekernel matrices:
X'YY'X)w

WA = w : PLS X-weights

( W,
gr2 = (YXX'Y)q, q:PLSY-weights
ths = (XX'YY')t, t : PLS X-scores
= ( )

YY'XX)u, u:PLSY-scaes

Becauge MIA andMIR operateon vectorizedmageswhere N > K, w is a preferied staring pointin
the calibraion procedureln situatimswhereK >> N, thisis notthe case becauseX'YY X becones
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Figurel. Thekernelapproactsavedots of computememoryrequiredfor calculatingtheweightsandloadings.
The actualamountsavedis dependenbn the N/K ratio.

verylarge. Instead XX'YY ' is used[11] for this purpo. In situatimswhereN =~ K, kernelPLSdoes
not give muchimprovement.In Reference[12], kernelPLSis comparedwith a similar algorithmfor
the singula value deconpositionof X'Y.

IMPLEMENTATION

It wasfoundconvenentto useLabVIEW asaprogranming environnentfor MIA/MIR. LabVIEW is
mainly usedfor userinteractons and file managementwhile MATLAB takescare of the actual
numbercrunchirg. Our choicewasmadebasedon prior knowledye of LabVIEW andMATLAB as
cost-efficent with regardto developnent time. The price we haveto pay is a slightly slower
algorithmthanwould be possble to obtainusing C/C++. Especiallythelink betwea LabVIEW and
MATL AB is slowwhenpassindargematrices.Thespeedbtainal is quiteadequée for R&D aswell
asroutine MIR, however.

LabVIEW (National Instrunments website: www.ni.com/bbview) is a graptical progmamming
environmentwrittenin C,whichin thelas few yeais hasgainedpopularty andusability in numeous
fields of applicatiors. As the environnent itself is becomng more stableand debuggd, different
toolboxes pop up arourd the world, introducing more and more pre-progammedfunctions, or VIs
(virtual instruments) as they are called in LabVIEW. Becaus LabVIEW usesa graphica

[File: Dialog|
bl
o} =)
]
i MAQ Create]  [iMA0 Readris] TMAD wWindDraw
error in [ho errar — IM“ UE E ut

Figure 2. LabVIEW usesgraphicalsymbolsfor differentfunctionsandsub-VIs,andthe programmeiconnects
thesetogetherusingwires. Usercontrolsandindicatorsalsoshowup assymbolsin the diagram.
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Zfunction [w' P0LSR,5Y Bl=kemelpls(<ps <pY ¥pY A) _ _
Mumber of Camponents SKERMELPLS [ P0,5%.5' Bl=kemelplsl<pd Xpy Y EY.A) ™
R ﬁJa'LuLIIaTtes the PLS of = on'" uzing the K.emel approach. [oEL]
% :
% Rpe: R
% RE R
Yy 0 [v-loadings
% & Scalar number of components [E] [oB1]
ZOUTPUT:
@‘ W' [k by Al loading wights
pid| % P [k by A)¥doadings _
Ioow] % O [ by &) Y-oadings P [#loadings
% 5% (j by A) Explained ¥-variance i [oBL]
% 5Y: [j by &) esplained Y-variance I
% B: [k by A) regrezsion coefficients
% - -
% (CJ1939 Thorbiom T Lied, TelT ek, NORWAY 5% [Explained X-variance
= 5 [oB1]
bp] % Ref: Lindgren, Geladi, ‘\wold:"The K.emel Algonthm for PLS"
[oB1] Ap
" : :
% Initialize return variables 51" [Explained Y-variance
i [oE1]
w'=zeros():
P=zeros(0];
(=zeros(0);
Sl
[oBL] P S =zeros(];
B=zeros(0); B [os]

Figure3. The actualdiagramfor the kernelPLSimplementationNote thatthe entirescriptis not shownasit is
insidea scrollablebox. The algorithmis found in Referencd?2].

progranming language calledG, anduserinterfaces aredrawndirecty in panes, LabVIEW truly isa
visual progmammingsystem(Figure 2).

MATLAB (MathWorks Inc. website: www.mahworks.com)was usedfor the core numeical
calcuhtions.

Therearetwo possbilities when combiningLabVIEW and MATLAB. Oneis to put MATLAB
scriptsdirectly in the LabVIEW diagram, the othe is to call externa scripts (m-files) from the
diagram.Thefirst alternaive waschosa here

Toreduetheamauntof datapassed betwea LabVIEW andMATLAB, it wasdecidedo calculate
theinitial kernelsin LabVIEW andpasstheseto MATLAB, whichin turn returnsloadings loadng
weightsandregressiorcomponers.

As in mog modernprogmammingenvironmens, in LabVIEW it is desiralte to build eachprogram
asacolledion of reusablesub-pogrars, or sub-Vis. Thismakeshe code,or diagrcams,easielto read
anddebug.andis of courseindispensablefor building complee dedicatedsoftwarepackaes.Figure
3 shows how LabVIEW passesgheinitial kernelsto MATLAB andcalls uponMATLAB to perform
the PLS calculation.

Onelevel higherin the program this VI is calleduponwith thekernd matrices asparameers.The
implementation of this is shown in Figure4.

Prior to the VI shownin Figure 4, scalingandcentringof X andY canbe applied if necesary.
Following this VI, X- andY-scoresare calculatedby projecing X andY on their correspading
loadings After this, we areread, to display scoreplots andscoreimages aswell asloadingplots,

Copyrightd 2000JohnWiley & Sons,Ltd. J. Chemometric2000; 14: 585-598



MULTIVARIATE IMAGE REGRESSION 589
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Figure4. How thekernelsarecalculatecandpassedo thekernelPLSVI. ThecurrentVI is typically calledupon
after scalingand/orcentringof X andY.

and/orto carry out further calculations,etc., very muchin the sane tradition aswith MIA [1,4-§.

While scoreimagesareshownin their original sizeandgeometry scoe plots arenot. A scoreplot
is a 2D histogam, or a scatte plot betwea two scome vectors Treatng eachpixel in thescenespace
asan object, andthusplotting eachobjectindividually, this scatte plot becomesunrealablewithout
usinganintensity colour-slichg map[1]. Scoreplotsareusedfor objectclassificaion (X-scaes,T),
while T vs U (Y-scaes) plots are usedfor evalating the predicion performane of the image
regresoon modd [5-8]. The differencebetwee scattemplotsandimageswill be moreevidentwhen
looking at anexanple.

APPLICATIONS

Becaug mog effort has beenput into the presentnew software developnent, a large range of
applicatiors is not yet available. Neverthelessan early exanple with threespectal channés in the
raw imageis presengd here.Although this is only a very modestmultivariate image, it senesthe
purposeof showing the principlesof MIR completely.

Therawimagewascapuredwith SILVACAM (VTT Automationwelsite: http://www?2.vtt.fi:82/
aut/rs/prodsilvacam.hinl), which is amodifiedRGB video cameravhere the blue channé hasbeen
replacedvith anNIR (near-infared)channé Thecomposie rawimage(R/G/NIR) is shown in Plate
1. In the presentexample however, the NIR channé did not contribute muchto the deconposition
andwastherebreremovedrom the datamatrix for thetexture derivatinsto be presentd below (in
orderto give moreroom for the latter).

Thisimagehasbeenspecificly designedo highlightbothspectrabswell asdifferenttexturaland
structurd differences betwea the differentobjectsin theimage.Thuswe haveconstrutedanimage
with only three principal objectspresent:

e highly textured cloth asbackground Canadian lumberjacket);
e flat plasticfragment(‘prison window bars);
e eight leadpencilsin four colours.

Theideabehindthisimageis thatthereareimportantdifferencedetweerthespectrdobjects(which

CopyrightD 2000JohnWiley & Sons,Ltd. J. Chemometcs 2000;14: 585-598
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canbediscriminatedby a standardMIA spectradeconposition[1,4]) andthetextural objectswhich
will bethemainfocusof concen in this applicaion exampé (texturally thereis e.g.only onetype of
pencil, while therearefour spectralclassexorrespading to the four colours)

Observehow the greenimage appaently conveys more detail and focus than the red image,
especilly regading the definition of the highly textured backgroundFigure5). The imageis also
represatative of various forms of specularreflectance. This latter is directly depen@nt upon
illumination angkes, etc. For this construted image a partly asynmmetrical illumination was used,
produdng a clear light/shalow contastprimarily in the N-Sdirection.

Thus,while very simple in the numberof objecttypespresentthisimagein fact catchesnary of
the principal imageanaysis elementsand featues of technobgical images, a numter of different
spectraclassesmary or all with individual texture, illumination(light/dark/shadw) differencesetc.

The goal of this exampek is twofold:

(1) todiscriminatebetwea thes differenttypesof classespecificdly with helpfrom thetextural
information;
(2) to compareMIA vs MIR.

In orderto dothis,anewMIX (multivariateimagetexture analyss) conceptis introducedwherebya
seriesof texturalimagederivaivesis directly addedonto the seriesof spectal variables(from the
perspedte of bothMIA andMIR, thissimplyresttsin asetof addedX-channels).This will bedone
in threedifferentways in the presentcase

Thus,for eachof thetwo spectrachannés (redandgreen) threerelevar texturalderivaiveshave
beencalculakd, giving a total of K =2 x (1 + 3) = 8 channés (seeFigure 5). The following texture
filters wereapplied

e medianfilter;
e Laplacefilter;
e compoundfilter (scupture+ variance+ medan + inversion).

A reference Y-imageis of coure required for image PLSR. A ‘texture index’ Y-image(Tl) is
devisedFigure 6) which expresseghebasictexture differences betwee thethreetextureclassesn a
guantitaive mamer. Texturally the piece of plastc is almostcompletely ‘flat’ (TI =0-10); the
pencilsareslightly more conplextexturally speakingoctagorml cross-section)resuting in Tl = 20—
40; while the highly textured Canadianlumber-jacketcloth displays a very high texture index,
Tl = 225-255 Figure6 shows thesetexture relationshipsvery clearly. Thisis the type of informaton
that will be usedin order to introduce textural relationshipsin the image decompaitions, but
exclusiely asY -information.

The Tl imagewasconstructé in ImageProPlusfrom Media Cybernetics applying a conmbination
of texture-sendive filtersto the red channé in X. The combindion consistedof ‘sculpt’, ‘Sobel,
‘5 x median5 x 5’ andcontras enhanementwhich, whenappliedin the mentionedorder,gavethe
resultshown in Figure®.

Application MIA vs MIR—objectives

In orderto seehowimagePLSR(MIR) decomposedifferenty thanimagePCA (MIA), threecass
will be studied in which the PCA andPLSRalgorithmswill be appliedessatially to the sarre data
setbutin threedifferentways:

e casel—MIA  (without Y-referencein X);
e case2—MIAy (Y-referencencludedin X);
e case3—MIR (Y -referenceusedin Y -block).

Copyrightd 2000JohnWiley & Sons,Ltd. J. Chemometric2000; 14: 585-598



Plate 2. MIA, Scoreplots: 1-2, 2-3, 1-3 and 1-4.
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Plate 4. MIR Scoreplots: 1-2, 2-3, 1-3 and 1-4.
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Figure5. Two spectralchannelgred, top left; green,top right) andthreetextural derivativesof each.
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A

Figure 6. ReferenceY -imageexpressingll of the principal ‘texture objects’ # spectralobjects.

Tablel showsthe contens of X andY in the threecases.

Whencomparingthe threecase, the preprocesingmustof coursebeidertical. Thus,prior to the
calculationin this exampe, all pertinentimageswere autcscaled.

Casesl and 2—MA, and MIA.. In the first case,X confains eight variablesand appraimately
350 000 objects(pixels). Thus X'X is an 8 x 8 matrix. In the secom case Tl will be addedto X
from MIA as an extra variable. Thus X will have nine variables and appraimately 350 000
objectsand X’X will bea 9 x 9 matrix. The two modds proveto be very similar, soloadng plots
areshownonly for case2. Scoreplots, though,are shown for both cases.

Figure 7 shows the accumuétedexplainedvariane for casel. The numberof PCsto usein the
following discussio is not obvious from this plot, but usingthe standad four componers thatthe
softwareprovidesseens to be a fairly goodaltemative.

Thereis a very strong paimwise correltion betweenvariablesin thes two case. This canbe seen
from the loadingplots (Figure 8).

Onecanseethefollowing variable pairsin the loadingplots: 1-5, 2—6,3—7 and4—-8. An obvious
interpretationwould be that the texture filter operdions on both red and green are closely similar.
Fromtheseobsevations,onecouldfor exanple arguethatthe numter of variablescouldbereduced
to four in the X-matrix, e.g.variables1—4.If the computeris low on memoryor speedthis canbe
consideedto speedup the calculatons. In the following, however, all the initial variablesareused,
sincewe havea quite different purpo® thanvariableselectionwith the preentdecomposions.

Case3—MIR. In the lag casea regressionmodd betwea the X usedin casel (MIAg) andY
from Tl will be built using the kernel PLS algarithm. In this casethe modd will be actively
forced in the direction of textural informaion, presimably somewhat suppessingpure spectra
correhktions,chamacterisingthe MIA g andMIA ¢ case respectively.
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Tablel. Contentsof X andY in MIA andMIR calculations

Channel MIA o MIAy MIR
Red X1 X1 X1
Redmedian X2 X2 X2
RedLaplace X3 X3 X3
Redcompound X4 X4 X4
Green X5 X5 X5
Greenmedian X6 X6 X6
GreenLaplace X7 X7 X7
Greencompound X8 X8 X8
Referencell image(Figure 6) — X9 Y

In MIR thereis still a correlationbetwea the samevariablepairs(seeFigure9), but notat all as
strongasin MIA. Thescoke image(seeFigure12) shows bettertextural detailsthanin the previous
casesThusputting the Tl imagein Y succasfully forcesthe algarithm primarily to enhancdexture
in the decompaition, asit ‘shoud’ consideringthe exclusive texture index natureof the Y-image.

In general of coursejt is to beexpectedhatMIA andMIR will decompos the samedataset(the
samemultivariateimage)differently, providedthatthepertinentY -referencanformationindeeddoes
addnewinformaton. It is interestingto seehow theseexpeded differencesmanifestthemselvs in
the loadng and scoreplots (Plates 2—4) of the preent exanple. Combiing the first three score
imagesinto ‘false colourcomposites’is alwaysa usefulway to comparealternaive deconpositions

100 —

SGX-MIAD

Figure 7. Explainedvariancefor casel, MIA withoutY.
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Figure8. MIA y loadings1—4.

(Figure10-12). The mog evidentdifferencebetwea the scoe imagesin thesethreecase, looking
beyonddifferences in colour, is the gradwal increa® in detail. The MIR scoreimagelooks much
‘sharpet, morefocused, thanthe MIA scoe images primarily becase of bettertextureanddetail
descrigion.

Figurel13 showsthe calibraed,explainedvariane for MIA o vs MIR [14,15]. It shows that,in this
case MIA performs betterin the first two componentgshanMIA. The third componenis not very
differentin the two caseswhile the fourth componentis a little betterin MIA thanMIR. Figure 14
delinedesy-variancemodelled.

CONCLUSION

In this paperit hasbeenshownthat image PLS addsa new dimensgon to the complex field of
analyshg multispectal images PLS was performed using the kernel algorithm, which is now
implemented in our prototype MIA/MIR software system The progranming was done in a
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Figure9. MIR loadingweights1-4.

combindion of LabVIEW and MATLAB using the best propertes of both programming
environmens. Using this approach,the calcuktions can be carried out on a standarddesktop
compute.

Applying this algorithmon a represatative testimagewhich shows mary of the typical features
foundin technicalimager, we haveshown thatimagePLS (MIR) decompossthe datadifferenty
than image PCA (MIA), in accodancewith chemonetric expeience from ordinaly two-way
matrices. In the presenexampk the Y -referencetexture-elatedimageusedturnedout to be ableto
force a rathersignificant ‘tilting’ comparedwith an‘ordinary MIA’ of the primary strucuresin the
original, spectralR/G image.

MIR requiresa different validation approachthan the convenional PLS approachMuch work
remains put the working prototypeis now successflly implemented.We arecurrently also working
on an extendedseriesof represatative applicaions.
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Figure10. MIA o scoreimagesl—2—-3(R-G-B).

Figure11. MIAy scoreimagesl-2—3(R-G-B).
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Figure12. MIR scoreimagesl—-2—-3(R-G-B).
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Figure13. SSXMIA o vs SSXMIR.
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Figure14.Y-residualg(SSY)from the MIR case.
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